Noble gas as a functional dopant in ZnO View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Oleksandr I. Malyi, Kostiantyn V. Sopiha, Clas Persson

ABSTRACT

Owing to fully occupied orbitals, noble gases are considered to be chemically inert and to have limited effect on materials properties under standard conditions. However, using first-principles calculations, we demonstrate herein that the insertion of noble gas (i.e. He, Ne, or Ar) in ZnO results in local destabilization of electron density of the material driven by minimization of an unfavorable overlap of atomic orbitals of the noble gas and its surrounding atoms. Specifically, the noble gas defect (interstitial or substitutional) in ZnO pushes the electron density of its surrounding atoms away from the defect. Simultaneously, the host material confines the electron density of the noble gas. As a consequence, the interaction of He, Ne, or Ar with O vacancies of ZnO in different charge states q (ZnO:VOq) affects the vacancy stability and their electronic structures. Remarkably, we find that the noble gas is a functional dopant that can delocalize the deep in-gap VOq states and lift electrons associated with the vacancy to the conduction band. More... »

PAGES

38

Journal

TITLE

npj Computational Materials

ISSUE

1

VOLUME

5

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3

    DOI

    http://dx.doi.org/10.1038/s41524-019-0174-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113061660


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, NO-0316, Oslo, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malyi", 
            "givenName": "Oleksandr I.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Uppsala University", 
              "id": "https://www.grid.ac/institutes/grid.8993.b", 
              "name": [
                "\u00c5ngstr\u00f6m Solar Center, Solid State Electronics, Department of Engineering Sciences, Uppsala University, Box 534, SE-75121, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sopiha", 
            "givenName": "Kostiantyn V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, NO-0316, Oslo, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Persson", 
            "givenName": "Clas", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.commatsci.2012.10.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001839014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008708156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6nr08810d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010832961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2005.04.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015956400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.055502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016034951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.055502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016034951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1468-6996/12/3/034302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023213216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.165202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023978829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.165202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023978829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026477287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026477287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1524/zpch.1965.45.3_4.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027501445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4948245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031039611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.235104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033242495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.235104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033242495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2053360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037073400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/21/8/084204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038460204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2016.12.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038838083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2016.12.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038838083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2016.12.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038838083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2313(85)90018-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043103596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2313(85)90018-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043103596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044109649", 
              "https://doi.org/10.1038/nature01665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044109649", 
              "https://doi.org/10.1038/nature01665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pssc.201000532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046200496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/19/47/476207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048006368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0021889811038970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048136594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/17/8/084002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051116814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/17/8/084002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051116814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.20575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053172531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1482783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057711164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2404663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057855057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3041652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057898029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.13.5188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060521190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.13.5188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060521190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060566310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060566310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.11169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060581262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.11169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060581262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.075205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060598767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.075205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060598767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.245202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060625315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.245202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060625315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.113201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060631985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.113201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060631985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.015501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060761012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.015501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060761012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.1012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.1012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7tc02389h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090773314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091429646", 
              "https://doi.org/10.1038/nmat4973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091429646", 
              "https://doi.org/10.1038/nmat4973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41524-018-0073-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101786502", 
              "https://doi.org/10.1038/s41524-018-0073-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41524-018-0073-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101786502", 
              "https://doi.org/10.1038/s41524-018-0073-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Owing to fully occupied orbitals, noble gases are considered to be chemically inert and to have limited effect on materials properties under standard conditions. However, using first-principles calculations, we demonstrate herein that the insertion of noble gas (i.e. He, Ne, or Ar) in ZnO results in local destabilization of electron density of the material driven by minimization of an unfavorable overlap of atomic orbitals of the noble gas and its surrounding atoms. Specifically, the noble gas defect (interstitial or substitutional) in ZnO pushes the electron density of its surrounding atoms away from the defect. Simultaneously, the host material confines the electron density of the noble gas. As a consequence, the interaction of He, Ne, or Ar with O vacancies of ZnO in different charge states q (ZnO:VOq) affects the vacancy stability and their electronic structures. Remarkably, we find that the noble gas is a functional dopant that can delocalize the deep in-gap VOq states and lift electrons associated with the vacancy to the conduction band.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41524-019-0174-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5062829", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1285194", 
            "issn": [
              "2057-3960"
            ], 
            "name": "npj Computational Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "Noble gas as a functional dopant in ZnO", 
        "pagination": "38", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb374ba74af3a2c0e480d50ade5d695878921fdfec1407f76af9dc4c2258ffc5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41524-019-0174-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113061660"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41524-019-0174-3", 
          "https://app.dimensions.ai/details/publication/pub.1113061660"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78938_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41524-019-0174-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-019-0174-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    188 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41524-019-0174-3 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N1d375b965a7b41a6a2338c786a463881
    4 schema:citation sg:pub.10.1038/nature01665
    5 sg:pub.10.1038/nmat4973
    6 sg:pub.10.1038/s41524-018-0073-z
    7 https://doi.org/10.1002/jcc.20575
    8 https://doi.org/10.1002/pssc.201000532
    9 https://doi.org/10.1016/0022-2313(85)90018-3
    10 https://doi.org/10.1016/0927-0256(96)00008-0
    11 https://doi.org/10.1016/j.commatsci.2005.04.010
    12 https://doi.org/10.1016/j.commatsci.2012.10.028
    13 https://doi.org/10.1016/j.commatsci.2016.12.040
    14 https://doi.org/10.1039/c6nr08810d
    15 https://doi.org/10.1039/c7tc02389h
    16 https://doi.org/10.1063/1.1482783
    17 https://doi.org/10.1063/1.2053360
    18 https://doi.org/10.1063/1.2404663
    19 https://doi.org/10.1063/1.3041652
    20 https://doi.org/10.1063/1.4948245
    21 https://doi.org/10.1088/0953-8984/19/47/476207
    22 https://doi.org/10.1088/0953-8984/21/8/084204
    23 https://doi.org/10.1088/0965-0393/17/8/084002
    24 https://doi.org/10.1088/1468-6996/12/3/034302
    25 https://doi.org/10.1103/physrevb.13.5188
    26 https://doi.org/10.1103/physrevb.47.558
    27 https://doi.org/10.1103/physrevb.54.11169
    28 https://doi.org/10.1103/physrevb.63.075205
    29 https://doi.org/10.1103/physrevb.76.165202
    30 https://doi.org/10.1103/physrevb.77.245202
    31 https://doi.org/10.1103/physrevb.78.235104
    32 https://doi.org/10.1103/physrevb.81.113201
    33 https://doi.org/10.1103/physrevlett.101.055502
    34 https://doi.org/10.1103/physrevlett.110.015501
    35 https://doi.org/10.1103/physrevlett.77.3865
    36 https://doi.org/10.1103/physrevlett.85.1012
    37 https://doi.org/10.1103/revmodphys.86.253
    38 https://doi.org/10.1107/s0021889811038970
    39 https://doi.org/10.1524/zpch.1965.45.3_4.153
    40 schema:datePublished 2019-12
    41 schema:datePublishedReg 2019-12-01
    42 schema:description Owing to fully occupied orbitals, noble gases are considered to be chemically inert and to have limited effect on materials properties under standard conditions. However, using first-principles calculations, we demonstrate herein that the insertion of noble gas (i.e. He, Ne, or Ar) in ZnO results in local destabilization of electron density of the material driven by minimization of an unfavorable overlap of atomic orbitals of the noble gas and its surrounding atoms. Specifically, the noble gas defect (interstitial or substitutional) in ZnO pushes the electron density of its surrounding atoms away from the defect. Simultaneously, the host material confines the electron density of the noble gas. As a consequence, the interaction of He, Ne, or Ar with O vacancies of ZnO in different charge states q (ZnO:VOq) affects the vacancy stability and their electronic structures. Remarkably, we find that the noble gas is a functional dopant that can delocalize the deep in-gap VOq states and lift electrons associated with the vacancy to the conduction band.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N260e1c0c13b841de822708facd521cb9
    47 N73596942bede4aee9082d7ce04b07d66
    48 sg:journal.1285194
    49 schema:name Noble gas as a functional dopant in ZnO
    50 schema:pagination 38
    51 schema:productId N0e2128275ae542acbd78d9259c8dd0a8
    52 Nc1439d93952e4210b3a1ae1fb547600f
    53 Nd6e136561e8648628bc625c6b54b951a
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113061660
    55 https://doi.org/10.1038/s41524-019-0174-3
    56 schema:sdDatePublished 2019-04-11T13:18
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N9ab85058275e4a4d9efbe636fa3c4850
    59 schema:url https://www.nature.com/articles/s41524-019-0174-3
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N0e2128275ae542acbd78d9259c8dd0a8 schema:name readcube_id
    64 schema:value fb374ba74af3a2c0e480d50ade5d695878921fdfec1407f76af9dc4c2258ffc5
    65 rdf:type schema:PropertyValue
    66 N1d375b965a7b41a6a2338c786a463881 rdf:first N571329d0c5ac41f9b6a62b83c2ce5682
    67 rdf:rest Ne053188641fc4f1ea91fe0e9ec116933
    68 N260e1c0c13b841de822708facd521cb9 schema:volumeNumber 5
    69 rdf:type schema:PublicationVolume
    70 N2ea7fdb854b64d618ce15cc683dff72f schema:affiliation Ncde28f05ecb44071bdfe1e36ca6c3e73
    71 schema:familyName Persson
    72 schema:givenName Clas
    73 rdf:type schema:Person
    74 N3f3d36619f134272b69ea5b19aeb2414 schema:affiliation https://www.grid.ac/institutes/grid.8993.b
    75 schema:familyName Sopiha
    76 schema:givenName Kostiantyn V.
    77 rdf:type schema:Person
    78 N571329d0c5ac41f9b6a62b83c2ce5682 schema:affiliation N902bf60b18f94046b4d0dde8b35bb1bc
    79 schema:familyName Malyi
    80 schema:givenName Oleksandr I.
    81 rdf:type schema:Person
    82 N73596942bede4aee9082d7ce04b07d66 schema:issueNumber 1
    83 rdf:type schema:PublicationIssue
    84 N902bf60b18f94046b4d0dde8b35bb1bc schema:name Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, NO-0316, Oslo, Norway
    85 rdf:type schema:Organization
    86 N9ab85058275e4a4d9efbe636fa3c4850 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 Naaf998b868444bfa82f4c130599ba537 rdf:first N2ea7fdb854b64d618ce15cc683dff72f
    89 rdf:rest rdf:nil
    90 Nc1439d93952e4210b3a1ae1fb547600f schema:name doi
    91 schema:value 10.1038/s41524-019-0174-3
    92 rdf:type schema:PropertyValue
    93 Ncde28f05ecb44071bdfe1e36ca6c3e73 schema:name Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, NO-0316, Oslo, Norway
    94 rdf:type schema:Organization
    95 Nd6e136561e8648628bc625c6b54b951a schema:name dimensions_id
    96 schema:value pub.1113061660
    97 rdf:type schema:PropertyValue
    98 Ne053188641fc4f1ea91fe0e9ec116933 rdf:first N3f3d36619f134272b69ea5b19aeb2414
    99 rdf:rest Naaf998b868444bfa82f4c130599ba537
    100 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Chemical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Physical Chemistry (incl. Structural)
    105 rdf:type schema:DefinedTerm
    106 sg:grant.5062829 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-019-0174-3
    107 rdf:type schema:MonetaryGrant
    108 sg:journal.1285194 schema:issn 2057-3960
    109 schema:name npj Computational Materials
    110 rdf:type schema:Periodical
    111 sg:pub.10.1038/nature01665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044109649
    112 https://doi.org/10.1038/nature01665
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1038/nmat4973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091429646
    115 https://doi.org/10.1038/nmat4973
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/s41524-018-0073-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101786502
    118 https://doi.org/10.1038/s41524-018-0073-z
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1002/jcc.20575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053172531
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1002/pssc.201000532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046200496
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/0022-2313(85)90018-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043103596
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.commatsci.2005.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956400
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.commatsci.2012.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001839014
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.commatsci.2016.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038838083
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1039/c6nr08810d schema:sameAs https://app.dimensions.ai/details/publication/pub.1010832961
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1039/c7tc02389h schema:sameAs https://app.dimensions.ai/details/publication/pub.1090773314
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1063/1.1482783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057711164
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1063/1.2053360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037073400
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1063/1.2404663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057855057
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1063/1.3041652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057898029
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1063/1.4948245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031039611
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1088/0953-8984/19/47/476207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048006368
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1088/0953-8984/21/8/084204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038460204
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1088/0965-0393/17/8/084002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051116814
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1088/1468-6996/12/3/034302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023213216
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physrevb.63.075205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598767
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physrevb.76.165202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023978829
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physrevb.77.245202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060625315
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevb.78.235104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033242495
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physrevb.81.113201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631985
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1103/physrevlett.101.055502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016034951
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1103/physrevlett.110.015501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761012
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1103/physrevlett.85.1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821617
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1103/revmodphys.86.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026477287
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1107/s0021889811038970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048136594
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1524/zpch.1965.45.3_4.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027501445
    185 rdf:type schema:CreativeWork
    186 https://www.grid.ac/institutes/grid.8993.b schema:alternateName Uppsala University
    187 schema:name Ångström Solar Center, Solid State Electronics, Department of Engineering Sciences, Uppsala University, Box 534, SE-75121, Uppsala, Sweden
    188 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...