Uncovering electron scattering mechanisms in NiFeCoCrMn derived concentrated solid solution and high entropy alloys View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sai Mu, German D. Samolyuk, Sebastian Wimmer, Maria C. Troparevsky, Suffian N. Khan, Sergiy Mankovsky, Hubert Ebert, George M. Stocks

ABSTRACT

Whilst it has long been known that disorder profoundly affects transport properties, recent measurements on a series of solid solution 3d-transition metal alloys reveal two orders of magnitude variations in the residual resistivity. Using ab initio methods, we demonstrate that, while the carrier density of all alloys is as high as in normal metals, the electron mean-free-path can vary from ~10 Å (strong scattering limit) to ~103 Å (weak scattering limit). Here, we delineate the underlying electron scattering mechanisms responsible for this disparate behavior. While site-diagonal, spin dependent, potential scattering is always dominant, for alloys containing only Fe, Co, and Ni the majority-spin channel experiences negligible disorder scattering, thereby providing a short circuit, while for Cr/Mn containing alloys both spin channels experience strong disorder scattering due to an electron filling effect. Somewhat surprisingly, other scattering mechanisms—including displacement, or size effect, scattering which has been shown to strongly correlate with such diverse properties as yield strength—are found to be relatively weak in most cases. Smearing of Fermi surfaces caused by specific alloying elements in high-entropy alloys explains disparate resistivity measurements. A team led by George Malcom Stocks at Oak Ridge National Laboratories in Tennessee, USA, used ab initio methods to investigate electron scattering mechanisms behind differences in residual resistivity of the Cantor-Wu family of face-centered cubic disordered alloys. The simulations first reproduced the experimental observation that alloys containing manganese and chromium had high residual resistivities, while all other Cantor-Wu alloys had low residual resistivities. Single-site electron scattering, in combination with scattering caused by magnetism, showed that this was due to manganese and chromium causing smearing of the Fermi surfaces due to their half-filled d-bands. Better understanding of electronic transport in disordered alloys may help elucidate their more exotic properties. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41524-018-0138-z

DOI

http://dx.doi.org/10.1038/s41524-018-0138-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110955643


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Materials Science & Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mu", 
        "givenName": "Sai", 
        "id": "sg:person.07365172671.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365172671.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Materials Science & Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samolyuk", 
        "givenName": "German D.", 
        "id": "sg:person.01022673211.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022673211.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Chemistry, Ludwig-Maximilians-Universit\u00e4t, D-81377, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wimmer", 
        "givenName": "Sebastian", 
        "id": "sg:person.010077207745.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077207745.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Materials Science & Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Troparevsky", 
        "givenName": "Maria C.", 
        "id": "sg:person.01334010656.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334010656.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Materials Science & Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Suffian N.", 
        "id": "sg:person.013224573705.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224573705.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Chemistry, Ludwig-Maximilians-Universit\u00e4t, D-81377, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mankovsky", 
        "givenName": "Sergiy", 
        "id": "sg:person.0776104167.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776104167.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Chemistry, Ludwig-Maximilians-Universit\u00e4t, D-81377, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ebert", 
        "givenName": "Hubert", 
        "id": "sg:person.0620230667.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620230667.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Materials Science & Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stocks", 
        "givenName": "George M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/pssa.2210170217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002511105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(65)90030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003687280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(65)90030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003687280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.224423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004585170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.224423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004585170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.165132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006104194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.165132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006104194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(99)00640-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007495970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010946889", 
          "https://doi.org/10.1038/ncomms10602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.1085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011102516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.1085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011102516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.12.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014356794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.12.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014356794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.12.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014356794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1098(97)00093-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014981122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8914(47)90013-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016577593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/74/9/096501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017562617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.045125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021017448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.045125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021017448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.08.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022069941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736400101041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022273798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736400101041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022273798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2013.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023394836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19324070206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025552265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01333398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031921921", 
          "https://doi.org/10.1007/bf01333398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032822534", 
          "https://doi.org/10.1038/ncomms9736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19314010507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033957691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.115109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034415257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.115109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034415257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(96)00033-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035761855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786437208226973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036157289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037001515", 
          "https://doi.org/10.1038/nphys3174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.5048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.5048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/57/12/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041638839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep26179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041852880", 
          "https://doi.org/10.1038/srep26179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786430410001716944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042254421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/72/8/086501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042964189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/72/8/086501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042964189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4971371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046697640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046940255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046940255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2003.10.257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048796149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep20159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052137361", 
          "https://doi.org/10.1038/srep20159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.335199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057940122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/10/18/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058956404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/13/1/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059082436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/13/10/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059082469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/15/6/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059083220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/5/3/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059084920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/6/5/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059085261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/7/4/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059085512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1328/71/4/306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059093194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/28/17/175501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059114033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.156.809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.156.809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.79.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.79.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.1111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.1111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.1199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.1199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.3260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.3260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.3211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.3211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.014407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.014407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1254581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.261.5122.737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062546719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.12.570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063091773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.50.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063106259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.33.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063131991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/92/37009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/92/37009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3166/acsm.32.245-256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071063850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.014437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090980807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.014437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090980807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cossms.2017.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091495807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cossms.2017.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091495807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cossms.2017.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091495807"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Whilst it has long been known that disorder profoundly affects transport properties, recent measurements on a series of solid solution 3d-transition metal alloys reveal two orders of magnitude variations in the residual resistivity. Using ab initio methods, we demonstrate that, while the carrier density of all alloys is as high as in normal metals, the electron mean-free-path can vary from ~10 \u00c5 (strong scattering limit) to ~103 \u00c5 (weak scattering limit). Here, we delineate the underlying electron scattering mechanisms responsible for this disparate behavior. While site-diagonal, spin dependent, potential scattering is always dominant, for alloys containing only Fe, Co, and Ni the majority-spin channel experiences negligible disorder scattering, thereby providing a short circuit, while for Cr/Mn containing alloys both spin channels experience strong disorder scattering due to an electron filling effect. Somewhat surprisingly, other scattering mechanisms\u2014including displacement, or size effect, scattering which has been shown to strongly correlate with such diverse properties as yield strength\u2014are found to be relatively weak in most cases. Smearing of Fermi surfaces caused by specific alloying elements in high-entropy alloys explains disparate resistivity measurements. A team led by George Malcom Stocks at Oak Ridge National Laboratories in Tennessee, USA, used ab initio methods to investigate electron scattering mechanisms behind differences in residual resistivity of the Cantor-Wu family of face-centered cubic disordered alloys. The simulations first reproduced the experimental observation that alloys containing manganese and chromium had high residual resistivities, while all other Cantor-Wu alloys had low residual resistivities. Single-site electron scattering, in combination with scattering caused by magnetism, showed that this was due to manganese and chromium causing smearing of the Fermi surfaces due to their half-filled d-bands. Better understanding of electronic transport in disordered alloys may help elucidate their more exotic properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41524-018-0138-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4111841", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1285194", 
        "issn": [
          "2057-3960"
        ], 
        "name": "npj Computational Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Uncovering electron scattering mechanisms in NiFeCoCrMn derived concentrated solid solution and high entropy alloys", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f22c728a185168feb10732416ebfe556a08957c169d09dff7ea28b62945c00f5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41524-018-0138-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110955643"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41524-018-0138-z", 
      "https://app.dimensions.ai/details/publication/pub.1110955643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55472_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41524-018-0138-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0138-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0138-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0138-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0138-z'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      91 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41524-018-0138-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd17e42624d56461c9e62c8644bd3eefe
4 schema:citation sg:pub.10.1007/bf01333398
5 sg:pub.10.1038/ncomms10602
6 sg:pub.10.1038/ncomms9736
7 sg:pub.10.1038/nphys3174
8 sg:pub.10.1038/srep20159
9 sg:pub.10.1038/srep26179
10 https://doi.org/10.1002/andp.19314010507
11 https://doi.org/10.1002/andp.19324070206
12 https://doi.org/10.1002/pssa.2210170217
13 https://doi.org/10.1016/0022-3697(65)90030-2
14 https://doi.org/10.1016/0031-8914(47)90013-x
15 https://doi.org/10.1016/0038-1098(96)00033-6
16 https://doi.org/10.1016/0927-0256(96)00008-0
17 https://doi.org/10.1016/j.actamat.2016.08.081
18 https://doi.org/10.1016/j.cossms.2017.08.003
19 https://doi.org/10.1016/j.intermet.2013.10.024
20 https://doi.org/10.1016/j.matdes.2016.12.079
21 https://doi.org/10.1016/j.msea.2003.10.257
22 https://doi.org/10.1016/s0038-1098(97)00093-8
23 https://doi.org/10.1016/s0921-5093(99)00640-1
24 https://doi.org/10.1063/1.335199
25 https://doi.org/10.1063/1.4971371
26 https://doi.org/10.1080/00018736400101041
27 https://doi.org/10.1080/14786430410001716944
28 https://doi.org/10.1080/14786437208226973
29 https://doi.org/10.1088/0022-3719/10/18/008
30 https://doi.org/10.1088/0034-4885/57/12/002
31 https://doi.org/10.1088/0034-4885/72/8/086501
32 https://doi.org/10.1088/0034-4885/74/9/096501
33 https://doi.org/10.1088/0305-4608/13/1/018
34 https://doi.org/10.1088/0305-4608/13/10/025
35 https://doi.org/10.1088/0305-4608/15/6/018
36 https://doi.org/10.1088/0305-4608/5/3/012
37 https://doi.org/10.1088/0305-4608/6/5/025
38 https://doi.org/10.1088/0305-4608/7/4/013
39 https://doi.org/10.1088/0370-1328/71/4/306
40 https://doi.org/10.1088/0953-8984/28/17/175501
41 https://doi.org/10.1103/physrev.156.809
42 https://doi.org/10.1103/physrev.79.357
43 https://doi.org/10.1103/physrev.94.1111
44 https://doi.org/10.1103/physrevb.23.5048
45 https://doi.org/10.1103/physrevb.29.1199
46 https://doi.org/10.1103/physrevb.31.3260
47 https://doi.org/10.1103/physrevb.50.17953
48 https://doi.org/10.1103/physrevb.54.3211
49 https://doi.org/10.1103/physrevb.68.014407
50 https://doi.org/10.1103/physrevb.72.045125
51 https://doi.org/10.1103/physrevb.79.115109
52 https://doi.org/10.1103/physrevb.80.224423
53 https://doi.org/10.1103/physrevb.91.165132
54 https://doi.org/10.1103/physrevb.96.014437
55 https://doi.org/10.1103/physrevlett.26.253
56 https://doi.org/10.1103/physrevlett.57.1181
57 https://doi.org/10.1103/physrevlett.65.353
58 https://doi.org/10.1103/physrevlett.74.3253
59 https://doi.org/10.1103/revmodphys.74.11
60 https://doi.org/10.1103/revmodphys.75.1085
61 https://doi.org/10.1126/science.1254581
62 https://doi.org/10.1126/science.261.5122.737
63 https://doi.org/10.1143/jpsj.12.570
64 https://doi.org/10.1143/jpsj.50.77
65 https://doi.org/10.1143/ptp.33.157
66 https://doi.org/10.1209/0295-5075/92/37009
67 https://doi.org/10.3166/acsm.32.245-256
68 schema:datePublished 2019-12
69 schema:datePublishedReg 2019-12-01
70 schema:description Whilst it has long been known that disorder profoundly affects transport properties, recent measurements on a series of solid solution 3d-transition metal alloys reveal two orders of magnitude variations in the residual resistivity. Using ab initio methods, we demonstrate that, while the carrier density of all alloys is as high as in normal metals, the electron mean-free-path can vary from ~10 Å (strong scattering limit) to ~103 Å (weak scattering limit). Here, we delineate the underlying electron scattering mechanisms responsible for this disparate behavior. While site-diagonal, spin dependent, potential scattering is always dominant, for alloys containing only Fe, Co, and Ni the majority-spin channel experiences negligible disorder scattering, thereby providing a short circuit, while for Cr/Mn containing alloys both spin channels experience strong disorder scattering due to an electron filling effect. Somewhat surprisingly, other scattering mechanisms—including displacement, or size effect, scattering which has been shown to strongly correlate with such diverse properties as yield strength—are found to be relatively weak in most cases. Smearing of Fermi surfaces caused by specific alloying elements in high-entropy alloys explains disparate resistivity measurements. A team led by George Malcom Stocks at Oak Ridge National Laboratories in Tennessee, USA, used ab initio methods to investigate electron scattering mechanisms behind differences in residual resistivity of the Cantor-Wu family of face-centered cubic disordered alloys. The simulations first reproduced the experimental observation that alloys containing manganese and chromium had high residual resistivities, while all other Cantor-Wu alloys had low residual resistivities. Single-site electron scattering, in combination with scattering caused by magnetism, showed that this was due to manganese and chromium causing smearing of the Fermi surfaces due to their half-filled d-bands. Better understanding of electronic transport in disordered alloys may help elucidate their more exotic properties.
71 schema:genre research_article
72 schema:inLanguage en
73 schema:isAccessibleForFree true
74 schema:isPartOf N9bbe02e7a61548edbe31ca2ed15f5325
75 Nd60d0aa70be5470aadbc46e37df7297b
76 sg:journal.1285194
77 schema:name Uncovering electron scattering mechanisms in NiFeCoCrMn derived concentrated solid solution and high entropy alloys
78 schema:pagination 1
79 schema:productId N6aa9f35778314b9b9afc132a1160be85
80 Nd6cd886ef5964d8d97d2159c597700b2
81 Neab9a7061e8d41a597a1111ec7a4c099
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110955643
83 https://doi.org/10.1038/s41524-018-0138-z
84 schema:sdDatePublished 2019-04-11T08:34
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N074dab93813142619927fb287f86197f
87 schema:url https://www.nature.com/articles/s41524-018-0138-z
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N03b988249e204ec0887ed8d06bc5f3fa rdf:first sg:person.01334010656.45
92 rdf:rest N22397997b0194d11940b495b478dfdfc
93 N074dab93813142619927fb287f86197f schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N22397997b0194d11940b495b478dfdfc rdf:first sg:person.013224573705.32
96 rdf:rest N55680282ccc3499ca72efdb959614309
97 N55680282ccc3499ca72efdb959614309 rdf:first sg:person.0776104167.44
98 rdf:rest N7f0a6595cda34e5488b9f8da4821dd35
99 N6aa9f35778314b9b9afc132a1160be85 schema:name readcube_id
100 schema:value f22c728a185168feb10732416ebfe556a08957c169d09dff7ea28b62945c00f5
101 rdf:type schema:PropertyValue
102 N76f34ca621394e8fa2865e2f335901ee rdf:first sg:person.010077207745.85
103 rdf:rest N03b988249e204ec0887ed8d06bc5f3fa
104 N796d2e35fb2440ab9027e45c5812c1fc rdf:first sg:person.01022673211.10
105 rdf:rest N76f34ca621394e8fa2865e2f335901ee
106 N7f0a6595cda34e5488b9f8da4821dd35 rdf:first sg:person.0620230667.92
107 rdf:rest Nf8fad74dd6814f68b711986cdcea29c5
108 N9bbe02e7a61548edbe31ca2ed15f5325 schema:volumeNumber 5
109 rdf:type schema:PublicationVolume
110 Nd17e42624d56461c9e62c8644bd3eefe rdf:first sg:person.07365172671.24
111 rdf:rest N796d2e35fb2440ab9027e45c5812c1fc
112 Nd60d0aa70be5470aadbc46e37df7297b schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 Nd6cd886ef5964d8d97d2159c597700b2 schema:name doi
115 schema:value 10.1038/s41524-018-0138-z
116 rdf:type schema:PropertyValue
117 Ne03032387cc34101a422f17b9e162365 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
118 schema:familyName Stocks
119 schema:givenName George M.
120 rdf:type schema:Person
121 Neab9a7061e8d41a597a1111ec7a4c099 schema:name dimensions_id
122 schema:value pub.1110955643
123 rdf:type schema:PropertyValue
124 Nf8fad74dd6814f68b711986cdcea29c5 rdf:first Ne03032387cc34101a422f17b9e162365
125 rdf:rest rdf:nil
126 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
127 schema:name Engineering
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
130 schema:name Materials Engineering
131 rdf:type schema:DefinedTerm
132 sg:grant.4111841 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-018-0138-z
133 rdf:type schema:MonetaryGrant
134 sg:journal.1285194 schema:issn 2057-3960
135 schema:name npj Computational Materials
136 rdf:type schema:Periodical
137 sg:person.010077207745.85 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
138 schema:familyName Wimmer
139 schema:givenName Sebastian
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077207745.85
141 rdf:type schema:Person
142 sg:person.01022673211.10 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
143 schema:familyName Samolyuk
144 schema:givenName German D.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022673211.10
146 rdf:type schema:Person
147 sg:person.013224573705.32 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
148 schema:familyName Khan
149 schema:givenName Suffian N.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224573705.32
151 rdf:type schema:Person
152 sg:person.01334010656.45 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
153 schema:familyName Troparevsky
154 schema:givenName Maria C.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334010656.45
156 rdf:type schema:Person
157 sg:person.0620230667.92 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
158 schema:familyName Ebert
159 schema:givenName Hubert
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620230667.92
161 rdf:type schema:Person
162 sg:person.07365172671.24 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
163 schema:familyName Mu
164 schema:givenName Sai
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365172671.24
166 rdf:type schema:Person
167 sg:person.0776104167.44 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
168 schema:familyName Mankovsky
169 schema:givenName Sergiy
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776104167.44
171 rdf:type schema:Person
172 sg:pub.10.1007/bf01333398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031921921
173 https://doi.org/10.1007/bf01333398
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ncomms10602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010946889
176 https://doi.org/10.1038/ncomms10602
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ncomms9736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032822534
179 https://doi.org/10.1038/ncomms9736
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nphys3174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037001515
182 https://doi.org/10.1038/nphys3174
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/srep20159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052137361
185 https://doi.org/10.1038/srep20159
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/srep26179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041852880
188 https://doi.org/10.1038/srep26179
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/andp.19314010507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033957691
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/andp.19324070206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025552265
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/pssa.2210170217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002511105
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/0022-3697(65)90030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003687280
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/0031-8914(47)90013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016577593
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/0038-1098(96)00033-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035761855
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.actamat.2016.08.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022069941
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.cossms.2017.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091495807
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.intermet.2013.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023394836
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.matdes.2016.12.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014356794
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.msea.2003.10.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048796149
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0038-1098(97)00093-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014981122
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0921-5093(99)00640-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007495970
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1063/1.335199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057940122
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1063/1.4971371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046697640
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1080/00018736400101041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022273798
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1080/14786430410001716944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042254421
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1080/14786437208226973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036157289
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1088/0022-3719/10/18/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058956404
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1088/0034-4885/57/12/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041638839
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1088/0034-4885/72/8/086501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042964189
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1088/0034-4885/74/9/096501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017562617
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1088/0305-4608/13/1/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059082436
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1088/0305-4608/13/10/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059082469
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1088/0305-4608/15/6/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059083220
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1088/0305-4608/5/3/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059084920
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1088/0305-4608/6/5/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059085261
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1088/0305-4608/7/4/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059085512
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1088/0370-1328/71/4/306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059093194
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1088/0953-8984/28/17/175501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059114033
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrev.156.809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435220
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrev.79.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060456498
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrev.94.1111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462040
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevb.23.5048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724982
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevb.29.1199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533936
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevb.31.3260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537039
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevb.54.3211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582256
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/physrevb.68.014407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060606839
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physrevb.72.045125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021017448
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1103/physrevb.79.115109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034415257
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1103/physrevb.80.224423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004585170
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1103/physrevb.91.165132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006104194
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1103/physrevb.96.014437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090980807
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1103/physrevlett.26.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774516
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1103/physrevlett.57.1181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793708
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1103/physrevlett.65.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801820
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1103/physrevlett.74.3253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810840
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1103/revmodphys.74.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046940255
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1103/revmodphys.75.1085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011102516
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.1254581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470018
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1126/science.261.5122.737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062546719
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1143/jpsj.12.570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063091773
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1143/jpsj.50.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063106259
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1143/ptp.33.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063131991
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1209/0295-5075/92/37009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064233334
303 rdf:type schema:CreativeWork
304 https://doi.org/10.3166/acsm.32.245-256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071063850
305 rdf:type schema:CreativeWork
306 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
307 schema:name Materials Science & Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
310 schema:name Department of Chemistry, Ludwig-Maximilians-Universität, D-81377, München, Germany
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...