Interplay between epidermal stem cell dynamics and dermal deformation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yasuaki Kobayashi, Yusuke Yasugahira, Hiroyuki Kitahata, Mika Watanabe, Ken Natsuga, Masaharu Nagayama

ABSTRACT

Tissue growth is a driving force of morphological changes in living systems. Whereas the buckling instability is known to play a crutial role for initiating spatial pattern formations in such growing systems, little is known about the rationale for succeeding morphological changes beyond this instability. In mammalian skin, the dermis has many protrusions toward the epidermis, and the epidermal stem cells are typically found on the tips of these protrusions. Although the initial instability may well be explained by the buckling involving the dermis and the basal layer, which contains proliferative cells, it does not dictate the direction of these protrusions, nor the spatial patterning of epidermal stem cells. Here we introduce a particle-based model of self-replicating cells on a deformable substrate composed of the dermis and the basement membrane, and investigate the relationship between dermal deformation and epidermal stem cell pattering on it. We show that our model reproduces the formation of dermal protrusions directing from the dermis to the epidermis, and preferential epidermal stem cell distributions on the tips of the dermal protrusions, which the basic buckling mechanism fails to explain. We argue that cell-type-dependent adhesion strengths of the cells to the basement membrane are crucial factors influencing these patterns. Our epidermis loses 1.8 million skin cells per hour. This loss is balanced by the generation of new cells at the epidermal-dermal interface, the basement membrane, which features characteristic dermal protrusions. A team led by Masaharu Nagayama at Hokkaido University in Japan emulates epidermal renewal using a particle-based model. Using this approach, the authors uncover that constant cell division leads to crowding at the basement membrane. Depending on the energy cost, cells will either detach from the membrane or can be accommodated by deforming the membrane, thereby forming dermal protrusions. The model also explains observations that stem cells are preferentially found at the tips of these protrusions. The model does not rely on external signals from the dermis and could serve as a generic mechanism to other pattern-forming systems. More... »

PAGES

45

References to SciGraph publications

  • 2017-12. A 3D self-organizing multicellular epidermis model of barrier formation and hydration with realistic cell morphology based on EPISIM in SCIENTIFIC REPORTS
  • 2013-09. Mechanisms and mechanics of cell competition in epithelia in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 1987-01. Label-Retaining Cells in Human Embryonic and Fetal Epidermis in JOURNAL OF INVESTIGATIVE DERMATOLOGY
  • 1968-03. Abnormal Cell Proliferation in Psoriasis1 in JOURNAL OF INVESTIGATIVE DERMATOLOGY
  • 2017-11. Regeneration of the entire human epidermis using transgenic stem cells in NATURE
  • 2016. Mathematical Model of Epidermal Structure in APPLICATIONS + PRACTICAL CONCEPTUALIZATION + MATHEMATICS = FRUITFUL INNOVATION
  • 2003. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds in VISUALIZATION AND MATHEMATICS III
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41524-018-0101-z

    DOI

    http://dx.doi.org/10.1038/s41524-018-0101-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106160275


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ochanomizu University", 
              "id": "https://www.grid.ac/institutes/grid.412314.1", 
              "name": [
                "Center for Simulation Sciences, Ochanomizu University, 112-8620, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kobayashi", 
            "givenName": "Yasuaki", 
            "id": "sg:person.01076666462.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076666462.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hokkaido University", 
              "id": "https://www.grid.ac/institutes/grid.39158.36", 
              "name": [
                "Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yasugahira", 
            "givenName": "Yusuke", 
            "id": "sg:person.014753334470.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753334470.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University", 
              "id": "https://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "Department of Physics, Chiba University, 263-8502, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitahata", 
            "givenName": "Hiroyuki", 
            "id": "sg:person.01165046172.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165046172.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hokkaido University", 
              "id": "https://www.grid.ac/institutes/grid.39158.36", 
              "name": [
                "Department of Dermatology, Graduate School of Medicine, Hokkaido University, 060-8638, Sapporo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Mika", 
            "id": "sg:person.01267057505.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267057505.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hokkaido University", 
              "id": "https://www.grid.ac/institutes/grid.39158.36", 
              "name": [
                "Department of Dermatology, Graduate School of Medicine, Hokkaido University, 060-8638, Sapporo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Natsuga", 
            "givenName": "Ken", 
            "id": "sg:person.01106405135.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106405135.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hokkaido University", 
              "id": "https://www.grid.ac/institutes/grid.39158.36", 
              "name": [
                "Research Institute for Electronic Science, Hokkaido University, 060-0812, Sapporo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagayama", 
            "givenName": "Masaharu", 
            "id": "sg:person.011022622351.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011022622351.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/exd.12302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002348566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1504102112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004075122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.158101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006279603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.158101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006279603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1111/1523-1747.ep12464857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009434147", 
              "https://doi.org/10.1111/1523-1747.ep12464857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.078104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009632154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.078104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009632154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1217391110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010173030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013559100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2007.03.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016349639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0092650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021905888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1238842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022263722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/cshperspect.a018218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022673823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jmg.12.3.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023356287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mbs.2013.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023411672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/b14173-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026605930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.92.022720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027664978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.92.022720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027664978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(93)90251-k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031600813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032459723", 
              "https://doi.org/10.1038/nrm3639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2788.1973.tb01186.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036321697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/jid.1968.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036376612", 
              "https://doi.org/10.1038/jid.1968.37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2006.04.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040216178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.024166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042630292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5ib00238a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043897317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05105-4_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044281423", 
              "https://doi.org/10.1007/978-3-662-05105-4_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1011086107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045300665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1312076111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045877110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2016.02.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046539159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1478-3975/8/2/026014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047515591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(95)90453-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047974853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048033384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3476(69)80453-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049663596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0404782102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049901952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-4-431-55342-7_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052775612", 
              "https://doi.org/10.1007/978-4-431-55342-7_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0923-1811(95)00407-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053073539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.92.022709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060747965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.92.022709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060747965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.93.022405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060749093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.93.022405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060749093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.158102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060761432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.158102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060761432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.4244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.4244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2133.1996.tb01509.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061926105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074366670", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/ijd.1979.18.5.329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079965772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep43472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084131404", 
              "https://doi.org/10.1038/srep43472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.26635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090617998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092575710", 
              "https://doi.org/10.1038/nature24487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092575710", 
              "https://doi.org/10.1038/nature24487"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Tissue growth is a driving force of morphological changes in living systems. Whereas the buckling instability is known to play a crutial role for initiating spatial pattern formations in such growing systems, little is known about the rationale for succeeding morphological changes beyond this instability. In mammalian skin, the dermis has many protrusions toward the epidermis, and the epidermal stem cells are typically found on the tips of these protrusions. Although the initial instability may well be explained by the buckling involving the dermis and the basal layer, which contains proliferative cells, it does not dictate the direction of these protrusions, nor the spatial patterning of epidermal stem cells. Here we introduce a particle-based model of self-replicating cells on a deformable substrate composed of the dermis and the basement membrane, and investigate the relationship between dermal deformation and epidermal stem cell pattering on it. We show that our model reproduces the formation of dermal protrusions directing from the dermis to the epidermis, and preferential epidermal stem cell distributions on the tips of the dermal protrusions, which the basic buckling mechanism fails to explain. We argue that cell-type-dependent adhesion strengths of the cells to the basement membrane are crucial factors influencing these patterns. Our epidermis loses 1.8 million skin cells per hour. This loss is balanced by the generation of new cells at the epidermal-dermal interface, the basement membrane, which features characteristic dermal protrusions. A team led by Masaharu Nagayama at Hokkaido University in Japan emulates epidermal renewal using a particle-based model. Using this approach, the authors uncover that constant cell division leads to crowding at the basement membrane. Depending on the energy cost, cells will either detach from the membrane or can be accommodated by deforming the membrane, thereby forming dermal protrusions. The model also explains observations that stem cells are preferentially found at the tips of these protrusions. The model does not rely on external signals from the dermis and could serve as a generic mechanism to other pattern-forming systems.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41524-018-0101-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1285194", 
            "issn": [
              "2057-3960"
            ], 
            "name": "npj Computational Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Interplay between epidermal stem cell dynamics and dermal deformation", 
        "pagination": "45", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "819b245acf908a60db8cb6ec2163ab20871d72fcc5caefe43596eb5b1f919470"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41524-018-0101-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106160275"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41524-018-0101-z", 
          "https://app.dimensions.ai/details/publication/pub.1106160275"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000494.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41524-018-0101-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0101-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0101-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0101-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0101-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    238 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41524-018-0101-z schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N8bb5335eab644cdb97254e484b6c2928
    4 schema:citation sg:pub.10.1007/978-3-662-05105-4_2
    5 sg:pub.10.1007/978-4-431-55342-7_11
    6 sg:pub.10.1038/jid.1968.37
    7 sg:pub.10.1038/nature24487
    8 sg:pub.10.1038/nrm3639
    9 sg:pub.10.1038/srep43472
    10 sg:pub.10.1111/1523-1747.ep12464857
    11 https://app.dimensions.ai/details/publication/pub.1074366670
    12 https://doi.org/10.1016/0092-8674(93)90251-k
    13 https://doi.org/10.1016/0092-8674(95)90453-0
    14 https://doi.org/10.1016/0923-1811(95)00407-j
    15 https://doi.org/10.1016/j.jtbi.2006.04.020
    16 https://doi.org/10.1016/j.jtbi.2007.03.023
    17 https://doi.org/10.1016/j.jtbi.2016.02.032
    18 https://doi.org/10.1016/j.mbs.2013.09.008
    19 https://doi.org/10.1016/s0022-3476(69)80453-1
    20 https://doi.org/10.1039/c5ib00238a
    21 https://doi.org/10.1073/pnas.0404782102
    22 https://doi.org/10.1073/pnas.1011086107
    23 https://doi.org/10.1073/pnas.1217391110
    24 https://doi.org/10.1073/pnas.1312076111
    25 https://doi.org/10.1073/pnas.1504102112
    26 https://doi.org/10.1088/1478-3975/8/2/026014
    27 https://doi.org/10.1093/bioinformatics/bts659
    28 https://doi.org/10.1101/cshperspect.a018218
    29 https://doi.org/10.1103/physreve.92.022709
    30 https://doi.org/10.1103/physreve.92.022720
    31 https://doi.org/10.1103/physreve.93.022405
    32 https://doi.org/10.1103/physrevlett.106.158101
    33 https://doi.org/10.1103/physrevlett.107.078104
    34 https://doi.org/10.1103/physrevlett.110.158102
    35 https://doi.org/10.1103/physrevlett.84.4244
    36 https://doi.org/10.1111/exd.12302
    37 https://doi.org/10.1111/ijd.1979.18.5.329
    38 https://doi.org/10.1111/j.1365-2133.1996.tb01509.x
    39 https://doi.org/10.1111/j.1365-2788.1973.tb01186.x
    40 https://doi.org/10.1126/science.1238842
    41 https://doi.org/10.1136/jmg.12.3.243
    42 https://doi.org/10.1201/b14173-2
    43 https://doi.org/10.1242/dev.024166
    44 https://doi.org/10.1371/journal.pcbi.1002515
    45 https://doi.org/10.1371/journal.pone.0092650
    46 https://doi.org/10.7554/elife.26635
    47 schema:datePublished 2018-12
    48 schema:datePublishedReg 2018-12-01
    49 schema:description Tissue growth is a driving force of morphological changes in living systems. Whereas the buckling instability is known to play a crutial role for initiating spatial pattern formations in such growing systems, little is known about the rationale for succeeding morphological changes beyond this instability. In mammalian skin, the dermis has many protrusions toward the epidermis, and the epidermal stem cells are typically found on the tips of these protrusions. Although the initial instability may well be explained by the buckling involving the dermis and the basal layer, which contains proliferative cells, it does not dictate the direction of these protrusions, nor the spatial patterning of epidermal stem cells. Here we introduce a particle-based model of self-replicating cells on a deformable substrate composed of the dermis and the basement membrane, and investigate the relationship between dermal deformation and epidermal stem cell pattering on it. We show that our model reproduces the formation of dermal protrusions directing from the dermis to the epidermis, and preferential epidermal stem cell distributions on the tips of the dermal protrusions, which the basic buckling mechanism fails to explain. We argue that cell-type-dependent adhesion strengths of the cells to the basement membrane are crucial factors influencing these patterns. Our epidermis loses 1.8 million skin cells per hour. This loss is balanced by the generation of new cells at the epidermal-dermal interface, the basement membrane, which features characteristic dermal protrusions. A team led by Masaharu Nagayama at Hokkaido University in Japan emulates epidermal renewal using a particle-based model. Using this approach, the authors uncover that constant cell division leads to crowding at the basement membrane. Depending on the energy cost, cells will either detach from the membrane or can be accommodated by deforming the membrane, thereby forming dermal protrusions. The model also explains observations that stem cells are preferentially found at the tips of these protrusions. The model does not rely on external signals from the dermis and could serve as a generic mechanism to other pattern-forming systems.
    50 schema:genre research_article
    51 schema:inLanguage en
    52 schema:isAccessibleForFree true
    53 schema:isPartOf Nbbf4fcadf08046929dbc5ee4621e83aa
    54 Ndcc11298ab1546cb8c93ca2ea01aa051
    55 sg:journal.1285194
    56 schema:name Interplay between epidermal stem cell dynamics and dermal deformation
    57 schema:pagination 45
    58 schema:productId N6ceddfd8fe38437d99bee49d3f5227b6
    59 N8da286d6a62c4e9eb7ab2649c3cf0f9e
    60 Nc1cd2fc6ba3c45dc88a99ad86e5f58f5
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106160275
    62 https://doi.org/10.1038/s41524-018-0101-z
    63 schema:sdDatePublished 2019-04-10T23:20
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Nc8dbd306c2c944bf9c100af13b5ee390
    66 schema:url https://www.nature.com/articles/s41524-018-0101-z
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N0a423de344b5409496071b3050836c44 rdf:first sg:person.011022622351.21
    71 rdf:rest rdf:nil
    72 N1db24f762aa74123b370765bc36d444f rdf:first sg:person.01267057505.10
    73 rdf:rest Nd7c108280f6449a7abd220e830a625d7
    74 N2ede355692af49759f726521af51beca rdf:first sg:person.01165046172.48
    75 rdf:rest N1db24f762aa74123b370765bc36d444f
    76 N6ceddfd8fe38437d99bee49d3f5227b6 schema:name readcube_id
    77 schema:value 819b245acf908a60db8cb6ec2163ab20871d72fcc5caefe43596eb5b1f919470
    78 rdf:type schema:PropertyValue
    79 N821a934efc164c54a3ad88115379ae22 rdf:first sg:person.014753334470.18
    80 rdf:rest N2ede355692af49759f726521af51beca
    81 N8bb5335eab644cdb97254e484b6c2928 rdf:first sg:person.01076666462.73
    82 rdf:rest N821a934efc164c54a3ad88115379ae22
    83 N8da286d6a62c4e9eb7ab2649c3cf0f9e schema:name doi
    84 schema:value 10.1038/s41524-018-0101-z
    85 rdf:type schema:PropertyValue
    86 Nbbf4fcadf08046929dbc5ee4621e83aa schema:issueNumber 1
    87 rdf:type schema:PublicationIssue
    88 Nc1cd2fc6ba3c45dc88a99ad86e5f58f5 schema:name dimensions_id
    89 schema:value pub.1106160275
    90 rdf:type schema:PropertyValue
    91 Nc8dbd306c2c944bf9c100af13b5ee390 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 Nd7c108280f6449a7abd220e830a625d7 rdf:first sg:person.01106405135.46
    94 rdf:rest N0a423de344b5409496071b3050836c44
    95 Ndcc11298ab1546cb8c93ca2ea01aa051 schema:volumeNumber 4
    96 rdf:type schema:PublicationVolume
    97 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Biological Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Biochemistry and Cell Biology
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1285194 schema:issn 2057-3960
    104 schema:name npj Computational Materials
    105 rdf:type schema:Periodical
    106 sg:person.01076666462.73 schema:affiliation https://www.grid.ac/institutes/grid.412314.1
    107 schema:familyName Kobayashi
    108 schema:givenName Yasuaki
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076666462.73
    110 rdf:type schema:Person
    111 sg:person.011022622351.21 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
    112 schema:familyName Nagayama
    113 schema:givenName Masaharu
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011022622351.21
    115 rdf:type schema:Person
    116 sg:person.01106405135.46 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
    117 schema:familyName Natsuga
    118 schema:givenName Ken
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106405135.46
    120 rdf:type schema:Person
    121 sg:person.01165046172.48 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
    122 schema:familyName Kitahata
    123 schema:givenName Hiroyuki
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165046172.48
    125 rdf:type schema:Person
    126 sg:person.01267057505.10 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
    127 schema:familyName Watanabe
    128 schema:givenName Mika
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267057505.10
    130 rdf:type schema:Person
    131 sg:person.014753334470.18 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
    132 schema:familyName Yasugahira
    133 schema:givenName Yusuke
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753334470.18
    135 rdf:type schema:Person
    136 sg:pub.10.1007/978-3-662-05105-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044281423
    137 https://doi.org/10.1007/978-3-662-05105-4_2
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-4-431-55342-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052775612
    140 https://doi.org/10.1007/978-4-431-55342-7_11
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/jid.1968.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036376612
    143 https://doi.org/10.1038/jid.1968.37
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nature24487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092575710
    146 https://doi.org/10.1038/nature24487
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/nrm3639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032459723
    149 https://doi.org/10.1038/nrm3639
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/srep43472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131404
    152 https://doi.org/10.1038/srep43472
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1111/1523-1747.ep12464857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009434147
    155 https://doi.org/10.1111/1523-1747.ep12464857
    156 rdf:type schema:CreativeWork
    157 https://app.dimensions.ai/details/publication/pub.1074366670 schema:CreativeWork
    158 https://doi.org/10.1016/0092-8674(93)90251-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1031600813
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/0092-8674(95)90453-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047974853
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/0923-1811(95)00407-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1053073539
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.jtbi.2006.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040216178
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.jtbi.2007.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016349639
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.jtbi.2016.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046539159
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.mbs.2013.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023411672
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s0022-3476(69)80453-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049663596
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1039/c5ib00238a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043897317
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1073/pnas.0404782102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049901952
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1073/pnas.1011086107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045300665
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1073/pnas.1217391110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010173030
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1073/pnas.1312076111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045877110
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1073/pnas.1504102112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004075122
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1088/1478-3975/8/2/026014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047515591
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1093/bioinformatics/bts659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048033384
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1101/cshperspect.a018218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022673823
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1103/physreve.92.022709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060747965
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1103/physreve.92.022720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027664978
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1103/physreve.93.022405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060749093
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1103/physrevlett.106.158101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006279603
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1103/physrevlett.107.078104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009632154
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1103/physrevlett.110.158102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761432
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1103/physrevlett.84.4244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821227
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1111/exd.12302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002348566
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1111/ijd.1979.18.5.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079965772
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1111/j.1365-2133.1996.tb01509.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1061926105
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1111/j.1365-2788.1973.tb01186.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036321697
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1126/science.1238842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022263722
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1136/jmg.12.3.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023356287
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1201/b14173-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026605930
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1242/dev.024166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042630292
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1371/journal.pcbi.1002515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013559100
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1371/journal.pone.0092650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021905888
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.7554/elife.26635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090617998
    227 rdf:type schema:CreativeWork
    228 https://www.grid.ac/institutes/grid.136304.3 schema:alternateName Chiba University
    229 schema:name Department of Physics, Chiba University, 263-8502, Chiba, Japan
    230 rdf:type schema:Organization
    231 https://www.grid.ac/institutes/grid.39158.36 schema:alternateName Hokkaido University
    232 schema:name Department of Dermatology, Graduate School of Medicine, Hokkaido University, 060-8638, Sapporo, Japan
    233 Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan
    234 Research Institute for Electronic Science, Hokkaido University, 060-0812, Sapporo, Japan
    235 rdf:type schema:Organization
    236 https://www.grid.ac/institutes/grid.412314.1 schema:alternateName Ochanomizu University
    237 schema:name Center for Simulation Sciences, Ochanomizu University, 112-8620, Tokyo, Japan
    238 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...