Noble gas as a functional dopant in ZnO View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Oleksandr I. Malyi, Kostiantyn V. Sopiha, Clas Persson

ABSTRACT

Owing to fully occupied orbitals, noble gases are considered to be chemically inert and to have limited effect on materials properties under standard conditions. However, using first-principles calculations, we demonstrate herein that the insertion of noble gas (i.e. He, Ne, or Ar) in ZnO results in local destabilization of electron density of the material driven by minimization of an unfavorable overlap of atomic orbitals of the noble gas and its surrounding atoms. Specifically, the noble gas defect (interstitial or substitutional) in ZnO pushes the electron density of its surrounding atoms away from the defect. Simultaneously, the host material confines the electron density of the noble gas. As a consequence, the interaction of He, Ne, or Ar with O vacancies of ZnO in different charge states q (ZnO:VOq) affects the vacancy stability and their electronic structures. Remarkably, we find that the noble gas is a functional dopant that can delocalize the deep in-gap VOq states and lift electrons associated with the vacancy to the conduction band. More... »

PAGES

38

Journal

TITLE

npj Computational Materials

ISSUE

1

VOLUME

5

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3

    DOI

    http://dx.doi.org/10.1038/s41524-019-0174-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113061660


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, NO-0316, Oslo, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malyi", 
            "givenName": "Oleksandr I.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Uppsala University", 
              "id": "https://www.grid.ac/institutes/grid.8993.b", 
              "name": [
                "\u00c5ngstr\u00f6m Solar Center, Solid State Electronics, Department of Engineering Sciences, Uppsala University, Box 534, SE-75121, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sopiha", 
            "givenName": "Kostiantyn V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, NO-0316, Oslo, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Persson", 
            "givenName": "Clas", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.commatsci.2012.10.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001839014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008708156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6nr08810d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010832961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2005.04.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015956400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.055502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016034951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.055502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016034951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1468-6996/12/3/034302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023213216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.165202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023978829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.165202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023978829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026477287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026477287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1524/zpch.1965.45.3_4.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027501445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4948245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031039611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.235104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033242495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.235104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033242495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2053360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037073400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/21/8/084204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038460204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2016.12.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038838083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2016.12.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038838083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2016.12.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038838083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2313(85)90018-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043103596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2313(85)90018-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043103596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044109649", 
              "https://doi.org/10.1038/nature01665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044109649", 
              "https://doi.org/10.1038/nature01665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pssc.201000532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046200496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/19/47/476207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048006368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0021889811038970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048136594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/17/8/084002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051116814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/17/8/084002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051116814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.20575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053172531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1482783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057711164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2404663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057855057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3041652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057898029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.13.5188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060521190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.13.5188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060521190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060566310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060566310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.11169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060581262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.11169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060581262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.075205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060598767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.075205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060598767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.245202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060625315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.245202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060625315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.113201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060631985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.113201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060631985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.015501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060761012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.015501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060761012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.1012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.1012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7tc02389h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090773314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091429646", 
              "https://doi.org/10.1038/nmat4973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091429646", 
              "https://doi.org/10.1038/nmat4973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41524-018-0073-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101786502", 
              "https://doi.org/10.1038/s41524-018-0073-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41524-018-0073-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101786502", 
              "https://doi.org/10.1038/s41524-018-0073-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Owing to fully occupied orbitals, noble gases are considered to be chemically inert and to have limited effect on materials properties under standard conditions. However, using first-principles calculations, we demonstrate herein that the insertion of noble gas (i.e. He, Ne, or Ar) in ZnO results in local destabilization of electron density of the material driven by minimization of an unfavorable overlap of atomic orbitals of the noble gas and its surrounding atoms. Specifically, the noble gas defect (interstitial or substitutional) in ZnO pushes the electron density of its surrounding atoms away from the defect. Simultaneously, the host material confines the electron density of the noble gas. As a consequence, the interaction of He, Ne, or Ar with O vacancies of ZnO in different charge states q (ZnO:VOq) affects the vacancy stability and their electronic structures. Remarkably, we find that the noble gas is a functional dopant that can delocalize the deep in-gap VOq states and lift electrons associated with the vacancy to the conduction band.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41524-019-0174-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5062829", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1285194", 
            "issn": [
              "2057-3960"
            ], 
            "name": "npj Computational Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "Noble gas as a functional dopant in ZnO", 
        "pagination": "38", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb374ba74af3a2c0e480d50ade5d695878921fdfec1407f76af9dc4c2258ffc5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41524-019-0174-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113061660"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41524-019-0174-3", 
          "https://app.dimensions.ai/details/publication/pub.1113061660"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78938_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41524-019-0174-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    188 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41524-019-0174-3 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nf455f85bd06d4a4f8aa5ea022ffb8a99
    4 schema:citation sg:pub.10.1038/nature01665
    5 sg:pub.10.1038/nmat4973
    6 sg:pub.10.1038/s41524-018-0073-z
    7 https://doi.org/10.1002/jcc.20575
    8 https://doi.org/10.1002/pssc.201000532
    9 https://doi.org/10.1016/0022-2313(85)90018-3
    10 https://doi.org/10.1016/0927-0256(96)00008-0
    11 https://doi.org/10.1016/j.commatsci.2005.04.010
    12 https://doi.org/10.1016/j.commatsci.2012.10.028
    13 https://doi.org/10.1016/j.commatsci.2016.12.040
    14 https://doi.org/10.1039/c6nr08810d
    15 https://doi.org/10.1039/c7tc02389h
    16 https://doi.org/10.1063/1.1482783
    17 https://doi.org/10.1063/1.2053360
    18 https://doi.org/10.1063/1.2404663
    19 https://doi.org/10.1063/1.3041652
    20 https://doi.org/10.1063/1.4948245
    21 https://doi.org/10.1088/0953-8984/19/47/476207
    22 https://doi.org/10.1088/0953-8984/21/8/084204
    23 https://doi.org/10.1088/0965-0393/17/8/084002
    24 https://doi.org/10.1088/1468-6996/12/3/034302
    25 https://doi.org/10.1103/physrevb.13.5188
    26 https://doi.org/10.1103/physrevb.47.558
    27 https://doi.org/10.1103/physrevb.54.11169
    28 https://doi.org/10.1103/physrevb.63.075205
    29 https://doi.org/10.1103/physrevb.76.165202
    30 https://doi.org/10.1103/physrevb.77.245202
    31 https://doi.org/10.1103/physrevb.78.235104
    32 https://doi.org/10.1103/physrevb.81.113201
    33 https://doi.org/10.1103/physrevlett.101.055502
    34 https://doi.org/10.1103/physrevlett.110.015501
    35 https://doi.org/10.1103/physrevlett.77.3865
    36 https://doi.org/10.1103/physrevlett.85.1012
    37 https://doi.org/10.1103/revmodphys.86.253
    38 https://doi.org/10.1107/s0021889811038970
    39 https://doi.org/10.1524/zpch.1965.45.3_4.153
    40 schema:datePublished 2019-12
    41 schema:datePublishedReg 2019-12-01
    42 schema:description Owing to fully occupied orbitals, noble gases are considered to be chemically inert and to have limited effect on materials properties under standard conditions. However, using first-principles calculations, we demonstrate herein that the insertion of noble gas (i.e. He, Ne, or Ar) in ZnO results in local destabilization of electron density of the material driven by minimization of an unfavorable overlap of atomic orbitals of the noble gas and its surrounding atoms. Specifically, the noble gas defect (interstitial or substitutional) in ZnO pushes the electron density of its surrounding atoms away from the defect. Simultaneously, the host material confines the electron density of the noble gas. As a consequence, the interaction of He, Ne, or Ar with O vacancies of ZnO in different charge states q (ZnO:VOq) affects the vacancy stability and their electronic structures. Remarkably, we find that the noble gas is a functional dopant that can delocalize the deep in-gap VOq states and lift electrons associated with the vacancy to the conduction band.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N7ef0c5e93d59434fae894da7d9c81679
    47 Nc24bde2e2b2144d59d424c5325710add
    48 sg:journal.1285194
    49 schema:name Noble gas as a functional dopant in ZnO
    50 schema:pagination 38
    51 schema:productId N0aa63b2d59a740648ad33c4a15fe6afd
    52 N221b4668301748b9839a0a99f83b8479
    53 N3fb39a3f2bd240948607618590944863
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113061660
    55 https://doi.org/10.1038/s41524-019-0174-3
    56 schema:sdDatePublished 2019-04-11T13:18
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N2cba3c7c33ca499a9d7bc5cc24ba56a9
    59 schema:url https://www.nature.com/articles/s41524-019-0174-3
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N03fb0d63e7f046268a19dcf8daae2b10 schema:name Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, NO-0316, Oslo, Norway
    64 rdf:type schema:Organization
    65 N0aa63b2d59a740648ad33c4a15fe6afd schema:name doi
    66 schema:value 10.1038/s41524-019-0174-3
    67 rdf:type schema:PropertyValue
    68 N221b4668301748b9839a0a99f83b8479 schema:name dimensions_id
    69 schema:value pub.1113061660
    70 rdf:type schema:PropertyValue
    71 N2cba3c7c33ca499a9d7bc5cc24ba56a9 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 N3fb39a3f2bd240948607618590944863 schema:name readcube_id
    74 schema:value fb374ba74af3a2c0e480d50ade5d695878921fdfec1407f76af9dc4c2258ffc5
    75 rdf:type schema:PropertyValue
    76 N60e98781a6534a668b6bf903548426bd schema:affiliation N03fb0d63e7f046268a19dcf8daae2b10
    77 schema:familyName Malyi
    78 schema:givenName Oleksandr I.
    79 rdf:type schema:Person
    80 N650a4ecfd45643939e555deb5de7bbe6 schema:name Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, NO-0316, Oslo, Norway
    81 rdf:type schema:Organization
    82 N7ef0c5e93d59434fae894da7d9c81679 schema:volumeNumber 5
    83 rdf:type schema:PublicationVolume
    84 N95d01f325b9443149aa546c595ede86c schema:affiliation N650a4ecfd45643939e555deb5de7bbe6
    85 schema:familyName Persson
    86 schema:givenName Clas
    87 rdf:type schema:Person
    88 N9780ff6a00534fd68907e7600446e142 rdf:first Na2e78d8a871f400d9205e3f546de7177
    89 rdf:rest Nbc241cb35e0f4b5b8ae7d481928ef1ab
    90 Na2e78d8a871f400d9205e3f546de7177 schema:affiliation https://www.grid.ac/institutes/grid.8993.b
    91 schema:familyName Sopiha
    92 schema:givenName Kostiantyn V.
    93 rdf:type schema:Person
    94 Nbc241cb35e0f4b5b8ae7d481928ef1ab rdf:first N95d01f325b9443149aa546c595ede86c
    95 rdf:rest rdf:nil
    96 Nc24bde2e2b2144d59d424c5325710add schema:issueNumber 1
    97 rdf:type schema:PublicationIssue
    98 Nf455f85bd06d4a4f8aa5ea022ffb8a99 rdf:first N60e98781a6534a668b6bf903548426bd
    99 rdf:rest N9780ff6a00534fd68907e7600446e142
    100 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Chemical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Physical Chemistry (incl. Structural)
    105 rdf:type schema:DefinedTerm
    106 sg:grant.5062829 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-019-0174-3
    107 rdf:type schema:MonetaryGrant
    108 sg:journal.1285194 schema:issn 2057-3960
    109 schema:name npj Computational Materials
    110 rdf:type schema:Periodical
    111 sg:pub.10.1038/nature01665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044109649
    112 https://doi.org/10.1038/nature01665
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1038/nmat4973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091429646
    115 https://doi.org/10.1038/nmat4973
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/s41524-018-0073-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101786502
    118 https://doi.org/10.1038/s41524-018-0073-z
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1002/jcc.20575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053172531
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1002/pssc.201000532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046200496
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/0022-2313(85)90018-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043103596
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.commatsci.2005.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956400
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.commatsci.2012.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001839014
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.commatsci.2016.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038838083
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1039/c6nr08810d schema:sameAs https://app.dimensions.ai/details/publication/pub.1010832961
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1039/c7tc02389h schema:sameAs https://app.dimensions.ai/details/publication/pub.1090773314
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1063/1.1482783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057711164
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1063/1.2053360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037073400
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1063/1.2404663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057855057
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1063/1.3041652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057898029
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1063/1.4948245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031039611
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1088/0953-8984/19/47/476207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048006368
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1088/0953-8984/21/8/084204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038460204
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1088/0965-0393/17/8/084002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051116814
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1088/1468-6996/12/3/034302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023213216
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physrevb.63.075205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598767
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physrevb.76.165202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023978829
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physrevb.77.245202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060625315
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevb.78.235104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033242495
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physrevb.81.113201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631985
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1103/physrevlett.101.055502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016034951
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1103/physrevlett.110.015501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761012
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1103/physrevlett.85.1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821617
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1103/revmodphys.86.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026477287
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1107/s0021889811038970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048136594
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1524/zpch.1965.45.3_4.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027501445
    185 rdf:type schema:CreativeWork
    186 https://www.grid.ac/institutes/grid.8993.b schema:alternateName Uppsala University
    187 schema:name Ångström Solar Center, Solid State Electronics, Department of Engineering Sciences, Uppsala University, Box 534, SE-75121, Uppsala, Sweden
    188 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...