Correlating nuclear morphometric patterns with estrogen receptor status in breast cancer pathologic specimens View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Rishi R. Rawat, Daniel Ruderman, Paul Macklin, David L. Rimm, David B. Agus

ABSTRACT

In this pilot study, we introduce a machine learning framework to identify relationships between cancer tissue morphology and hormone receptor pathway activation in breast cancer pathology hematoxylin and eosin (H&E)-stained samples. As a proof-of-concept, we focus on predicting clinical estrogen receptor (ER) status-defined as greater than one percent of cells positive for estrogen receptor by immunohistochemistry staining-from spatial arrangement of nuclear features. Our learning pipeline segments nuclei from H&E images, extracts their position, shape and orientation descriptors, and then passes them to a deep neural network to predict ER status. After training on 57 tissue cores of invasive ductal carcinoma (IDC), our pipeline predicted ER status in an independent test set of patient samples (AUC ROC = 0.72, 95%CI = 0.55-0.89, n = 56). This proof of concept shows that machine-derived descriptors of morphologic histology patterns can be correlated to signaling pathway status. Unlike other deep learning approaches to pathology, our system uses deep neural networks to learn spatial relationships between pre-defined biological features, which improves the interpretability of the system and sheds light on the features the neural network uses to predict ER status. Future studies will correlate morphometry to quantitative measures of estrogen receptor status and, ultimately response to hormonal therapy. More... »

PAGES

32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41523-018-0084-4

DOI

http://dx.doi.org/10.1038/s41523-018-0084-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106420878

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30211313


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, 2250 Alcazar Street, CSC 240, 90089-9075, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rawat", 
        "givenName": "Rishi R.", 
        "id": "sg:person.07526214355.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526214355.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, 2250 Alcazar Street, CSC 240, 90089-9075, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruderman", 
        "givenName": "Daniel", 
        "id": "sg:person.01024444300.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024444300.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indiana University Bloomington", 
          "id": "https://www.grid.ac/institutes/grid.411377.7", 
          "name": [
            "Intelligent Systems Engineering, Indiana University, 700N. Woodlawn Ave., 47408, Bloomington, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Macklin", 
        "givenName": "Paul", 
        "id": "sg:person.01350316344.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350316344.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, BML 116, Yale University School of Medicine, PO Box 208023, 310 Cedar St, 06520-8023, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rimm", 
        "givenName": "David L.", 
        "id": "sg:person.0754207153.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, 2250 Alcazar Street, CSC 240, 90089-9075, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agus", 
        "givenName": "David B.", 
        "id": "sg:person.01130633732.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130633732.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/scitranslmed.3002564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003389409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005101892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199811263392207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007051827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pai.0b013e31804c7283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014021497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pai.0b013e31804c7283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014021497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pai.0b013e31804c7283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014021497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199812173392512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020784522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.2010.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022350415", 
          "https://doi.org/10.1038/modpathol.2010.55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.2010.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022350415", 
          "https://doi.org/10.1038/modpathol.2010.55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2011.35.4589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026191980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026706357", 
          "https://doi.org/10.1038/nmeth.2019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2010.32.9706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029175884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1309/4wv79n2ghj3x1841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032640974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042805607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(19910701)68:1<34::aid-cncr2820680107>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046906723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2016.2572683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061745111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1043/1543-2165-134.6.907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078171147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083059622", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/090456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085102015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/090456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085102015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/090456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085102015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2017.14585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099653569"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In this pilot study, we introduce a machine learning framework to identify relationships between cancer tissue morphology and hormone receptor pathway activation in breast cancer pathology hematoxylin and eosin (H&E)-stained samples. As a proof-of-concept, we focus on predicting clinical estrogen receptor (ER) status-defined as greater than one percent of cells positive for estrogen receptor by immunohistochemistry staining-from spatial arrangement of nuclear features. Our learning pipeline segments nuclei from H&E images, extracts their position, shape and orientation descriptors, and then passes them to a deep neural network to predict ER status. After training on 57 tissue cores of invasive ductal carcinoma (IDC), our pipeline predicted ER status in an independent test set of patient samples (AUC ROC\u2009=\u20090.72, 95%CI\u2009=\u20090.55-0.89, n\u2009=\u200956). This proof of concept shows that machine-derived descriptors of morphologic histology patterns can be correlated to signaling pathway status. Unlike other deep learning approaches to pathology, our system uses deep neural networks to learn spatial relationships between pre-defined biological features, which improves the interpretability of the system and sheds light on the features the neural network uses to predict ER status. Future studies will correlate morphometry to quantitative measures of estrogen receptor status and, ultimately response to hormonal therapy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41523-018-0084-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052988", 
        "issn": [
          "2374-4677"
        ], 
        "name": "npj Breast Cancer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Correlating nuclear morphometric patterns with estrogen receptor status in breast cancer pathologic specimens", 
    "pagination": "32", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b85a7aca83fb53623b7c73c09044c13424f6f7a5f7b48fdaa4e2fc34da53287a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30211313"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674891"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41523-018-0084-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106420878"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41523-018-0084-4", 
      "https://app.dimensions.ai/details/publication/pub.1106420878"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41523-018-0084-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41523-018-0084-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41523-018-0084-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41523-018-0084-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41523-018-0084-4'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41523-018-0084-4 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Nd35df8ec68044bec9c0845da0e89fb49
4 schema:citation sg:pub.10.1038/modpathol.2010.55
5 sg:pub.10.1038/nmeth.2019
6 sg:pub.10.1038/nmeth.2089
7 https://app.dimensions.ai/details/publication/pub.1083059622
8 https://doi.org/10.1001/jama.2017.14585
9 https://doi.org/10.1002/1097-0142(19910701)68:1<34::aid-cncr2820680107>3.0.co;2-q
10 https://doi.org/10.1043/1543-2165-134.6.907
11 https://doi.org/10.1056/nejm199811263392207
12 https://doi.org/10.1056/nejm199812173392512
13 https://doi.org/10.1093/bioinformatics/btw252
14 https://doi.org/10.1097/pai.0b013e31804c7283
15 https://doi.org/10.1101/090456
16 https://doi.org/10.1109/tpami.2016.2572683
17 https://doi.org/10.1109/tsmc.1979.4310076
18 https://doi.org/10.1126/scitranslmed.3002564
19 https://doi.org/10.1200/jco.2010.32.9706
20 https://doi.org/10.1200/jco.2011.35.4589
21 https://doi.org/10.1309/4wv79n2ghj3x1841
22 schema:datePublished 2018-12
23 schema:datePublishedReg 2018-12-01
24 schema:description In this pilot study, we introduce a machine learning framework to identify relationships between cancer tissue morphology and hormone receptor pathway activation in breast cancer pathology hematoxylin and eosin (H&amp;E)-stained samples. As a proof-of-concept, we focus on predicting clinical estrogen receptor (ER) status-defined as greater than one percent of cells positive for estrogen receptor by immunohistochemistry staining-from spatial arrangement of nuclear features. Our learning pipeline segments nuclei from H&amp;E images, extracts their position, shape and orientation descriptors, and then passes them to a deep neural network to predict ER status. After training on 57 tissue cores of invasive ductal carcinoma (IDC), our pipeline predicted ER status in an independent test set of patient samples (AUC ROC = 0.72, 95%CI = 0.55-0.89, <i>n</i> = 56). This proof of concept shows that machine-derived descriptors of morphologic histology patterns can be correlated to signaling pathway status. Unlike other deep learning approaches to pathology, our system uses deep neural networks to learn spatial relationships between pre-defined biological features, which improves the interpretability of the system and sheds light on the features the neural network uses to predict ER status. Future studies will correlate morphometry to quantitative measures of estrogen receptor status and, ultimately response to hormonal therapy.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N6f6279468a684b23832a1efd1292bdd7
29 N86b8cda52de24b8d922746b324884c01
30 sg:journal.1052988
31 schema:name Correlating nuclear morphometric patterns with estrogen receptor status in breast cancer pathologic specimens
32 schema:pagination 32
33 schema:productId N4140457f34b140f9923f114d77bcc884
34 N6640d840e43344bab703c86c25da9bea
35 N69c9f96af2924dc895ce8f4fcad34df6
36 N99e715902bca4c038e9e8798eb94e33d
37 Ne562609b992c421ea1bdff5d2138f917
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106420878
39 https://doi.org/10.1038/s41523-018-0084-4
40 schema:sdDatePublished 2019-04-10T14:19
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N3ecfba4a113e48faa1f4744be66ea0b7
43 schema:url https://www.nature.com/articles/s41523-018-0084-4
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0ea97de1cbf54243b4ee21badf7cbe2e rdf:first sg:person.0754207153.13
48 rdf:rest Ndb2a4136ef4d466fa325255bfe79b030
49 N24e89fd8e8ce4a4c9f10ada72e99d049 rdf:first sg:person.01024444300.64
50 rdf:rest Na25ea8eebd014127a2cbd6679edafe8a
51 N3ecfba4a113e48faa1f4744be66ea0b7 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N4140457f34b140f9923f114d77bcc884 schema:name doi
54 schema:value 10.1038/s41523-018-0084-4
55 rdf:type schema:PropertyValue
56 N6640d840e43344bab703c86c25da9bea schema:name nlm_unique_id
57 schema:value 101674891
58 rdf:type schema:PropertyValue
59 N69c9f96af2924dc895ce8f4fcad34df6 schema:name pubmed_id
60 schema:value 30211313
61 rdf:type schema:PropertyValue
62 N6f6279468a684b23832a1efd1292bdd7 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N86b8cda52de24b8d922746b324884c01 schema:volumeNumber 4
65 rdf:type schema:PublicationVolume
66 N99e715902bca4c038e9e8798eb94e33d schema:name readcube_id
67 schema:value b85a7aca83fb53623b7c73c09044c13424f6f7a5f7b48fdaa4e2fc34da53287a
68 rdf:type schema:PropertyValue
69 Na25ea8eebd014127a2cbd6679edafe8a rdf:first sg:person.01350316344.11
70 rdf:rest N0ea97de1cbf54243b4ee21badf7cbe2e
71 Nd35df8ec68044bec9c0845da0e89fb49 rdf:first sg:person.07526214355.07
72 rdf:rest N24e89fd8e8ce4a4c9f10ada72e99d049
73 Ndb2a4136ef4d466fa325255bfe79b030 rdf:first sg:person.01130633732.24
74 rdf:rest rdf:nil
75 Ne562609b992c421ea1bdff5d2138f917 schema:name dimensions_id
76 schema:value pub.1106420878
77 rdf:type schema:PropertyValue
78 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
79 schema:name Medical and Health Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
82 schema:name Oncology and Carcinogenesis
83 rdf:type schema:DefinedTerm
84 sg:journal.1052988 schema:issn 2374-4677
85 schema:name npj Breast Cancer
86 rdf:type schema:Periodical
87 sg:person.01024444300.64 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
88 schema:familyName Ruderman
89 schema:givenName Daniel
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024444300.64
91 rdf:type schema:Person
92 sg:person.01130633732.24 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
93 schema:familyName Agus
94 schema:givenName David B.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130633732.24
96 rdf:type schema:Person
97 sg:person.01350316344.11 schema:affiliation https://www.grid.ac/institutes/grid.411377.7
98 schema:familyName Macklin
99 schema:givenName Paul
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350316344.11
101 rdf:type schema:Person
102 sg:person.07526214355.07 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
103 schema:familyName Rawat
104 schema:givenName Rishi R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526214355.07
106 rdf:type schema:Person
107 sg:person.0754207153.13 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
108 schema:familyName Rimm
109 schema:givenName David L.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13
111 rdf:type schema:Person
112 sg:pub.10.1038/modpathol.2010.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022350415
113 https://doi.org/10.1038/modpathol.2010.55
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nmeth.2019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026706357
116 https://doi.org/10.1038/nmeth.2019
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
119 https://doi.org/10.1038/nmeth.2089
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1083059622 schema:CreativeWork
122 https://doi.org/10.1001/jama.2017.14585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099653569
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/1097-0142(19910701)68:1<34::aid-cncr2820680107>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1046906723
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1043/1543-2165-134.6.907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078171147
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1056/nejm199811263392207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007051827
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1056/nejm199812173392512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020784522
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/bioinformatics/btw252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005101892
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1097/pai.0b013e31804c7283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014021497
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1101/090456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085102015
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tpami.2016.2572683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745111
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1126/scitranslmed.3002564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003389409
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1200/jco.2010.32.9706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029175884
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1200/jco.2011.35.4589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026191980
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1309/4wv79n2ghj3x1841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032640974
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.411377.7 schema:alternateName Indiana University Bloomington
151 schema:name Intelligent Systems Engineering, Indiana University, 700N. Woodlawn Ave., 47408, Bloomington, IN, USA
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
154 schema:name Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, 2250 Alcazar Street, CSC 240, 90089-9075, Los Angeles, CA, USA
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
157 schema:name Department of Pathology, BML 116, Yale University School of Medicine, PO Box 208023, 310 Cedar St, 06520-8023, New Haven, CT, USA
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...