Circulating amino acids and amino acid-related metabolites and risk of breast cancer among predominantly premenopausal women View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-05-18

AUTHORS

Oana A. Zeleznik, Raji Balasubramanian, Yibai Zhao, Lisa Frueh, Sarah Jeanfavre, Julian Avila-Pacheco, Clary B. Clish, Shelley S. Tworoger, A. Heather Eliassen

ABSTRACT

Known modifiable risk factors account for a small fraction of premenopausal breast cancers. We investigated associations between pre-diagnostic circulating amino acid and amino acid-related metabolites (N = 207) and risk of breast cancer among predominantly premenopausal women of the Nurses’ Health Study II using conditional logistic regression (1057 cases, 1057 controls) and multivariable analyses evaluating all metabolites jointly. Eleven metabolites were associated with breast cancer risk (q-value < 0.2). Seven metabolites remained associated after adjustment for established risk factors (p-value < 0.05) and were selected by at least one multivariable modeling approach: higher levels of 2-aminohippuric acid, kynurenic acid, piperine (all three with q-value < 0.2), DMGV and phenylacetylglutamine were associated with lower breast cancer risk (e.g., piperine: ORadjusted (95%CI) = 0.84 (0.77–0.92)) while higher levels of creatine and C40:7 phosphatidylethanolamine (PE) plasmalogen were associated with increased breast cancer risk (e.g., C40:7 PE plasmalogen: ORadjusted (95%CI) = 1.11 (1.01–1.22)). Five amino acids and amino acid-related metabolites (2-aminohippuric acid, DMGV, kynurenic acid, phenylacetylglutamine, and piperine) were inversely associated, while one amino acid and a phospholipid (creatine and C40:7 PE plasmalogen) were positively associated with breast cancer risk among predominately premenopausal women, independent of established breast cancer risk factors. More... »

PAGES

54

References to SciGraph publications

  • 2018-06-08. Analysis of metabolites and metabolic pathways in breast cancer in a Korean prospective cohort: the Korean Cancer Prevention Study-II in METABOLOMICS
  • 2014-09-28. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development in NATURE MEDICINE
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2017-08-29. Differences in elongation of very long chain fatty acids and fatty acid metabolism between triple-negative and hormone receptor-positive breast cancer in BMC CANCER
  • 2015-05-25. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α in NATURE MEDICINE
  • 2013-09-12. Metabolic system alterations in pancreatic cancer patient serum: potential for early detection in BMC CANCER
  • 2018-10-19. Untargeted lipidomic features associated with colorectal cancer in a prospective cohort in BMC CANCER
  • 2017-10-20. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome in SCIENTIFIC REPORTS
  • 2019-09-24. Prospective analysis of circulating metabolites and breast cancer in EPIC in BMC MEDICINE
  • 2019-07-04. Piperine: role in prevention and progression of cancer in MOLECULAR BIOLOGY REPORTS
  • 2017-03-23. Gut microbiome-related metabolic changes in plasma of antibiotic-treated rats in ARCHIVES OF TOXICOLOGY
  • 2018-03-07. Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer in LIPIDS IN HEALTH AND DISEASE
  • 2008-06-25. Family history of malignancies and risk of breast cancer: prospective data from the Shanghai women’s health study in CANCER CAUSES & CONTROL
  • 2018-02-07. Asparagine bioavailability governs metastasis in a model of breast cancer in NATURE
  • 2019-10-28. Kynurenic acid and cancer: facts and controversies in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2006-05-09. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control in BRITISH JOURNAL OF CANCER
  • 2019-02-13. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond in NATURE REVIEWS DRUG DISCOVERY
  • 2016-09-25. Piperine and Its Role in Chronic Diseases in ANTI-INFLAMMATORY NUTRACEUTICALS AND CHRONIC DISEASES
  • 2009-09-17. Family history of cancer and risk of breast cancer in the Black Women’s Health Study in CANCER CAUSES & CONTROL
  • 2015-04-17. Sparse conditional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple algorithm in BMC BIOINFORMATICS
  • 2016-01-28. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study in BMC MEDICINE
  • 2010-08-03. Tea and coffee intake in relation to risk of breast cancer in the Black Women’s Health Study in CANCER CAUSES & CONTROL
  • 2019-03-12. Parity, breastfeeding, and breast cancer risk by hormone receptor status and molecular phenotype: results from the Nurses’ Health Studies in BREAST CANCER RESEARCH
  • 2019-01-07. Rhabdomyosarcoma in NATURE REVIEWS DISEASE PRIMERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41523-021-00262-4

    DOI

    http://dx.doi.org/10.1038/s41523-021-00262-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1138145263

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34006878


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeleznik", 
            "givenName": "Oana A.", 
            "id": "sg:person.011522572361.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522572361.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics & Epidemiology, University of Massachusetts \u2013 Amherst, Amherst, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266683.f", 
              "name": [
                "Department of Biostatistics & Epidemiology, University of Massachusetts \u2013 Amherst, Amherst, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balasubramanian", 
            "givenName": "Raji", 
            "id": "sg:person.0576733734.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576733734.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics & Epidemiology, University of Massachusetts \u2013 Amherst, Amherst, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266683.f", 
              "name": [
                "Department of Biostatistics & Epidemiology, University of Massachusetts \u2013 Amherst, Amherst, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Yibai", 
            "id": "sg:person.016032304207.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016032304207.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frueh", 
            "givenName": "Lisa", 
            "id": "sg:person.011300207443.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011300207443.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeanfavre", 
            "givenName": "Sarah", 
            "id": "sg:person.010255574473.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255574473.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Avila-Pacheco", 
            "givenName": "Julian", 
            "id": "sg:person.013015545665.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015545665.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Clish", 
            "givenName": "Clary B.", 
            "id": "sg:person.0764632420.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.468198.a", 
              "name": [
                "Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tworoger", 
            "givenName": "Shelley S.", 
            "id": "sg:person.0773072764.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773072764.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA", 
                "Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eliassen", 
            "givenName": "A. Heather", 
            "id": "sg:person.0753243413.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753243413.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-13-416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032610708", 
              "https://doi.org/10.1186/1471-2407-13-416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-018-4894-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107723416", 
              "https://doi.org/10.1186/s12885-018-4894-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10552-010-9622-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053408789", 
              "https://doi.org/10.1007/s10552-010-9622-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12944-018-0685-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101370285", 
              "https://doi.org/10.1186/s12944-018-0685-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-41334-1_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009577169", 
              "https://doi.org/10.1007/978-3-319-41334-1_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12916-019-1408-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121196978", 
              "https://doi.org/10.1186/s12916-019-1408-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-13722-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092252273", 
              "https://doi.org/10.1038/s41598-017-13722-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10552-009-9425-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050585311", 
              "https://doi.org/10.1007/s10552-009-9425-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-017-3554-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091370954", 
              "https://doi.org/10.1186/s12885-017-3554-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-019-1119-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112739197", 
              "https://doi.org/10.1186/s13058-019-1119-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-019-03332-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122143957", 
              "https://doi.org/10.1007/s00018-019-03332-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-16-s6-s1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003186168", 
              "https://doi.org/10.1186/1471-2105-16-s6-s1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00204-017-1949-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084019443", 
              "https://doi.org/10.1007/s00204-017-1949-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11033-019-04927-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117764715", 
              "https://doi.org/10.1007/s11033-019-04927-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019639985", 
              "https://doi.org/10.1038/nm.3868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10552-008-9181-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027978357", 
              "https://doi.org/10.1007/s10552-008-9181-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6603164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029371978", 
              "https://doi.org/10.1038/sj.bjc.6603164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12916-016-0552-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004062041", 
              "https://doi.org/10.1186/s12916-016-0552-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41573-019-0016-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112095223", 
              "https://doi.org/10.1038/s41573-019-0016-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002902052", 
              "https://doi.org/10.1038/nm.3686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-018-1382-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104476382", 
              "https://doi.org/10.1007/s11306-018-1382-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100863497", 
              "https://doi.org/10.1038/nature25465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41572-018-0051-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111246438", 
              "https://doi.org/10.1038/s41572-018-0051-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05-18", 
        "datePublishedReg": "2021-05-18", 
        "description": "Known modifiable risk factors account for a small fraction of premenopausal breast cancers. We investigated associations between pre-diagnostic circulating amino acid and amino acid-related metabolites (N\u2009=\u2009207) and risk of breast cancer among predominantly premenopausal women of the Nurses\u2019 Health Study II using conditional logistic regression (1057 cases, 1057 controls) and multivariable analyses evaluating all metabolites jointly. Eleven metabolites were associated with breast cancer risk (q-value < 0.2). Seven metabolites remained associated after adjustment for established risk factors (p-value < 0.05) and were selected by at least one multivariable modeling approach: higher levels of 2-aminohippuric acid, kynurenic acid, piperine (all three with q-value < 0.2), DMGV and phenylacetylglutamine were associated with lower breast cancer risk (e.g., piperine: ORadjusted (95%CI)\u2009=\u20090.84 (0.77\u20130.92)) while higher levels of creatine and C40:7 phosphatidylethanolamine (PE) plasmalogen were associated with increased breast cancer risk (e.g., C40:7 PE plasmalogen: ORadjusted (95%CI)\u2009=\u20091.11 (1.01\u20131.22)). Five amino acids and amino acid-related metabolites (2-aminohippuric acid, DMGV, kynurenic acid, phenylacetylglutamine, and piperine) were inversely associated, while one amino acid and a phospholipid (creatine and C40:7 PE plasmalogen) were positively associated with breast cancer risk among predominately premenopausal women, independent of established breast cancer risk factors.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41523-021-00262-4", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2705365", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3801883", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2472314", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2435752", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2470116", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2470259", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7752271", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052988", 
            "issn": [
              "2374-4677"
            ], 
            "name": "npj Breast Cancer", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "breast cancer risk", 
          "amino acid-related metabolites", 
          "premenopausal women", 
          "cancer risk", 
          "risk factors", 
          "breast cancer", 
          "lower breast cancer risk", 
          "breast cancer risk factors", 
          "modifiable risk factors", 
          "premenopausal breast cancer", 
          "Health Study II", 
          "cancer risk factors", 
          "conditional logistic regression", 
          "multivariable analysis", 
          "kynurenic acid", 
          "Eleven metabolites", 
          "logistic regression", 
          "Study II", 
          "phosphatidylethanolamine plasmalogen", 
          "cancer", 
          "high levels", 
          "women", 
          "risk", 
          "amino acids", 
          "multivariable modeling approaches", 
          "metabolites", 
          "factors", 
          "phenylacetylglutamine", 
          "nurses", 
          "DMGV", 
          "creatine", 
          "levels", 
          "acid", 
          "plasmalogens", 
          "piperine", 
          "association", 
          "regression", 
          "adjustment", 
          "small fraction", 
          "fraction", 
          "analysis", 
          "approach", 
          "modeling approach"
        ], 
        "name": "Circulating amino acids and amino acid-related metabolites and risk of breast cancer among predominantly premenopausal women", 
        "pagination": "54", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1138145263"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41523-021-00262-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34006878"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41523-021-00262-4", 
          "https://app.dimensions.ai/details/publication/pub.1138145263"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_878.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41523-021-00262-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41523-021-00262-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41523-021-00262-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41523-021-00262-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41523-021-00262-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    284 TRIPLES      21 PREDICATES      93 URIs      60 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41523-021-00262-4 schema:about anzsrc-for:11
    2 anzsrc-for:1112
    3 anzsrc-for:1117
    4 schema:author Nc86b9283a83b48a3a1d6c6fdf5f2ef4d
    5 schema:citation sg:pub.10.1007/978-3-319-41334-1_8
    6 sg:pub.10.1007/s00018-019-03332-w
    7 sg:pub.10.1007/s00204-017-1949-2
    8 sg:pub.10.1007/s10552-008-9181-2
    9 sg:pub.10.1007/s10552-009-9425-9
    10 sg:pub.10.1007/s10552-010-9622-6
    11 sg:pub.10.1007/s11033-019-04927-z
    12 sg:pub.10.1007/s11306-018-1382-4
    13 sg:pub.10.1023/a:1010933404324
    14 sg:pub.10.1038/nature25465
    15 sg:pub.10.1038/nm.3686
    16 sg:pub.10.1038/nm.3868
    17 sg:pub.10.1038/s41572-018-0051-2
    18 sg:pub.10.1038/s41573-019-0016-5
    19 sg:pub.10.1038/s41598-017-13722-4
    20 sg:pub.10.1038/sj.bjc.6603164
    21 sg:pub.10.1186/1471-2105-16-s6-s1
    22 sg:pub.10.1186/1471-2407-13-416
    23 sg:pub.10.1186/s12885-017-3554-4
    24 sg:pub.10.1186/s12885-018-4894-4
    25 sg:pub.10.1186/s12916-016-0552-3
    26 sg:pub.10.1186/s12916-019-1408-4
    27 sg:pub.10.1186/s12944-018-0685-9
    28 sg:pub.10.1186/s13058-019-1119-y
    29 schema:datePublished 2021-05-18
    30 schema:datePublishedReg 2021-05-18
    31 schema:description Known modifiable risk factors account for a small fraction of premenopausal breast cancers. We investigated associations between pre-diagnostic circulating amino acid and amino acid-related metabolites (N = 207) and risk of breast cancer among predominantly premenopausal women of the Nurses’ Health Study II using conditional logistic regression (1057 cases, 1057 controls) and multivariable analyses evaluating all metabolites jointly. Eleven metabolites were associated with breast cancer risk (q-value < 0.2). Seven metabolites remained associated after adjustment for established risk factors (p-value < 0.05) and were selected by at least one multivariable modeling approach: higher levels of 2-aminohippuric acid, kynurenic acid, piperine (all three with q-value < 0.2), DMGV and phenylacetylglutamine were associated with lower breast cancer risk (e.g., piperine: ORadjusted (95%CI) = 0.84 (0.77–0.92)) while higher levels of creatine and C40:7 phosphatidylethanolamine (PE) plasmalogen were associated with increased breast cancer risk (e.g., C40:7 PE plasmalogen: ORadjusted (95%CI) = 1.11 (1.01–1.22)). Five amino acids and amino acid-related metabolites (2-aminohippuric acid, DMGV, kynurenic acid, phenylacetylglutamine, and piperine) were inversely associated, while one amino acid and a phospholipid (creatine and C40:7 PE plasmalogen) were positively associated with breast cancer risk among predominately premenopausal women, independent of established breast cancer risk factors.
    32 schema:genre article
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N1a4949360f0d46e389cb3f1a7e8bfa51
    35 N5bb927c209ab46d79c50bed2864da957
    36 sg:journal.1052988
    37 schema:keywords DMGV
    38 Eleven metabolites
    39 Health Study II
    40 Study II
    41 acid
    42 adjustment
    43 amino acid-related metabolites
    44 amino acids
    45 analysis
    46 approach
    47 association
    48 breast cancer
    49 breast cancer risk
    50 breast cancer risk factors
    51 cancer
    52 cancer risk
    53 cancer risk factors
    54 conditional logistic regression
    55 creatine
    56 factors
    57 fraction
    58 high levels
    59 kynurenic acid
    60 levels
    61 logistic regression
    62 lower breast cancer risk
    63 metabolites
    64 modeling approach
    65 modifiable risk factors
    66 multivariable analysis
    67 multivariable modeling approaches
    68 nurses
    69 phenylacetylglutamine
    70 phosphatidylethanolamine plasmalogen
    71 piperine
    72 plasmalogens
    73 premenopausal breast cancer
    74 premenopausal women
    75 regression
    76 risk
    77 risk factors
    78 small fraction
    79 women
    80 schema:name Circulating amino acids and amino acid-related metabolites and risk of breast cancer among predominantly premenopausal women
    81 schema:pagination 54
    82 schema:productId N156c98999d1b458985186f6cdeeeb8da
    83 N2403e7ae4c77407e82dd3adff8775424
    84 N97b2a15aae524bac867e3aacfd61abe7
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138145263
    86 https://doi.org/10.1038/s41523-021-00262-4
    87 schema:sdDatePublished 2022-10-01T06:47
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher Nea7d28f9901d4cb19cc3fb1b9fcc0f42
    90 schema:url https://doi.org/10.1038/s41523-021-00262-4
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N156c98999d1b458985186f6cdeeeb8da schema:name pubmed_id
    95 schema:value 34006878
    96 rdf:type schema:PropertyValue
    97 N1a4949360f0d46e389cb3f1a7e8bfa51 schema:issueNumber 1
    98 rdf:type schema:PublicationIssue
    99 N2403e7ae4c77407e82dd3adff8775424 schema:name dimensions_id
    100 schema:value pub.1138145263
    101 rdf:type schema:PropertyValue
    102 N31cb4d7b8ddc408192b2898442df2192 rdf:first sg:person.016032304207.07
    103 rdf:rest N541c4c6b6c984c718de647f6f813029d
    104 N39af340be7cc4185ba54ea7a2f77a0d3 rdf:first sg:person.010255574473.26
    105 rdf:rest Nfa38f784de4643b99c2903316fdfce71
    106 N541c4c6b6c984c718de647f6f813029d rdf:first sg:person.011300207443.17
    107 rdf:rest N39af340be7cc4185ba54ea7a2f77a0d3
    108 N5bb927c209ab46d79c50bed2864da957 schema:volumeNumber 7
    109 rdf:type schema:PublicationVolume
    110 N6683cc2bc8b04e30854c6167995ca80c rdf:first sg:person.0576733734.54
    111 rdf:rest N31cb4d7b8ddc408192b2898442df2192
    112 N84b5bd4c8ae4471685e2e0adeeb6254d rdf:first sg:person.0773072764.66
    113 rdf:rest N902cd1c5d9604922b10272eb40100014
    114 N902cd1c5d9604922b10272eb40100014 rdf:first sg:person.0753243413.17
    115 rdf:rest rdf:nil
    116 N97b2a15aae524bac867e3aacfd61abe7 schema:name doi
    117 schema:value 10.1038/s41523-021-00262-4
    118 rdf:type schema:PropertyValue
    119 N9e364886bb644d3c9735b3a29723bf57 rdf:first sg:person.0764632420.16
    120 rdf:rest N84b5bd4c8ae4471685e2e0adeeb6254d
    121 Nc86b9283a83b48a3a1d6c6fdf5f2ef4d rdf:first sg:person.011522572361.41
    122 rdf:rest N6683cc2bc8b04e30854c6167995ca80c
    123 Nea7d28f9901d4cb19cc3fb1b9fcc0f42 schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 Nfa38f784de4643b99c2903316fdfce71 rdf:first sg:person.013015545665.52
    126 rdf:rest N9e364886bb644d3c9735b3a29723bf57
    127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Medical and Health Sciences
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Oncology and Carcinogenesis
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Public Health and Health Services
    135 rdf:type schema:DefinedTerm
    136 sg:grant.2435752 http://pending.schema.org/fundedItem sg:pub.10.1038/s41523-021-00262-4
    137 rdf:type schema:MonetaryGrant
    138 sg:grant.2470116 http://pending.schema.org/fundedItem sg:pub.10.1038/s41523-021-00262-4
    139 rdf:type schema:MonetaryGrant
    140 sg:grant.2470259 http://pending.schema.org/fundedItem sg:pub.10.1038/s41523-021-00262-4
    141 rdf:type schema:MonetaryGrant
    142 sg:grant.2472314 http://pending.schema.org/fundedItem sg:pub.10.1038/s41523-021-00262-4
    143 rdf:type schema:MonetaryGrant
    144 sg:grant.2705365 http://pending.schema.org/fundedItem sg:pub.10.1038/s41523-021-00262-4
    145 rdf:type schema:MonetaryGrant
    146 sg:grant.3801883 http://pending.schema.org/fundedItem sg:pub.10.1038/s41523-021-00262-4
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.7752271 http://pending.schema.org/fundedItem sg:pub.10.1038/s41523-021-00262-4
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1052988 schema:issn 2374-4677
    151 schema:name npj Breast Cancer
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.010255574473.26 schema:affiliation grid-institutes:grid.66859.34
    155 schema:familyName Jeanfavre
    156 schema:givenName Sarah
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255574473.26
    158 rdf:type schema:Person
    159 sg:person.011300207443.17 schema:affiliation grid-institutes:grid.38142.3c
    160 schema:familyName Frueh
    161 schema:givenName Lisa
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011300207443.17
    163 rdf:type schema:Person
    164 sg:person.011522572361.41 schema:affiliation grid-institutes:grid.38142.3c
    165 schema:familyName Zeleznik
    166 schema:givenName Oana A.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522572361.41
    168 rdf:type schema:Person
    169 sg:person.013015545665.52 schema:affiliation grid-institutes:grid.66859.34
    170 schema:familyName Avila-Pacheco
    171 schema:givenName Julian
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015545665.52
    173 rdf:type schema:Person
    174 sg:person.016032304207.07 schema:affiliation grid-institutes:grid.266683.f
    175 schema:familyName Zhao
    176 schema:givenName Yibai
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016032304207.07
    178 rdf:type schema:Person
    179 sg:person.0576733734.54 schema:affiliation grid-institutes:grid.266683.f
    180 schema:familyName Balasubramanian
    181 schema:givenName Raji
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576733734.54
    183 rdf:type schema:Person
    184 sg:person.0753243413.17 schema:affiliation grid-institutes:grid.38142.3c
    185 schema:familyName Eliassen
    186 schema:givenName A. Heather
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753243413.17
    188 rdf:type schema:Person
    189 sg:person.0764632420.16 schema:affiliation grid-institutes:grid.66859.34
    190 schema:familyName Clish
    191 schema:givenName Clary B.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16
    193 rdf:type schema:Person
    194 sg:person.0773072764.66 schema:affiliation grid-institutes:grid.468198.a
    195 schema:familyName Tworoger
    196 schema:givenName Shelley S.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773072764.66
    198 rdf:type schema:Person
    199 sg:pub.10.1007/978-3-319-41334-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009577169
    200 https://doi.org/10.1007/978-3-319-41334-1_8
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00018-019-03332-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1122143957
    203 https://doi.org/10.1007/s00018-019-03332-w
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00204-017-1949-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019443
    206 https://doi.org/10.1007/s00204-017-1949-2
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s10552-008-9181-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027978357
    209 https://doi.org/10.1007/s10552-008-9181-2
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s10552-009-9425-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050585311
    212 https://doi.org/10.1007/s10552-009-9425-9
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s10552-010-9622-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053408789
    215 https://doi.org/10.1007/s10552-010-9622-6
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s11033-019-04927-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1117764715
    218 https://doi.org/10.1007/s11033-019-04927-z
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s11306-018-1382-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104476382
    221 https://doi.org/10.1007/s11306-018-1382-4
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    224 https://doi.org/10.1023/a:1010933404324
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature25465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100863497
    227 https://doi.org/10.1038/nature25465
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nm.3686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002902052
    230 https://doi.org/10.1038/nm.3686
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nm.3868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019639985
    233 https://doi.org/10.1038/nm.3868
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/s41572-018-0051-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111246438
    236 https://doi.org/10.1038/s41572-018-0051-2
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/s41573-019-0016-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112095223
    239 https://doi.org/10.1038/s41573-019-0016-5
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/s41598-017-13722-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092252273
    242 https://doi.org/10.1038/s41598-017-13722-4
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/sj.bjc.6603164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029371978
    245 https://doi.org/10.1038/sj.bjc.6603164
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/1471-2105-16-s6-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003186168
    248 https://doi.org/10.1186/1471-2105-16-s6-s1
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/1471-2407-13-416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032610708
    251 https://doi.org/10.1186/1471-2407-13-416
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/s12885-017-3554-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091370954
    254 https://doi.org/10.1186/s12885-017-3554-4
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/s12885-018-4894-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107723416
    257 https://doi.org/10.1186/s12885-018-4894-4
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/s12916-016-0552-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004062041
    260 https://doi.org/10.1186/s12916-016-0552-3
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/s12916-019-1408-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121196978
    263 https://doi.org/10.1186/s12916-019-1408-4
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/s12944-018-0685-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101370285
    266 https://doi.org/10.1186/s12944-018-0685-9
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/s13058-019-1119-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1112739197
    269 https://doi.org/10.1186/s13058-019-1119-y
    270 rdf:type schema:CreativeWork
    271 grid-institutes:grid.266683.f schema:alternateName Department of Biostatistics & Epidemiology, University of Massachusetts – Amherst, Amherst, MA, USA
    272 schema:name Department of Biostatistics & Epidemiology, University of Massachusetts – Amherst, Amherst, MA, USA
    273 rdf:type schema:Organization
    274 grid-institutes:grid.38142.3c schema:alternateName Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
    275 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
    276 schema:name Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
    277 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
    278 rdf:type schema:Organization
    279 grid-institutes:grid.468198.a schema:alternateName Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
    280 schema:name Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
    281 rdf:type schema:Organization
    282 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
    283 schema:name Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
    284 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...