Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Kanghoon Yim, Yong Youn, Miso Lee, Dongsun Yoo, Joohee Lee, Sung Haeng Cho, Seungwu Han

ABSTRACT

The ultimate transparent electronic devices require complementary and symmetrical pairs of n-type and p-type transparent semiconductors. While several n-type transparent oxide semiconductors like InGaZnO and ZnO are available and being used in consumer electronics, there are practically no p-type oxides that are comparable to the n-type counterpart in spite of tremendous efforts to discover them. Recently, high-throughput screening with the density functional theory calculations attempted to identify candidate p-type transparent oxides, but none of suggested materials was verified experimentally, implying need for a better theoretical predictor. Here, we propose a highly reliable and computationally efficient descriptor for p-type dopability—the hydrogen impurity energy. We show that the hydrogen descriptor can distinguish well-known p-type and n-type oxides. Using the hydrogen descriptor, we screen most binary oxides and a selected pool of ternary compounds that covers Sn2+-bearing and Cu1+-bearing oxides as well as oxychalcogenides. As a result, we suggest La2O2Te and CuLiO as promising p-type oxides. Computational studies screen transparent oxide semiconductors based on the formation energy of a particular defect, and reveal promising hole-doped candidates. Although p-doped semiconductors are useful for electronic devices, their performance so far is not comparable to their n-type counterparts: most p-type oxides have stability issues or suffer from poor transparency. Now a team from Seoul National University and the Electronics and Telecommunications Research Institute in Daejeon, South Korea, are computationally looking for p-doped oxides with high conductivity and good transparency, simultaneously. Their screening relies on defect chemistry and assesses the dopability of the materials by using the formation energy of hydrogen interstitial defect, as well as the evaluation of the hole mass. Authors put forth a few promising p-type binary oxides and ternary compounds, which can be very useful for implementing electronic devices, once their properties have been verified experimentally. More... »

PAGES

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41524-018-0073-z

DOI

http://dx.doi.org/10.1038/s41524-018-0073-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101786502


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 08826, Seoul, Korea", 
            "Korea Institute of Energy Research, 34129, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yim", 
        "givenName": "Kanghoon", 
        "id": "sg:person.014412360133.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412360133.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 08826, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Youn", 
        "givenName": "Yong", 
        "id": "sg:person.0616431721.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616431721.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 08826, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Miso", 
        "id": "sg:person.016602701533.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602701533.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 08826, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoo", 
        "givenName": "Dongsun", 
        "id": "sg:person.016253260530.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016253260530.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 08826, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Joohee", 
        "id": "sg:person.0640661666.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640661666.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electronics and Telecommunications Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.36303.35", 
          "name": [
            "Electronics and Telecommunications Research Institute (ETRI), 34129, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Sung Haeng", 
        "id": "sg:person.010352457663.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352457663.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 08826, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Seungwu", 
        "id": "sg:person.0576713026.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576713026.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep20446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001598563", 
          "https://doi.org/10.1038/srep20446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/40087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006803525", 
          "https://doi.org/10.1038/40087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/40087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006803525", 
          "https://doi.org/10.1038/40087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4tc00096j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009370389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.195205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009523607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.195205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009523607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6090(02)00199-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012409566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2010.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014160091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016519727", 
          "https://doi.org/10.1038/ncomms3292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201103228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019916764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/am.2015.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020570977", 
          "https://doi.org/10.1038/am.2015.57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2830850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020905320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1466-6049(01)00006-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023696758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p10-095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030961252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033826145", 
          "https://doi.org/10.1038/nnano.2009.226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033826145", 
          "https://doi.org/10.1038/nnano.2009.226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2005.08.316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035081565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aelm.201400006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035878539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039522691", 
          "https://doi.org/10.1038/39999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039522691", 
          "https://doi.org/10.1038/39999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.045209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.045209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-4095(200110)13:19<1476::aid-adma1476>3.0.co;2-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043061985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.046405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.046405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044109649", 
          "https://doi.org/10.1038/nature01665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044109649", 
          "https://doi.org/10.1038/nature01665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.016402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045349115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.016402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045349115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.5b00716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053834676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.5b03794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053835364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b01696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055111321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm401343a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055415468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic702197h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055582504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic702197h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055582504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn400852r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056225162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.121761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057685927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1450252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057707702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1456240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057708445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1564060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057720612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3059569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057903388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3231869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057921833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3274043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057929379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4802753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058074740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/49/21/213001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058969069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.195306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.195306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.195107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.195107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The ultimate transparent electronic devices require complementary and symmetrical pairs of n-type and p-type transparent semiconductors. While several n-type transparent oxide semiconductors like InGaZnO and ZnO are available and being used in consumer electronics, there are practically no p-type oxides that are comparable to the n-type counterpart in spite of tremendous efforts to discover them. Recently, high-throughput screening with the density functional theory calculations attempted to identify candidate p-type transparent oxides, but none of suggested materials was verified experimentally, implying need for a better theoretical predictor. Here, we propose a highly reliable and computationally efficient descriptor for p-type dopability\u2014the hydrogen impurity energy. We show that the hydrogen descriptor can distinguish well-known p-type and n-type oxides. Using the hydrogen descriptor, we screen most binary oxides and a selected pool of ternary compounds that covers Sn2+-bearing and Cu1+-bearing oxides as well as oxychalcogenides. As a result, we suggest La2O2Te and CuLiO as promising p-type oxides. Computational studies screen transparent oxide semiconductors based on the formation energy of a particular defect, and reveal promising hole-doped candidates. Although p-doped semiconductors are useful for electronic devices, their performance so far is not comparable to their n-type counterparts: most p-type oxides have stability issues or suffer from poor transparency. Now a team from Seoul National University and the Electronics and Telecommunications Research Institute in Daejeon, South Korea, are computationally looking for p-doped oxides with high conductivity and good transparency, simultaneously. Their screening relies on defect chemistry and assesses the dopability of the materials by using the formation energy of hydrogen interstitial defect, as well as the evaluation of the hole mass. Authors put forth a few promising p-type binary oxides and ternary compounds, which can be very useful for implementing electronic devices, once their properties have been verified experimentally.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41524-018-0073-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1285194", 
        "issn": [
          "2057-3960"
        ], 
        "name": "npj Computational Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor", 
    "pagination": "17", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41524-018-0073-z"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15171323af7f552f4bc766b7c329e895ddc8ffb62eefecf0b0c09e4a9862572b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101786502"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41524-018-0073-z", 
      "https://app.dimensions.ai/details/publication/pub.1101786502"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56154_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41524-018-0073-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0073-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0073-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0073-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0073-z'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41524-018-0073-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N46719d3d2987477e95eece2027ef0f5b
4 schema:citation sg:pub.10.1038/39999
5 sg:pub.10.1038/40087
6 sg:pub.10.1038/am.2015.57
7 sg:pub.10.1038/nature01665
8 sg:pub.10.1038/ncomms3292
9 sg:pub.10.1038/nnano.2009.226
10 sg:pub.10.1038/srep20446
11 https://doi.org/10.1002/1521-4095(200110)13:19<1476::aid-adma1476>3.0.co;2-y
12 https://doi.org/10.1002/adma.201103228
13 https://doi.org/10.1002/aelm.201400006
14 https://doi.org/10.1016/j.cap.2010.09.008
15 https://doi.org/10.1016/j.tsf.2005.08.316
16 https://doi.org/10.1016/s0040-6090(02)00199-2
17 https://doi.org/10.1016/s1466-6049(01)00006-x
18 https://doi.org/10.1021/acs.chemmater.5b00716
19 https://doi.org/10.1021/acs.chemmater.5b03794
20 https://doi.org/10.1021/acs.jpcc.6b01696
21 https://doi.org/10.1021/cm401343a
22 https://doi.org/10.1021/ic702197h
23 https://doi.org/10.1021/nn400852r
24 https://doi.org/10.1039/c4tc00096j
25 https://doi.org/10.1063/1.121761
26 https://doi.org/10.1063/1.1450252
27 https://doi.org/10.1063/1.1456240
28 https://doi.org/10.1063/1.1564060
29 https://doi.org/10.1063/1.3059569
30 https://doi.org/10.1063/1.3231869
31 https://doi.org/10.1063/1.3274043
32 https://doi.org/10.1063/1.4802753
33 https://doi.org/10.1088/0022-3727/49/21/213001
34 https://doi.org/10.1103/physrevb.47.558
35 https://doi.org/10.1103/physrevb.71.195306
36 https://doi.org/10.1103/physrevb.73.195107
37 https://doi.org/10.1103/physrevb.76.045209
38 https://doi.org/10.1103/physrevb.89.195205
39 https://doi.org/10.1103/physrevlett.101.046405
40 https://doi.org/10.1103/physrevlett.102.016402
41 https://doi.org/10.1103/physrevlett.78.1396
42 https://doi.org/10.1103/physrevlett.85.1012
43 https://doi.org/10.1139/p10-095
44 https://doi.org/10.1149/1.2830850
45 schema:datePublished 2018-12
46 schema:datePublishedReg 2018-12-01
47 schema:description The ultimate transparent electronic devices require complementary and symmetrical pairs of n-type and p-type transparent semiconductors. While several n-type transparent oxide semiconductors like InGaZnO and ZnO are available and being used in consumer electronics, there are practically no p-type oxides that are comparable to the n-type counterpart in spite of tremendous efforts to discover them. Recently, high-throughput screening with the density functional theory calculations attempted to identify candidate p-type transparent oxides, but none of suggested materials was verified experimentally, implying need for a better theoretical predictor. Here, we propose a highly reliable and computationally efficient descriptor for p-type dopability—the hydrogen impurity energy. We show that the hydrogen descriptor can distinguish well-known p-type and n-type oxides. Using the hydrogen descriptor, we screen most binary oxides and a selected pool of ternary compounds that covers Sn2+-bearing and Cu1+-bearing oxides as well as oxychalcogenides. As a result, we suggest La2O2Te and CuLiO as promising p-type oxides. Computational studies screen transparent oxide semiconductors based on the formation energy of a particular defect, and reveal promising hole-doped candidates. Although p-doped semiconductors are useful for electronic devices, their performance so far is not comparable to their n-type counterparts: most p-type oxides have stability issues or suffer from poor transparency. Now a team from Seoul National University and the Electronics and Telecommunications Research Institute in Daejeon, South Korea, are computationally looking for p-doped oxides with high conductivity and good transparency, simultaneously. Their screening relies on defect chemistry and assesses the dopability of the materials by using the formation energy of hydrogen interstitial defect, as well as the evaluation of the hole mass. Authors put forth a few promising p-type binary oxides and ternary compounds, which can be very useful for implementing electronic devices, once their properties have been verified experimentally.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N333f08ec59d14e97bdffc1adeeb18f7d
52 N40156969e45a426c9a437214b242136f
53 sg:journal.1285194
54 schema:name Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor
55 schema:pagination 17
56 schema:productId N504e8d87336f4d0c99aa176448c28b11
57 Nc2dd170f74934862bc69f805466e8782
58 Nedb41cce010e4545bbbff9848a6c7cdb
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101786502
60 https://doi.org/10.1038/s41524-018-0073-z
61 schema:sdDatePublished 2019-04-15T09:08
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N26a1ff45def0421fb3073f95a67a9e08
64 schema:url https://www.nature.com/articles/s41524-018-0073-z
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N14707d4a41fb4fae9817d6a69cef560a rdf:first sg:person.0616431721.19
69 rdf:rest Ndb46bb01a83e44de842b7d8d130548e2
70 N237647ce16d54e26a1610f3cde861f76 rdf:first sg:person.0576713026.56
71 rdf:rest rdf:nil
72 N26a1ff45def0421fb3073f95a67a9e08 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N333f08ec59d14e97bdffc1adeeb18f7d schema:volumeNumber 4
75 rdf:type schema:PublicationVolume
76 N40156969e45a426c9a437214b242136f schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 N46719d3d2987477e95eece2027ef0f5b rdf:first sg:person.014412360133.04
79 rdf:rest N14707d4a41fb4fae9817d6a69cef560a
80 N504e8d87336f4d0c99aa176448c28b11 schema:name doi
81 schema:value 10.1038/s41524-018-0073-z
82 rdf:type schema:PropertyValue
83 N97becd61d0d6461d9392b578f87851d4 rdf:first sg:person.0640661666.74
84 rdf:rest Na7c44d10109a4f11ac97ce1fb4ed5284
85 Na7c44d10109a4f11ac97ce1fb4ed5284 rdf:first sg:person.010352457663.17
86 rdf:rest N237647ce16d54e26a1610f3cde861f76
87 Nc2dd170f74934862bc69f805466e8782 schema:name dimensions_id
88 schema:value pub.1101786502
89 rdf:type schema:PropertyValue
90 Ndb46bb01a83e44de842b7d8d130548e2 rdf:first sg:person.016602701533.07
91 rdf:rest Ne88f76410fab45cda096dd470c6e989d
92 Ne88f76410fab45cda096dd470c6e989d rdf:first sg:person.016253260530.17
93 rdf:rest N97becd61d0d6461d9392b578f87851d4
94 Nedb41cce010e4545bbbff9848a6c7cdb schema:name readcube_id
95 schema:value 15171323af7f552f4bc766b7c329e895ddc8ffb62eefecf0b0c09e4a9862572b
96 rdf:type schema:PropertyValue
97 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
98 schema:name Chemical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Chemistry (incl. Structural)
102 rdf:type schema:DefinedTerm
103 sg:journal.1285194 schema:issn 2057-3960
104 schema:name npj Computational Materials
105 rdf:type schema:Periodical
106 sg:person.010352457663.17 schema:affiliation https://www.grid.ac/institutes/grid.36303.35
107 schema:familyName Cho
108 schema:givenName Sung Haeng
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352457663.17
110 rdf:type schema:Person
111 sg:person.014412360133.04 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
112 schema:familyName Yim
113 schema:givenName Kanghoon
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412360133.04
115 rdf:type schema:Person
116 sg:person.016253260530.17 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
117 schema:familyName Yoo
118 schema:givenName Dongsun
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016253260530.17
120 rdf:type schema:Person
121 sg:person.016602701533.07 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
122 schema:familyName Lee
123 schema:givenName Miso
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602701533.07
125 rdf:type schema:Person
126 sg:person.0576713026.56 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
127 schema:familyName Han
128 schema:givenName Seungwu
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576713026.56
130 rdf:type schema:Person
131 sg:person.0616431721.19 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
132 schema:familyName Youn
133 schema:givenName Yong
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616431721.19
135 rdf:type schema:Person
136 sg:person.0640661666.74 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
137 schema:familyName Lee
138 schema:givenName Joohee
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640661666.74
140 rdf:type schema:Person
141 sg:pub.10.1038/39999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039522691
142 https://doi.org/10.1038/39999
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/40087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006803525
145 https://doi.org/10.1038/40087
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/am.2015.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020570977
148 https://doi.org/10.1038/am.2015.57
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature01665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044109649
151 https://doi.org/10.1038/nature01665
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/ncomms3292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016519727
154 https://doi.org/10.1038/ncomms3292
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nnano.2009.226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033826145
157 https://doi.org/10.1038/nnano.2009.226
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/srep20446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001598563
160 https://doi.org/10.1038/srep20446
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/1521-4095(200110)13:19<1476::aid-adma1476>3.0.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043061985
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/adma.201103228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019916764
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/aelm.201400006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035878539
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.cap.2010.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014160091
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.tsf.2005.08.316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035081565
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0040-6090(02)00199-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012409566
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s1466-6049(01)00006-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023696758
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/acs.chemmater.5b00716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053834676
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/acs.chemmater.5b03794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053835364
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/acs.jpcc.6b01696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055111321
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/cm401343a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055415468
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/ic702197h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055582504
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/nn400852r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056225162
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1039/c4tc00096j schema:sameAs https://app.dimensions.ai/details/publication/pub.1009370389
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.121761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057685927
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.1450252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057707702
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.1456240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057708445
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.1564060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057720612
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1063/1.3059569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057903388
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1063/1.3231869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057921833
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.3274043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057929379
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.4802753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058074740
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/0022-3727/49/21/213001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058969069
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.71.195306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060613652
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.73.195107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060617536
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.76.045209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042950933
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.89.195205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009523607
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.101.046405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686553
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.102.016402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045349115
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.78.1396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814744
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.85.1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821617
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1139/p10-095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030961252
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1149/1.2830850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020905320
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
231 schema:name Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 08826, Seoul, Korea
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.36303.35 schema:alternateName Electronics and Telecommunications Research Institute
234 schema:name Electronics and Telecommunications Research Institute (ETRI), 34129, Daejeon, Korea
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.418979.a schema:alternateName Korea Institute of Energy Research
237 schema:name Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 08826, Seoul, Korea
238 Korea Institute of Energy Research, 34129, Daejeon, Korea
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...