Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Zhao Ran, Xinjiang Wang, Yuwei Li, Dongwen Yang, Xin-Gang Zhao, Koushik Biswas, David J. Singh, Lijun Zhang

ABSTRACT

In the last decade the ns2 cations (e.g., Pb2+ and Sn2+)-based halides have emerged as one of the most exciting new classes of optoelectronic materials, as exemplified by for instance hybrid perovskite solar absorbers. These materials not only exhibit unprecedented performance in some cases, but they also appear to break new ground with their unexpected properties, such as extreme tolerance to defects. However, because of the relatively recent emergence of this class of materials, there remain many yet to be fully explored compounds. Here, we assess a series of bismuth/antimony oxyhalides and chalcohalides using consistent first principles methods to ascertain their properties and obtain trends. Based on these calculations, we identify a subset consisting of three types of compounds that may be promising as solar absorbers, transparent conductors, and radiation detectors. Their electronic structure, connection to the crystal geometry, and impact on band-edge dispersion and carrier effective mass are discussed. Detailed first-principles calculations reveal the potential of bismuth-based and antimony-based chalcohalides and oxyhalides for optoelectronics applications. The presence of ions with outer electron configuration of ns2 in halides has rendered them very promising for applications, like solar cells. In this work, collaborators from Jilin University, University of Missouri, and Arkansas State University have used density functional theory to study the properties of several chalcohalides and oxyhalides containing bismuth or antimony ns2 cations. It turns out that certain bismuth-based chalcohalides are promising for solar cells applications and room-temperature radiation detectors, with bandgaps in the range 1.5–2 eV. Some oxyhalides, on the other hand, with bandgaps above 3 eV are hole-conducting, which makes them suitable for transparent conducting materials, if they can be doped. This work underlines that further experimental work is needed to fully assess the potential of this class of materials for optoelectronics applications. More... »

PAGES

14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41524-018-0071-1

DOI

http://dx.doi.org/10.1038/s41524-018-0071-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101598141


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Superhard Materials, and College of Materials Science, Jilin University, 130012, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ran", 
        "givenName": "Zhao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Superhard Materials, and College of Materials Science, Jilin University, 130012, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xinjiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Missouri", 
          "id": "https://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Department of Physics and Astronomy, University of Missouri, 65211-7010, Columbia, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yuwei", 
        "id": "sg:person.013232675507.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232675507.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Superhard Materials, and College of Materials Science, Jilin University, 130012, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Dongwen", 
        "id": "sg:person.014566634733.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014566634733.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Superhard Materials, and College of Materials Science, Jilin University, 130012, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xin-Gang", 
        "id": "sg:person.012376313333.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012376313333.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arkansas State University", 
          "id": "https://www.grid.ac/institutes/grid.252381.f", 
          "name": [
            "Department of Chemistry and Physics, Arkansas State University, 72467, Jonesboro, AR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biswas", 
        "givenName": "Koushik", 
        "id": "sg:person.016307377147.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016307377147.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Missouri", 
          "id": "https://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Department of Physics and Astronomy, University of Missouri, 65211-7010, Columbia, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "David J.", 
        "id": "sg:person.014034553115.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034553115.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Superhard Materials, and College of Materials Science, Jilin University, 130012, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lijun", 
        "id": "sg:person.010254105133.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010254105133.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-2738(97)84024-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004435333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/40087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006803525", 
          "https://doi.org/10.1038/40087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/40087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006803525", 
          "https://doi.org/10.1038/40087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtice.2013.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007429088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-0521(08)60123-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007649785", 
          "https://doi.org/10.1016/s1001-0521(08)60123-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/10/8/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009529735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01151535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010748146", 
          "https://doi.org/10.1007/bf01151535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01151535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010748146", 
          "https://doi.org/10.1007/bf01151535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014803130", 
          "https://doi.org/10.1038/nmat3051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/17/4/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015327471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/17/4/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015327471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ta01198h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015621075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.19680300206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015865002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016519727", 
          "https://doi.org/10.1038/ncomms3292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017887345", 
          "https://doi.org/10.1038/nature14133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2006.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018338252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4em00196f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021248406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/2/022201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021949538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/2/022201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021949538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja809598r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025956825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja809598r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025956825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep27765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059679", 
          "https://doi.org/10.1038/srep27765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ra11877a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031947901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ta09612j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033868776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.144114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035165777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.144114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035165777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108768185002063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036734140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2221870124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039112473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrc.2015.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044496088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2006.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047262472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.035201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052617330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.035201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052617330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4952609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052817378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ta05033a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052920415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053736931", 
          "https://doi.org/10.1038/nphys2768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.inorgchem.6b01539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055094222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm401406j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055415475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja202540t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055849832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja202540t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055849832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp3088397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056091618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn3031063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056224649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1436298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057706694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2404663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057855057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/15/12/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058959676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.13605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.13605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.104108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.104108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2000.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067967511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4975686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083532294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.7.024015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083810530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.7.024015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083810530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ee00420f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084135432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.6b05496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085530422"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In the last decade the ns2 cations (e.g., Pb2+ and Sn2+)-based halides have emerged as one of the most exciting new classes of optoelectronic materials, as exemplified by for instance hybrid perovskite solar absorbers. These materials not only exhibit unprecedented performance in some cases, but they also appear to break new ground with their unexpected properties, such as extreme tolerance to defects. However, because of the relatively recent emergence of this class of materials, there remain many yet to be fully explored compounds. Here, we assess a series of bismuth/antimony oxyhalides and chalcohalides using consistent first principles methods to ascertain their properties and obtain trends. Based on these calculations, we identify a subset consisting of three types of compounds that may be promising as solar absorbers, transparent conductors, and radiation detectors. Their electronic structure, connection to the crystal geometry, and impact on band-edge dispersion and carrier effective mass are discussed. Detailed first-principles calculations reveal the potential of bismuth-based and antimony-based chalcohalides and oxyhalides for optoelectronics applications. The presence of ions with outer electron configuration of ns2 in halides has rendered them very promising for applications, like solar cells. In this work, collaborators from Jilin University, University of Missouri, and Arkansas State University have used density functional theory to study the properties of several chalcohalides and oxyhalides containing bismuth or antimony ns2 cations. It turns out that certain bismuth-based chalcohalides are promising for solar cells applications and room-temperature radiation detectors, with bandgaps in the range 1.5\u20132 eV. Some oxyhalides, on the other hand, with bandgaps above 3 eV are hole-conducting, which makes them suitable for transparent conducting materials, if they can be doped. This work underlines that further experimental work is needed to fully assess the potential of this class of materials for optoelectronics applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41524-018-0071-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4320056", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1285194", 
        "issn": [
          "2057-3960"
        ], 
        "name": "npj Computational Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials", 
    "pagination": "14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d982ac7c023018c89b72cdcbfceb7a100a4792526c0c1c8d84e54978e2551e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41524-018-0071-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101598141"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41524-018-0071-1", 
      "https://app.dimensions.ai/details/publication/pub.1101598141"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72859_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41524-018-0071-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0071-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0071-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0071-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41524-018-0071-1'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41524-018-0071-1 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author Nbd2d3376d0c9493e9e2e5c1d1360c328
4 schema:citation sg:pub.10.1007/bf01151535
5 sg:pub.10.1016/s1001-0521(08)60123-0
6 sg:pub.10.1038/40087
7 sg:pub.10.1038/nature14133
8 sg:pub.10.1038/ncomms3292
9 sg:pub.10.1038/nmat3051
10 sg:pub.10.1038/nphys2768
11 sg:pub.10.1038/srep27765
12 https://doi.org/10.1002/pssb.19680300206
13 https://doi.org/10.1002/pssb.2221870124
14 https://doi.org/10.1016/j.cpc.2006.03.007
15 https://doi.org/10.1016/j.jtice.2013.12.015
16 https://doi.org/10.1016/j.scriptamat.2006.12.023
17 https://doi.org/10.1016/s0167-2738(97)84024-6
18 https://doi.org/10.1021/acs.chemmater.6b05496
19 https://doi.org/10.1021/acs.inorgchem.6b01539
20 https://doi.org/10.1021/cm401406j
21 https://doi.org/10.1021/ja202540t
22 https://doi.org/10.1021/ja809598r
23 https://doi.org/10.1021/jp3088397
24 https://doi.org/10.1021/nn3031063
25 https://doi.org/10.1039/c4em00196f
26 https://doi.org/10.1039/c4ta01198h
27 https://doi.org/10.1039/c4ta05033a
28 https://doi.org/10.1039/c5ta09612j
29 https://doi.org/10.1039/c6ra11877a
30 https://doi.org/10.1039/c7ee00420f
31 https://doi.org/10.1063/1.1436298
32 https://doi.org/10.1063/1.2404663
33 https://doi.org/10.1063/1.4952609
34 https://doi.org/10.1063/1.4975686
35 https://doi.org/10.1088/0022-3719/15/12/010
36 https://doi.org/10.1088/0268-1242/10/8/021
37 https://doi.org/10.1088/0953-8984/22/2/022201
38 https://doi.org/10.1088/0957-0233/17/4/r01
39 https://doi.org/10.1103/physrevapplied.7.024015
40 https://doi.org/10.1103/physrevb.50.17953
41 https://doi.org/10.1103/physrevb.54.11169
42 https://doi.org/10.1103/physrevb.55.13605
43 https://doi.org/10.1103/physrevb.81.144114
44 https://doi.org/10.1103/physrevb.90.035201
45 https://doi.org/10.1103/physrevb.93.104108
46 https://doi.org/10.1103/physrevlett.77.3865
47 https://doi.org/10.1107/s0108768185002063
48 https://doi.org/10.1557/mrc.2015.26
49 https://doi.org/10.1557/mrs2000.148
50 schema:datePublished 2018-12
51 schema:datePublishedReg 2018-12-01
52 schema:description In the last decade the ns2 cations (e.g., Pb2+ and Sn2+)-based halides have emerged as one of the most exciting new classes of optoelectronic materials, as exemplified by for instance hybrid perovskite solar absorbers. These materials not only exhibit unprecedented performance in some cases, but they also appear to break new ground with their unexpected properties, such as extreme tolerance to defects. However, because of the relatively recent emergence of this class of materials, there remain many yet to be fully explored compounds. Here, we assess a series of bismuth/antimony oxyhalides and chalcohalides using consistent first principles methods to ascertain their properties and obtain trends. Based on these calculations, we identify a subset consisting of three types of compounds that may be promising as solar absorbers, transparent conductors, and radiation detectors. Their electronic structure, connection to the crystal geometry, and impact on band-edge dispersion and carrier effective mass are discussed. Detailed first-principles calculations reveal the potential of bismuth-based and antimony-based chalcohalides and oxyhalides for optoelectronics applications. The presence of ions with outer electron configuration of ns2 in halides has rendered them very promising for applications, like solar cells. In this work, collaborators from Jilin University, University of Missouri, and Arkansas State University have used density functional theory to study the properties of several chalcohalides and oxyhalides containing bismuth or antimony ns2 cations. It turns out that certain bismuth-based chalcohalides are promising for solar cells applications and room-temperature radiation detectors, with bandgaps in the range 1.5–2 eV. Some oxyhalides, on the other hand, with bandgaps above 3 eV are hole-conducting, which makes them suitable for transparent conducting materials, if they can be doped. This work underlines that further experimental work is needed to fully assess the potential of this class of materials for optoelectronics applications.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N087904a141e94a718109763f6108d4ee
57 N857071c42ee34845a7c518ed73a1e4d5
58 sg:journal.1285194
59 schema:name Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials
60 schema:pagination 14
61 schema:productId N3c5ab1406ccf4f8197ec12151eb4c6e0
62 N63453a3ceec549998b80b26add482cc5
63 Nf39684ed5c4242fdb522e708272d3b7c
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101598141
65 https://doi.org/10.1038/s41524-018-0071-1
66 schema:sdDatePublished 2019-04-11T12:54
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Ne0dc16da999e40dd92be3c3180276860
69 schema:url https://www.nature.com/articles/s41524-018-0071-1
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N087904a141e94a718109763f6108d4ee schema:volumeNumber 4
74 rdf:type schema:PublicationVolume
75 N13858e013aca43d69f88529d2dead9c7 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
76 schema:familyName Ran
77 schema:givenName Zhao
78 rdf:type schema:Person
79 N3c5ab1406ccf4f8197ec12151eb4c6e0 schema:name readcube_id
80 schema:value 2d982ac7c023018c89b72cdcbfceb7a100a4792526c0c1c8d84e54978e2551e7
81 rdf:type schema:PropertyValue
82 N63453a3ceec549998b80b26add482cc5 schema:name dimensions_id
83 schema:value pub.1101598141
84 rdf:type schema:PropertyValue
85 N6e324aae6ec54b2883c75b19b6d1bab4 rdf:first sg:person.010254105133.29
86 rdf:rest rdf:nil
87 N857071c42ee34845a7c518ed73a1e4d5 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N8b74471cc5fb4dadacc90037556e22aa rdf:first sg:person.016307377147.50
90 rdf:rest Nea4960f696e144d487fe8e0a54100c5f
91 N97fbf58856be4f54b78620a0d5c7cfb1 rdf:first sg:person.012376313333.35
92 rdf:rest N8b74471cc5fb4dadacc90037556e22aa
93 Nbd2d3376d0c9493e9e2e5c1d1360c328 rdf:first N13858e013aca43d69f88529d2dead9c7
94 rdf:rest Nf41b31c469374dd89c90b8e883c92add
95 Ne0dc16da999e40dd92be3c3180276860 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Ne515cd047dca472c90751d6ea3425e7e rdf:first sg:person.014566634733.83
98 rdf:rest N97fbf58856be4f54b78620a0d5c7cfb1
99 Nea4960f696e144d487fe8e0a54100c5f rdf:first sg:person.014034553115.79
100 rdf:rest N6e324aae6ec54b2883c75b19b6d1bab4
101 Ned9f6c60622044759ac5d6a2156aa856 rdf:first sg:person.013232675507.91
102 rdf:rest Ne515cd047dca472c90751d6ea3425e7e
103 Nf1c1982487b049df8a6f3124c7990199 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
104 schema:familyName Wang
105 schema:givenName Xinjiang
106 rdf:type schema:Person
107 Nf39684ed5c4242fdb522e708272d3b7c schema:name doi
108 schema:value 10.1038/s41524-018-0071-1
109 rdf:type schema:PropertyValue
110 Nf41b31c469374dd89c90b8e883c92add rdf:first Nf1c1982487b049df8a6f3124c7990199
111 rdf:rest Ned9f6c60622044759ac5d6a2156aa856
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
116 schema:name Inorganic Chemistry
117 rdf:type schema:DefinedTerm
118 sg:grant.4320056 http://pending.schema.org/fundedItem sg:pub.10.1038/s41524-018-0071-1
119 rdf:type schema:MonetaryGrant
120 sg:journal.1285194 schema:issn 2057-3960
121 schema:name npj Computational Materials
122 rdf:type schema:Periodical
123 sg:person.010254105133.29 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
124 schema:familyName Zhang
125 schema:givenName Lijun
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010254105133.29
127 rdf:type schema:Person
128 sg:person.012376313333.35 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
129 schema:familyName Zhao
130 schema:givenName Xin-Gang
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012376313333.35
132 rdf:type schema:Person
133 sg:person.013232675507.91 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
134 schema:familyName Li
135 schema:givenName Yuwei
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232675507.91
137 rdf:type schema:Person
138 sg:person.014034553115.79 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
139 schema:familyName Singh
140 schema:givenName David J.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034553115.79
142 rdf:type schema:Person
143 sg:person.014566634733.83 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
144 schema:familyName Yang
145 schema:givenName Dongwen
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014566634733.83
147 rdf:type schema:Person
148 sg:person.016307377147.50 schema:affiliation https://www.grid.ac/institutes/grid.252381.f
149 schema:familyName Biswas
150 schema:givenName Koushik
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016307377147.50
152 rdf:type schema:Person
153 sg:pub.10.1007/bf01151535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010748146
154 https://doi.org/10.1007/bf01151535
155 rdf:type schema:CreativeWork
156 sg:pub.10.1016/s1001-0521(08)60123-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007649785
157 https://doi.org/10.1016/s1001-0521(08)60123-0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/40087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006803525
160 https://doi.org/10.1038/40087
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature14133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017887345
163 https://doi.org/10.1038/nature14133
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/ncomms3292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016519727
166 https://doi.org/10.1038/ncomms3292
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nmat3051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014803130
169 https://doi.org/10.1038/nmat3051
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nphys2768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053736931
172 https://doi.org/10.1038/nphys2768
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/srep27765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029059679
175 https://doi.org/10.1038/srep27765
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/pssb.19680300206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015865002
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/pssb.2221870124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039112473
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.cpc.2006.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018338252
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jtice.2013.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007429088
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.scriptamat.2006.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047262472
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0167-2738(97)84024-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004435333
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/acs.chemmater.6b05496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085530422
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/acs.inorgchem.6b01539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055094222
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/cm401406j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055415475
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/ja202540t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055849832
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/ja809598r schema:sameAs https://app.dimensions.ai/details/publication/pub.1025956825
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/jp3088397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056091618
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/nn3031063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056224649
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1039/c4em00196f schema:sameAs https://app.dimensions.ai/details/publication/pub.1021248406
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1039/c4ta01198h schema:sameAs https://app.dimensions.ai/details/publication/pub.1015621075
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1039/c4ta05033a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052920415
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1039/c5ta09612j schema:sameAs https://app.dimensions.ai/details/publication/pub.1033868776
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1039/c6ra11877a schema:sameAs https://app.dimensions.ai/details/publication/pub.1031947901
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1039/c7ee00420f schema:sameAs https://app.dimensions.ai/details/publication/pub.1084135432
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1063/1.1436298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057706694
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1063/1.2404663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057855057
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1063/1.4952609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052817378
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1063/1.4975686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083532294
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1088/0022-3719/15/12/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058959676
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1088/0268-1242/10/8/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009529735
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1088/0953-8984/22/2/022201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021949538
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1088/0957-0233/17/4/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015327471
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevapplied.7.024015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083810530
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/physrevb.55.13605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060583684
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1103/physrevb.81.144114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035165777
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1103/physrevb.90.035201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052617330
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1103/physrevb.93.104108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649337
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1107/s0108768185002063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036734140
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1557/mrc.2015.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044496088
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1557/mrs2000.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067967511
252 rdf:type schema:CreativeWork
253 https://www.grid.ac/institutes/grid.134936.a schema:alternateName University of Missouri
254 schema:name Department of Physics and Astronomy, University of Missouri, 65211-7010, Columbia, MO, USA
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.252381.f schema:alternateName Arkansas State University
257 schema:name Department of Chemistry and Physics, Arkansas State University, 72467, Jonesboro, AR, USA
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.64924.3d schema:alternateName Jilin University
260 schema:name Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Superhard Materials, and College of Materials Science, Jilin University, 130012, Changchun, China
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...