Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Max Falkowski, Christopher Künneth, Robin Materlik, Alfred Kersch

ABSTRACT

Insight into the origin of process-related properties like small-scale inhomogeneities is key for material optimization. Here, we analyze DFT calculations of randomly doped HfO2 structures with Si, La, and VO and relate them to the kind of production process. Total energies of the relevant ferroelectric Pbc21 phase are compared with the competing crystallographic phases under the influence of the arising local inhomogeneities in a coarse-grained approach. The interaction among dopants adds to the statistical effect from the random positioning of the dopants. In anneals after atomic layer or chemical solution deposition processes, which are short compared to ceramic process tempering, the large energy variations remain because the dopants do not diffuse. Since the energy difference is the criterion for the phase stability, the large variation suggests the possibility of nanoregions and diffuse phase transitions because these local doping effects may move the system over the paraelectric-ferroelectric phase boundary. Large-scale density functional theory calculations (DFT) are performed on doped HfO2 where the dopant−dopant interactions are found to stabilize nanoscale phases. Max Falkowski, Alfred Kersch and co-workers from the Munich University of Applied Sciences in Germany carried out high-throughput DFT calculations with 1-nm-sized supercells of La or/and Si-doped HfO2. They found that the range of dopant interactions is on the scale of 1 nm, which is relevant for the stability of the ferroelectric phase relative to the dielectric phase. The calculated energy variation among all relevant phases is unexpectedly large, caused by the dopant interaction. The results suggest formation of nanoregions and nanolaminate effects in this material, which is important to understand recent experimental findings, such as Curie temperature broadening, interphase boundaries, and diffuse phase transitions. More... »

PAGES

73

References to SciGraph publications

  • 2017-12. Prediction of new metastable HfO2 phases: toward understanding ferro- and antiferroelectric films in JOURNAL OF COMPUTATIONAL ELECTRONICS
  • 2013-03. The high-throughput highway to computational materials design in NATURE MATERIALS
  • 2016-12-19. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals in NATURE COMMUNICATIONS
  • 1977-06. Bonded-atom fragments for describing molecular charge densities in THEORETICAL CHEMISTRY ACCOUNTS
  • 2017-12. Rethinking phonons: The issue of disorder in NPJ COMPUTATIONAL MATERIALS
  • 2007. Recent progress in relaxor ferroelectrics with perovskite structure in FRONTIERS OF FERROELECTRICITY
  • 2017-12. Revealing and exploiting hierarchical material structure through complex atomic networks in NPJ COMPUTATIONAL MATERIALS
  • 2016-10. Reconciling Local Structure Disorder and the Relaxor State in (Bi1/2Na1/2)TiO3-BaTiO3 in SCIENTIFIC REPORTS
  • 2012-11. Recent progress in ab initio simulations of hafnia-based gate stacks in JOURNAL OF MATERIALS SCIENCE
  • 2008-07. Phase instability induced by polar nanoregions in a relaxor ferroelectric system in NATURE MATERIALS
  • 2017-12. A computational study of hafnia-based ferroelectric memories: from ab initio via physical modeling to circuit models of ferroelectric device in JOURNAL OF COMPUTATIONAL ELECTRONICS
  • 2018-08. The relation of local order to material properties in relaxor ferroelectrics in NATURE MATERIALS
  • 2016-12. The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film in SCIENTIFIC REPORTS
  • Journal

    TITLE

    npj Computational Materials

    ISSUE

    1

    VOLUME

    4

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41524-018-0133-4

    DOI

    http://dx.doi.org/10.1038/s41524-018-0133-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110346415


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Munich University of Applied Sciences", 
              "id": "https://www.grid.ac/institutes/grid.434949.7", 
              "name": [
                "Munich University of Applied Sciences, Lothstr. 34, 80335, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Falkowski", 
            "givenName": "Max", 
            "id": "sg:person.013705435014.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705435014.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Munich University of Applied Sciences", 
              "id": "https://www.grid.ac/institutes/grid.434949.7", 
              "name": [
                "Munich University of Applied Sciences, Lothstr. 34, 80335, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u00fcnneth", 
            "givenName": "Christopher", 
            "id": "sg:person.013742705333.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013742705333.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Munich University of Applied Sciences", 
              "id": "https://www.grid.ac/institutes/grid.434949.7", 
              "name": [
                "Munich University of Applied Sciences, Lothstr. 34, 80335, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Materlik", 
            "givenName": "Robin", 
            "id": "sg:person.014540265733.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540265733.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Munich University of Applied Sciences", 
              "id": "https://www.grid.ac/institutes/grid.434949.7", 
              "name": [
                "Munich University of Applied Sciences, Lothstr. 34, 80335, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kersch", 
            "givenName": "Alfred", 
            "id": "sg:person.0757663173.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757663173.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/adfm.201600590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001044063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-matsci-071312-121632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001112525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00549096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001801624", 
              "https://doi.org/10.1007/bf00549096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00549096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001801624", 
              "https://doi.org/10.1007/bf00549096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-38039-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003400434", 
              "https://doi.org/10.1007/978-0-387-38039-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-38039-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003400434", 
              "https://doi.org/10.1007/978-0-387-38039-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6tc04807b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004181216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-012-6568-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009640815", 
              "https://doi.org/10.1007/s10853-012-6568-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep31739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015531307", 
              "https://doi.org/10.1038/srep31739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2009.06.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016063950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mser.2014.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016639261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/68/12/r01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019888326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/68/12/r01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019888326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024247269", 
              "https://doi.org/10.1038/nmat3568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3ta14034b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025551278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4919135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030148514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep32931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037174608", 
              "https://doi.org/10.1038/srep32931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037929045", 
              "https://doi.org/10.1038/ncomms13807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042101235", 
              "https://doi.org/10.1038/nmat2196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6cp04694k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042610027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201404531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047278784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nanoen.2015.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049927358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00150198708016945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050115516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpca.5b02031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055103850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl302049k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056219515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2771376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057865601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2828696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057876470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2999352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057891987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3634052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057989044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4893738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058092021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4905871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058092632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4916707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058093154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/16/16/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059066546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.13.5188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060521190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.13.5188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060521190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.13244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.13244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.144104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060624536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.144104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060624536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.012102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060625386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.012102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060625386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/2.0061512jss", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063190928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpcc.6b11972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083549972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsami.7b00776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084124600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mee.2017.04.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085124642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4983811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085634306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aelm.201700131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091287029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4993110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091313951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41524-017-0035-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091323431", 
              "https://doi.org/10.1038/s41524-017-0035-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10825-017-1053-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091411192", 
              "https://doi.org/10.1007/s10825-017-1053-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.5003918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091963718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.chemmater.7b02835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092212795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/08001.0029ecst", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092263981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41524-017-0052-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092599553", 
              "https://doi.org/10.1038/s41524-017-0052-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10825-017-1077-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092655296", 
              "https://doi.org/10.1007/s10825-017-1077-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsanm.7b00124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099772178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/admi.201701258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100153453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4997681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100727132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.inorgchem.7b03149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101039771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aelm.201700489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101749268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/mrs.2018.92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103935813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.5030562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104337072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-018-0112-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105071597", 
              "https://doi.org/10.1038/s41563-018-0112-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsami.8b07988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106148677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.5021746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109417049"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Insight into the origin of process-related properties like small-scale inhomogeneities is key for material optimization. Here, we analyze DFT calculations of randomly doped HfO2 structures with Si, La, and VO and relate them to the kind of production process. Total energies of the relevant ferroelectric Pbc21 phase are compared with the competing crystallographic phases under the influence of the arising local inhomogeneities in a coarse-grained approach. The interaction among dopants adds to the statistical effect from the random positioning of the dopants. In anneals after atomic layer or chemical solution deposition processes, which are short compared to ceramic process tempering, the large energy variations remain because the dopants do not diffuse. Since the energy difference is the criterion for the phase stability, the large variation suggests the possibility of nanoregions and diffuse phase transitions because these local doping effects may move the system over the paraelectric-ferroelectric phase boundary. Large-scale density functional theory calculations (DFT) are performed on doped HfO2 where the dopant\u2212dopant interactions are found to stabilize nanoscale phases. Max Falkowski, Alfred Kersch and co-workers from the Munich University of Applied Sciences in Germany carried out high-throughput DFT calculations with 1-nm-sized supercells of La or/and Si-doped HfO2. They found that the range of dopant interactions is on the scale of 1 nm, which is relevant for the stability of the ferroelectric phase relative to the dielectric phase. The calculated energy variation among all relevant phases is unexpectedly large, caused by the dopant interaction. The results suggest formation of nanoregions and nanolaminate effects in this material, which is important to understand recent experimental findings, such as Curie temperature broadening, interphase boundaries, and diffuse phase transitions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41524-018-0133-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7168504", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1285194", 
            "issn": [
              "2057-3960"
            ], 
            "name": "npj Computational Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations", 
        "pagination": "73", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d4d4028dc641f0b621ba46d5fa26d1ec7c123563e2c9716624efb9fff235fe71"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41524-018-0133-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110346415"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41524-018-0133-4", 
          "https://app.dimensions.ai/details/publication/pub.1110346415"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000291_0000000291/records_105795_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41524-018-0133-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0133-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0133-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0133-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0133-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    270 TRIPLES      21 PREDICATES      85 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41524-018-0133-4 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ne62c17acc4964bce8af8bdfbcf39aa16
    4 schema:citation sg:pub.10.1007/978-0-387-38039-1_4
    5 sg:pub.10.1007/bf00549096
    6 sg:pub.10.1007/s10825-017-1053-0
    7 sg:pub.10.1007/s10825-017-1077-5
    8 sg:pub.10.1007/s10853-012-6568-y
    9 sg:pub.10.1038/ncomms13807
    10 sg:pub.10.1038/nmat2196
    11 sg:pub.10.1038/nmat3568
    12 sg:pub.10.1038/s41524-017-0035-x
    13 sg:pub.10.1038/s41524-017-0052-9
    14 sg:pub.10.1038/s41563-018-0112-7
    15 sg:pub.10.1038/srep31739
    16 sg:pub.10.1038/srep32931
    17 https://doi.org/10.1002/adfm.201600590
    18 https://doi.org/10.1002/adma.201404531
    19 https://doi.org/10.1002/admi.201701258
    20 https://doi.org/10.1002/aelm.201700131
    21 https://doi.org/10.1002/aelm.201700489
    22 https://doi.org/10.1016/j.cpc.2009.06.022
    23 https://doi.org/10.1016/j.mee.2017.04.031
    24 https://doi.org/10.1016/j.mser.2014.11.001
    25 https://doi.org/10.1016/j.nanoen.2015.10.005
    26 https://doi.org/10.1021/acs.chemmater.7b02835
    27 https://doi.org/10.1021/acs.inorgchem.7b03149
    28 https://doi.org/10.1021/acs.jpca.5b02031
    29 https://doi.org/10.1021/acs.jpcc.6b11972
    30 https://doi.org/10.1021/acsami.7b00776
    31 https://doi.org/10.1021/acsami.8b07988
    32 https://doi.org/10.1021/acsanm.7b00124
    33 https://doi.org/10.1021/nl302049k
    34 https://doi.org/10.1039/c3ta14034b
    35 https://doi.org/10.1039/c6cp04694k
    36 https://doi.org/10.1039/c6tc04807b
    37 https://doi.org/10.1063/1.2771376
    38 https://doi.org/10.1063/1.2828696
    39 https://doi.org/10.1063/1.2999352
    40 https://doi.org/10.1063/1.3634052
    41 https://doi.org/10.1063/1.4893738
    42 https://doi.org/10.1063/1.4905871
    43 https://doi.org/10.1063/1.4916707
    44 https://doi.org/10.1063/1.4919135
    45 https://doi.org/10.1063/1.4983811
    46 https://doi.org/10.1063/1.4993110
    47 https://doi.org/10.1063/1.4997681
    48 https://doi.org/10.1063/1.5003918
    49 https://doi.org/10.1063/1.5021746
    50 https://doi.org/10.1063/1.5030562
    51 https://doi.org/10.1080/00150198708016945
    52 https://doi.org/10.1088/0034-4885/68/12/r01
    53 https://doi.org/10.1088/0305-4470/16/16/007
    54 https://doi.org/10.1103/physrevb.13.5188
    55 https://doi.org/10.1103/physrevb.45.13244
    56 https://doi.org/10.1103/physrevb.77.144104
    57 https://doi.org/10.1103/physrevb.78.012102
    58 https://doi.org/10.1146/annurev-matsci-071312-121632
    59 https://doi.org/10.1149/08001.0029ecst
    60 https://doi.org/10.1149/2.0061512jss
    61 https://doi.org/10.1557/mrs.2018.92
    62 schema:datePublished 2018-12
    63 schema:datePublishedReg 2018-12-01
    64 schema:description Insight into the origin of process-related properties like small-scale inhomogeneities is key for material optimization. Here, we analyze DFT calculations of randomly doped HfO2 structures with Si, La, and VO and relate them to the kind of production process. Total energies of the relevant ferroelectric Pbc21 phase are compared with the competing crystallographic phases under the influence of the arising local inhomogeneities in a coarse-grained approach. The interaction among dopants adds to the statistical effect from the random positioning of the dopants. In anneals after atomic layer or chemical solution deposition processes, which are short compared to ceramic process tempering, the large energy variations remain because the dopants do not diffuse. Since the energy difference is the criterion for the phase stability, the large variation suggests the possibility of nanoregions and diffuse phase transitions because these local doping effects may move the system over the paraelectric-ferroelectric phase boundary. Large-scale density functional theory calculations (DFT) are performed on doped HfO2 where the dopant−dopant interactions are found to stabilize nanoscale phases. Max Falkowski, Alfred Kersch and co-workers from the Munich University of Applied Sciences in Germany carried out high-throughput DFT calculations with 1-nm-sized supercells of La or/and Si-doped HfO2. They found that the range of dopant interactions is on the scale of 1 nm, which is relevant for the stability of the ferroelectric phase relative to the dielectric phase. The calculated energy variation among all relevant phases is unexpectedly large, caused by the dopant interaction. The results suggest formation of nanoregions and nanolaminate effects in this material, which is important to understand recent experimental findings, such as Curie temperature broadening, interphase boundaries, and diffuse phase transitions.
    65 schema:genre research_article
    66 schema:inLanguage en
    67 schema:isAccessibleForFree true
    68 schema:isPartOf N253dc148a66f46edae3f15d900f9545d
    69 Nfb1cd4fe25cc42b79d0a5b7cff8ef25d
    70 sg:journal.1285194
    71 schema:name Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations
    72 schema:pagination 73
    73 schema:productId N520bb571ca184a1f9b33609213c3bfc9
    74 Nd017c5c5b5534116b436e53a4258512c
    75 Ne097a049e17147898a2d3c4cc6552168
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110346415
    77 https://doi.org/10.1038/s41524-018-0133-4
    78 schema:sdDatePublished 2019-04-11T08:21
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N20552c804bf04d85a357aa4b543b6a36
    81 schema:url https://www.nature.com/articles/s41524-018-0133-4
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N20552c804bf04d85a357aa4b543b6a36 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 N253dc148a66f46edae3f15d900f9545d schema:issueNumber 1
    88 rdf:type schema:PublicationIssue
    89 N520bb571ca184a1f9b33609213c3bfc9 schema:name doi
    90 schema:value 10.1038/s41524-018-0133-4
    91 rdf:type schema:PropertyValue
    92 N8f1dfbc3ece64c2fa085ef0dabf25b81 rdf:first sg:person.014540265733.61
    93 rdf:rest Ncf975780fc1540b29023e073824c3186
    94 Ncf975780fc1540b29023e073824c3186 rdf:first sg:person.0757663173.07
    95 rdf:rest rdf:nil
    96 Nd017c5c5b5534116b436e53a4258512c schema:name readcube_id
    97 schema:value d4d4028dc641f0b621ba46d5fa26d1ec7c123563e2c9716624efb9fff235fe71
    98 rdf:type schema:PropertyValue
    99 Nded0d98dfa07485fb7395a37c9974afb rdf:first sg:person.013742705333.33
    100 rdf:rest N8f1dfbc3ece64c2fa085ef0dabf25b81
    101 Ne097a049e17147898a2d3c4cc6552168 schema:name dimensions_id
    102 schema:value pub.1110346415
    103 rdf:type schema:PropertyValue
    104 Ne62c17acc4964bce8af8bdfbcf39aa16 rdf:first sg:person.013705435014.21
    105 rdf:rest Nded0d98dfa07485fb7395a37c9974afb
    106 Nfb1cd4fe25cc42b79d0a5b7cff8ef25d schema:volumeNumber 4
    107 rdf:type schema:PublicationVolume
    108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Engineering
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Materials Engineering
    113 rdf:type schema:DefinedTerm
    114 sg:grant.7168504 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-018-0133-4
    115 rdf:type schema:MonetaryGrant
    116 sg:journal.1285194 schema:issn 2057-3960
    117 schema:name npj Computational Materials
    118 rdf:type schema:Periodical
    119 sg:person.013705435014.21 schema:affiliation https://www.grid.ac/institutes/grid.434949.7
    120 schema:familyName Falkowski
    121 schema:givenName Max
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705435014.21
    123 rdf:type schema:Person
    124 sg:person.013742705333.33 schema:affiliation https://www.grid.ac/institutes/grid.434949.7
    125 schema:familyName Künneth
    126 schema:givenName Christopher
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013742705333.33
    128 rdf:type schema:Person
    129 sg:person.014540265733.61 schema:affiliation https://www.grid.ac/institutes/grid.434949.7
    130 schema:familyName Materlik
    131 schema:givenName Robin
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540265733.61
    133 rdf:type schema:Person
    134 sg:person.0757663173.07 schema:affiliation https://www.grid.ac/institutes/grid.434949.7
    135 schema:familyName Kersch
    136 schema:givenName Alfred
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757663173.07
    138 rdf:type schema:Person
    139 sg:pub.10.1007/978-0-387-38039-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003400434
    140 https://doi.org/10.1007/978-0-387-38039-1_4
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf00549096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001801624
    143 https://doi.org/10.1007/bf00549096
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s10825-017-1053-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091411192
    146 https://doi.org/10.1007/s10825-017-1053-0
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s10825-017-1077-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092655296
    149 https://doi.org/10.1007/s10825-017-1077-5
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10853-012-6568-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640815
    152 https://doi.org/10.1007/s10853-012-6568-y
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/ncomms13807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037929045
    155 https://doi.org/10.1038/ncomms13807
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nmat2196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042101235
    158 https://doi.org/10.1038/nmat2196
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nmat3568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024247269
    161 https://doi.org/10.1038/nmat3568
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/s41524-017-0035-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091323431
    164 https://doi.org/10.1038/s41524-017-0035-x
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/s41524-017-0052-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092599553
    167 https://doi.org/10.1038/s41524-017-0052-9
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/s41563-018-0112-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105071597
    170 https://doi.org/10.1038/s41563-018-0112-7
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/srep31739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015531307
    173 https://doi.org/10.1038/srep31739
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/srep32931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037174608
    176 https://doi.org/10.1038/srep32931
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1002/adfm.201600590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001044063
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1002/adma.201404531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047278784
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1002/admi.201701258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100153453
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1002/aelm.201700131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091287029
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1002/aelm.201700489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101749268
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.cpc.2009.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016063950
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.mee.2017.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085124642
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.mser.2014.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016639261
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.nanoen.2015.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049927358
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1021/acs.chemmater.7b02835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092212795
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1021/acs.inorgchem.7b03149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101039771
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1021/acs.jpca.5b02031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055103850
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1021/acs.jpcc.6b11972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083549972
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1021/acsami.7b00776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084124600
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1021/acsami.8b07988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106148677
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1021/acsanm.7b00124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099772178
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1021/nl302049k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219515
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1039/c3ta14034b schema:sameAs https://app.dimensions.ai/details/publication/pub.1025551278
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1039/c6cp04694k schema:sameAs https://app.dimensions.ai/details/publication/pub.1042610027
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1039/c6tc04807b schema:sameAs https://app.dimensions.ai/details/publication/pub.1004181216
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1063/1.2771376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057865601
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1063/1.2828696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057876470
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1063/1.2999352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057891987
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1063/1.3634052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057989044
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1063/1.4893738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058092021
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1063/1.4905871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058092632
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1063/1.4916707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058093154
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1063/1.4919135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030148514
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1063/1.4983811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085634306
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1063/1.4993110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091313951
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1063/1.4997681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100727132
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1063/1.5003918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091963718
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1063/1.5021746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109417049
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1063/1.5030562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104337072
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1080/00150198708016945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050115516
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1088/0034-4885/68/12/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019888326
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1088/0305-4470/16/16/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059066546
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1103/physrevb.45.13244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560884
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1103/physrevb.77.144104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060624536
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1103/physrevb.78.012102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060625386
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1146/annurev-matsci-071312-121632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001112525
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1149/08001.0029ecst schema:sameAs https://app.dimensions.ai/details/publication/pub.1092263981
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1149/2.0061512jss schema:sameAs https://app.dimensions.ai/details/publication/pub.1063190928
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1557/mrs.2018.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103935813
    267 rdf:type schema:CreativeWork
    268 https://www.grid.ac/institutes/grid.434949.7 schema:alternateName Munich University of Applied Sciences
    269 schema:name Munich University of Applied Sciences, Lothstr. 34, 80335, Munich, Germany
    270 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...