Association of dementia with immunoglobulin G N-glycans in a Chinese Han Population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-04

AUTHORS

Xiaoyu Zhang, Hui Yuan, Jihui Lyu, Xiaoni Meng, Qiuyue Tian, Yuejin Li, Jie Zhang, Xizhu Xu, Jing Su, Haifeng Hou, Dong Li, Baoliang Sun, Wei Wang, Youxin Wang

ABSTRACT

Immunoglobulin G (IgG) functionality can drastically change from anti- to proinflammatory by alterations in the IgG N-glycan patterns. Our previous studies have demonstrated that IgG N-glycans associated with the risk factors of dementia, such as aging, dyslipidemia, type 2 diabetes mellitus, hypertension, and ischemic stroke. Therefore, the aim is to investigate whether the effects of IgG N-glycan profiles on dementia exists in a Chinese Han population. A case-control study, including 81 patients with dementia, 81 age- and gender-matched controls with normal cognitive functioning (NC) and 108 non-matched controls with mild cognitive impairment (MCI) was performed. Plasma IgG N-glycans were separated by ultra-performance liquid chromatography. Fourteen glycan peaks reflecting decreased of sialylation and core fucosylation, and increased bisecting N-acetylglucosamine (GlcNAc) N-glycan structures were of statistically significant differences between dementia and NC groups after controlling for confounders (p < 0.05; q < 0.05). Similarly, the differences for these 14 initial glycans were statistically significant between AD and NC groups after adjusting for the effects of confounders (p < 0.05; q < 0.05). The area under the receiver operating curve (AUC) value of the model consisting of GP8, GP9, and GP14 was determined to distinguish dementia from NC group as 0.876 [95% confidence interval (CI): 0.815-0.923] and distinguish AD from NC group as 0.887 (95% CI: 0.819-0.936). Patients with dementia were of an elevated proinflammatory activity via the significant changes of IgG glycome. Therefore, IgG N-glycans might contribute to be potential novel biomarkers for the neurodegenerative process risk assessment of dementia. More... »

PAGES

3

References to SciGraph publications

  • 2014-03-11. Changes in IgG and total plasma protein glycomes in acute systemic inflammation in SCIENTIFIC REPORTS
  • 2018-04-26. Ischemic stroke is associated with the pro-inflammatory potential of N-glycosylated immunoglobulin G in JOURNAL OF NEUROINFLAMMATION
  • 2015-05-20. Immune attack: the role of inflammation in Alzheimer disease in NATURE REVIEWS NEUROSCIENCE
  • 2018-01-29. Peripheral inflammation could be a prodromal indicator of dementia in NATURE REVIEWS NEUROLOGY
  • 2018-04-09. Profiling and genetic control of the murine immunoglobulin G glycome in NATURE CHEMICAL BIOLOGY
  • 2007-05-17. N-glycan structure dictates extension of protein folding or onset of disposal in NATURE CHEMICAL BIOLOGY
  • 2013-03-14. Diabetes Mellitus and Inflammation in CURRENT DIABETES REPORTS
  • 2018-08-29. The changes of immunoglobulin G N-glycosylation in blood lipids and dyslipidaemia in JOURNAL OF TRANSLATIONAL MEDICINE
  • 2015-08-20. Glycosylation in cancer: mechanisms and clinical implications in NATURE REVIEWS CANCER
  • 2018-06-05. The association between subclass-specific IgG Fc N-glycosylation profiles and hypertension in the Uygur, Kazak, Kirgiz, and Tajik populations in JOURNAL OF HUMAN HYPERTENSION
  • 2011-02-20. Klotho suppresses RIG-I-mediated senescence-associated inflammation in NATURE CELL BIOLOGY
  • 2016-06-16. IgG1 Fc N-glycan galactosylation as a biomarker for immune activation in SCIENTIFIC REPORTS
  • 2017-09-26. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41514-021-00055-w

    DOI

    http://dx.doi.org/10.1038/s41514-021-00055-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1135103902

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33542243


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100095 China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China", 
                "Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100095 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiaoyu", 
            "id": "sg:person.013270644212.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270644212.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai\u2019an, 271000 China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai\u2019an, 271000 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yuan", 
            "givenName": "Hui", 
            "id": "sg:person.01260632526.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260632526.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, 100095 China", 
              "id": "http://www.grid.ac/institutes/grid.476957.e", 
              "name": [
                "Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, 100095 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lyu", 
            "givenName": "Jihui", 
            "id": "sg:person.012475017256.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475017256.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meng", 
            "givenName": "Xiaoni", 
            "id": "sg:person.014137715543.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014137715543.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tian", 
            "givenName": "Qiuyue", 
            "id": "sg:person.015464543343.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464543343.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yuejin", 
            "id": "sg:person.014324640044.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014324640044.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jie", 
            "id": "sg:person.0641462427.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641462427.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Xizhu", 
            "id": "sg:person.010733117037.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010733117037.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geriatrics, Tai\u2019an City Central Hospital, Tai\u2019an, 271000 China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Geriatrics, Tai\u2019an City Central Hospital, Tai\u2019an, 271000 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Su", 
            "givenName": "Jing", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hou", 
            "givenName": "Haifeng", 
            "id": "sg:person.0607015560.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607015560.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Dong", 
            "id": "sg:person.01206207226.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206207226.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China", 
              "id": "http://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Baoliang", 
            "id": "sg:person.014402216167.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402216167.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027 Australia", 
              "id": "http://www.grid.ac/institutes/grid.1038.a", 
              "name": [
                "Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China", 
                "School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai\u2019an, 271000 China", 
                "School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027 Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Wei", 
            "id": "sg:person.0622416310.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622416310.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027 Australia", 
              "id": "http://www.grid.ac/institutes/grid.1038.a", 
              "name": [
                "Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China", 
                "School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027 Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Youxin", 
            "id": "sg:person.01231574010.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231574010.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrn3880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005784241", 
              "https://doi.org/10.1038/nrn3880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12974-018-1161-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103665100", 
              "https://doi.org/10.1186/s12974-018-1161-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11892-013-0375-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009737927", 
              "https://doi.org/10.1007/s11892-013-0375-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep04347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041626591", 
              "https://doi.org/10.1038/srep04347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrneurol.2018.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100685255", 
              "https://doi.org/10.1038/nrneurol.2018.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049896259", 
              "https://doi.org/10.1038/nchembio880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41589-018-0034-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103250407", 
              "https://doi.org/10.1038/s41589-018-0034-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41371-018-0071-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104374485", 
              "https://doi.org/10.1038/s41371-018-0071-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036508003", 
              "https://doi.org/10.1038/nrc3982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep28207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002900166", 
              "https://doi.org/10.1038/srep28207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12967-018-1616-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106415987", 
              "https://doi.org/10.1186/s12967-018-1616-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-12495-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091918387", 
              "https://doi.org/10.1038/s41598-017-12495-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014154450", 
              "https://doi.org/10.1038/ncb2167"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-02-04", 
        "datePublishedReg": "2021-02-04", 
        "description": "Immunoglobulin G (IgG) functionality can drastically change from anti- to proinflammatory by alterations in the IgG N-glycan patterns. Our previous studies have demonstrated that IgG N-glycans associated with the risk factors of dementia, such as aging, dyslipidemia, type 2 diabetes mellitus, hypertension, and ischemic stroke. Therefore, the aim is to investigate whether the effects of IgG N-glycan profiles on dementia exists in a Chinese Han population. A case-control study, including 81 patients with dementia, 81 age- and gender-matched controls with normal cognitive functioning (NC) and 108 non-matched controls with mild cognitive impairment (MCI) was performed. Plasma IgG N-glycans were separated by ultra-performance liquid chromatography. Fourteen glycan peaks reflecting decreased of sialylation and core fucosylation, and increased bisecting N-acetylglucosamine (GlcNAc) N-glycan structures were of statistically significant differences between dementia and NC groups after controlling for confounders (p\u2009<\u20090.05; q\u2009<\u20090.05). Similarly, the differences for these 14 initial glycans were statistically significant between AD and NC groups after adjusting for the effects of confounders (p\u2009<\u20090.05; q\u2009<\u20090.05). The area under the receiver operating curve (AUC) value of the model consisting of GP8, GP9, and GP14 was determined to distinguish dementia from NC group as 0.876 [95% confidence interval (CI): 0.815-0.923] and distinguish AD from NC group as 0.887 (95% CI: 0.819-0.936). Patients with dementia were of an elevated proinflammatory activity via the significant changes of IgG glycome. Therefore, IgG N-glycans might contribute to be potential novel biomarkers for the neurodegenerative process risk assessment of dementia.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41514-021-00055-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7506314", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8371437", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8879210", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1053290", 
            "issn": [
              "2056-3973"
            ], 
            "name": "npj Aging and Mechanisms of Disease", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "NC group", 
          "Chinese Han population", 
          "mild cognitive impairment", 
          "normal cognitive functioning", 
          "IgG N", 
          "type 2 diabetes mellitus", 
          "Han population", 
          "association of dementia", 
          "case-control study", 
          "gender-matched controls", 
          "potential novel biomarkers", 
          "effects of confounders", 
          "ischemic stroke", 
          "diabetes mellitus", 
          "risk factors", 
          "non-matched controls", 
          "proinflammatory activity", 
          "novel biomarkers", 
          "cognitive impairment", 
          "dementia", 
          "immunoglobulin G N", 
          "ultra-performance liquid chromatography", 
          "curve values", 
          "significant differences", 
          "patients", 
          "confounders", 
          "acetylglucosamine N", 
          "cognitive functioning", 
          "significant changes", 
          "group", 
          "core fucosylation", 
          "glycan peaks", 
          "previous studies", 
          "dyslipidemia", 
          "hypertension", 
          "mellitus", 
          "proinflammatory", 
          "liquid chromatography", 
          "risk assessment", 
          "population", 
          "stroke", 
          "glycan patterns", 
          "IgG", 
          "impairment", 
          "biomarkers", 
          "age", 
          "differences", 
          "control", 
          "study", 
          "anti", 
          "alterations", 
          "association", 
          "glycan profiles", 
          "effect", 
          "glycans", 
          "sialylation", 
          "aim", 
          "fucosylation", 
          "assessment", 
          "factors", 
          "functioning", 
          "activity", 
          "gp14", 
          "gp9", 
          "AD", 
          "changes", 
          "profile", 
          "glycan structures", 
          "patterns", 
          "chromatography", 
          "gp8", 
          "area", 
          "receiver", 
          "values", 
          "model", 
          "peak", 
          "process risk assessment", 
          "functionality", 
          "structure", 
          "Immunoglobulin G (IgG) functionality", 
          "G (IgG) functionality", 
          "Plasma IgG N", 
          "initial glycans", 
          "elevated proinflammatory activity", 
          "neurodegenerative process risk assessment", 
          "G N"
        ], 
        "name": "Association of dementia with immunoglobulin G N-glycans in a Chinese Han Population", 
        "pagination": "3", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1135103902"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41514-021-00055-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33542243"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41514-021-00055-w", 
          "https://app.dimensions.ai/details/publication/pub.1135103902"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_905.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41514-021-00055-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41514-021-00055-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41514-021-00055-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41514-021-00055-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41514-021-00055-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    315 TRIPLES      22 PREDICATES      125 URIs      104 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41514-021-00055-w schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author Ne7731e2d01e44b05a8ab98ca29a6976a
    4 schema:citation sg:pub.10.1007/s11892-013-0375-y
    5 sg:pub.10.1038/ncb2167
    6 sg:pub.10.1038/nchembio880
    7 sg:pub.10.1038/nrc3982
    8 sg:pub.10.1038/nrn3880
    9 sg:pub.10.1038/nrneurol.2018.8
    10 sg:pub.10.1038/s41371-018-0071-0
    11 sg:pub.10.1038/s41589-018-0034-3
    12 sg:pub.10.1038/s41598-017-12495-0
    13 sg:pub.10.1038/srep04347
    14 sg:pub.10.1038/srep28207
    15 sg:pub.10.1186/s12967-018-1616-2
    16 sg:pub.10.1186/s12974-018-1161-1
    17 schema:datePublished 2021-02-04
    18 schema:datePublishedReg 2021-02-04
    19 schema:description Immunoglobulin G (IgG) functionality can drastically change from anti- to proinflammatory by alterations in the IgG N-glycan patterns. Our previous studies have demonstrated that IgG N-glycans associated with the risk factors of dementia, such as aging, dyslipidemia, type 2 diabetes mellitus, hypertension, and ischemic stroke. Therefore, the aim is to investigate whether the effects of IgG N-glycan profiles on dementia exists in a Chinese Han population. A case-control study, including 81 patients with dementia, 81 age- and gender-matched controls with normal cognitive functioning (NC) and 108 non-matched controls with mild cognitive impairment (MCI) was performed. Plasma IgG N-glycans were separated by ultra-performance liquid chromatography. Fourteen glycan peaks reflecting decreased of sialylation and core fucosylation, and increased bisecting N-acetylglucosamine (GlcNAc) N-glycan structures were of statistically significant differences between dementia and NC groups after controlling for confounders (p < 0.05; q < 0.05). Similarly, the differences for these 14 initial glycans were statistically significant between AD and NC groups after adjusting for the effects of confounders (p < 0.05; q < 0.05). The area under the receiver operating curve (AUC) value of the model consisting of GP8, GP9, and GP14 was determined to distinguish dementia from NC group as 0.876 [95% confidence interval (CI): 0.815-0.923] and distinguish AD from NC group as 0.887 (95% CI: 0.819-0.936). Patients with dementia were of an elevated proinflammatory activity via the significant changes of IgG glycome. Therefore, IgG N-glycans might contribute to be potential novel biomarkers for the neurodegenerative process risk assessment of dementia.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N3b67d9b7c409430ba443637ed1f54614
    24 Nab160577bdb24eeeadc6836c4e5500b5
    25 sg:journal.1053290
    26 schema:keywords AD
    27 Chinese Han population
    28 G (IgG) functionality
    29 G N
    30 Han population
    31 IgG
    32 IgG N
    33 Immunoglobulin G (IgG) functionality
    34 NC group
    35 Plasma IgG N
    36 acetylglucosamine N
    37 activity
    38 age
    39 aim
    40 alterations
    41 anti
    42 area
    43 assessment
    44 association
    45 association of dementia
    46 biomarkers
    47 case-control study
    48 changes
    49 chromatography
    50 cognitive functioning
    51 cognitive impairment
    52 confounders
    53 control
    54 core fucosylation
    55 curve values
    56 dementia
    57 diabetes mellitus
    58 differences
    59 dyslipidemia
    60 effect
    61 effects of confounders
    62 elevated proinflammatory activity
    63 factors
    64 fucosylation
    65 functionality
    66 functioning
    67 gender-matched controls
    68 glycan patterns
    69 glycan peaks
    70 glycan profiles
    71 glycan structures
    72 glycans
    73 gp14
    74 gp8
    75 gp9
    76 group
    77 hypertension
    78 immunoglobulin G N
    79 impairment
    80 initial glycans
    81 ischemic stroke
    82 liquid chromatography
    83 mellitus
    84 mild cognitive impairment
    85 model
    86 neurodegenerative process risk assessment
    87 non-matched controls
    88 normal cognitive functioning
    89 novel biomarkers
    90 patients
    91 patterns
    92 peak
    93 population
    94 potential novel biomarkers
    95 previous studies
    96 process risk assessment
    97 profile
    98 proinflammatory
    99 proinflammatory activity
    100 receiver
    101 risk assessment
    102 risk factors
    103 sialylation
    104 significant changes
    105 significant differences
    106 stroke
    107 structure
    108 study
    109 type 2 diabetes mellitus
    110 ultra-performance liquid chromatography
    111 values
    112 schema:name Association of dementia with immunoglobulin G N-glycans in a Chinese Han Population
    113 schema:pagination 3
    114 schema:productId Nb9dce0b394f440a2ba0d522879078da3
    115 Ndeeb9778258f4be1b9fe1af3aa96b8b5
    116 Nf47024b991284974868f842e3c8944de
    117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135103902
    118 https://doi.org/10.1038/s41514-021-00055-w
    119 schema:sdDatePublished 2022-01-01T19:03
    120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    121 schema:sdPublisher N768cd2e90d4f4b6f9bd5dbb7aced7edb
    122 schema:url https://doi.org/10.1038/s41514-021-00055-w
    123 sgo:license sg:explorer/license/
    124 sgo:sdDataset articles
    125 rdf:type schema:ScholarlyArticle
    126 N24b0d04005a643f4a7794574f7a01a79 rdf:first sg:person.014402216167.03
    127 rdf:rest Ne596ff7c67eb4f10a8a14d06183e8c53
    128 N267cd0f11c1c497abcfba3b7b4c08efa rdf:first Ned0a7f3b28a342218b354751d00d501f
    129 rdf:rest Nb6ef13ba5a1f4b7e85cbcfef4b800313
    130 N27578e908d484b718b4dd78ae19b65db rdf:first sg:person.01260632526.64
    131 rdf:rest Ne72e614659f7494fb4c2ea2e8203c717
    132 N3b67d9b7c409430ba443637ed1f54614 schema:issueNumber 1
    133 rdf:type schema:PublicationIssue
    134 N4adfe4fe9a244b7bbc8c88013618f76b rdf:first sg:person.01206207226.81
    135 rdf:rest N24b0d04005a643f4a7794574f7a01a79
    136 N768cd2e90d4f4b6f9bd5dbb7aced7edb schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 N7dda0d7ecf984dee98f5ffd72260bbb5 rdf:first sg:person.01231574010.59
    139 rdf:rest rdf:nil
    140 Na39f41651864424195b79025c27660cd rdf:first sg:person.014324640044.17
    141 rdf:rest Nd80448217ae041609bca02fab544e3f7
    142 Nab160577bdb24eeeadc6836c4e5500b5 schema:volumeNumber 7
    143 rdf:type schema:PublicationVolume
    144 Nb6ef13ba5a1f4b7e85cbcfef4b800313 rdf:first sg:person.0607015560.97
    145 rdf:rest N4adfe4fe9a244b7bbc8c88013618f76b
    146 Nb8d2f628c65041e69d6bd26a0820433e rdf:first sg:person.015464543343.10
    147 rdf:rest Na39f41651864424195b79025c27660cd
    148 Nb9dce0b394f440a2ba0d522879078da3 schema:name pubmed_id
    149 schema:value 33542243
    150 rdf:type schema:PropertyValue
    151 Nbedc564f2b784707b6af54ce98412af8 rdf:first sg:person.014137715543.96
    152 rdf:rest Nb8d2f628c65041e69d6bd26a0820433e
    153 Nc3b8a7fad5b647ad8e5d34fe8b811407 rdf:first sg:person.010733117037.22
    154 rdf:rest N267cd0f11c1c497abcfba3b7b4c08efa
    155 Nd80448217ae041609bca02fab544e3f7 rdf:first sg:person.0641462427.24
    156 rdf:rest Nc3b8a7fad5b647ad8e5d34fe8b811407
    157 Ndeeb9778258f4be1b9fe1af3aa96b8b5 schema:name dimensions_id
    158 schema:value pub.1135103902
    159 rdf:type schema:PropertyValue
    160 Ne596ff7c67eb4f10a8a14d06183e8c53 rdf:first sg:person.0622416310.94
    161 rdf:rest N7dda0d7ecf984dee98f5ffd72260bbb5
    162 Ne72e614659f7494fb4c2ea2e8203c717 rdf:first sg:person.012475017256.96
    163 rdf:rest Nbedc564f2b784707b6af54ce98412af8
    164 Ne7731e2d01e44b05a8ab98ca29a6976a rdf:first sg:person.013270644212.99
    165 rdf:rest N27578e908d484b718b4dd78ae19b65db
    166 Ned0a7f3b28a342218b354751d00d501f schema:affiliation grid-institutes:None
    167 schema:familyName Su
    168 schema:givenName Jing
    169 rdf:type schema:Person
    170 Nf47024b991284974868f842e3c8944de schema:name doi
    171 schema:value 10.1038/s41514-021-00055-w
    172 rdf:type schema:PropertyValue
    173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Medical and Health Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Clinical Sciences
    178 rdf:type schema:DefinedTerm
    179 sg:grant.7506314 http://pending.schema.org/fundedItem sg:pub.10.1038/s41514-021-00055-w
    180 rdf:type schema:MonetaryGrant
    181 sg:grant.8371437 http://pending.schema.org/fundedItem sg:pub.10.1038/s41514-021-00055-w
    182 rdf:type schema:MonetaryGrant
    183 sg:grant.8879210 http://pending.schema.org/fundedItem sg:pub.10.1038/s41514-021-00055-w
    184 rdf:type schema:MonetaryGrant
    185 sg:journal.1053290 schema:issn 2056-3973
    186 schema:name npj Aging and Mechanisms of Disease
    187 schema:publisher Springer Nature
    188 rdf:type schema:Periodical
    189 sg:person.010733117037.22 schema:affiliation grid-institutes:None
    190 schema:familyName Xu
    191 schema:givenName Xizhu
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010733117037.22
    193 rdf:type schema:Person
    194 sg:person.01206207226.81 schema:affiliation grid-institutes:None
    195 schema:familyName Li
    196 schema:givenName Dong
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206207226.81
    198 rdf:type schema:Person
    199 sg:person.01231574010.59 schema:affiliation grid-institutes:grid.1038.a
    200 schema:familyName Wang
    201 schema:givenName Youxin
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231574010.59
    203 rdf:type schema:Person
    204 sg:person.012475017256.96 schema:affiliation grid-institutes:grid.476957.e
    205 schema:familyName Lyu
    206 schema:givenName Jihui
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475017256.96
    208 rdf:type schema:Person
    209 sg:person.01260632526.64 schema:affiliation grid-institutes:None
    210 schema:familyName Yuan
    211 schema:givenName Hui
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260632526.64
    213 rdf:type schema:Person
    214 sg:person.013270644212.99 schema:affiliation grid-institutes:grid.24696.3f
    215 schema:familyName Zhang
    216 schema:givenName Xiaoyu
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270644212.99
    218 rdf:type schema:Person
    219 sg:person.014137715543.96 schema:affiliation grid-institutes:grid.24696.3f
    220 schema:familyName Meng
    221 schema:givenName Xiaoni
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014137715543.96
    223 rdf:type schema:Person
    224 sg:person.014324640044.17 schema:affiliation grid-institutes:None
    225 schema:familyName Li
    226 schema:givenName Yuejin
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014324640044.17
    228 rdf:type schema:Person
    229 sg:person.014402216167.03 schema:affiliation grid-institutes:grid.27255.37
    230 schema:familyName Sun
    231 schema:givenName Baoliang
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402216167.03
    233 rdf:type schema:Person
    234 sg:person.015464543343.10 schema:affiliation grid-institutes:grid.24696.3f
    235 schema:familyName Tian
    236 schema:givenName Qiuyue
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464543343.10
    238 rdf:type schema:Person
    239 sg:person.0607015560.97 schema:affiliation grid-institutes:None
    240 schema:familyName Hou
    241 schema:givenName Haifeng
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607015560.97
    243 rdf:type schema:Person
    244 sg:person.0622416310.94 schema:affiliation grid-institutes:grid.1038.a
    245 schema:familyName Wang
    246 schema:givenName Wei
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622416310.94
    248 rdf:type schema:Person
    249 sg:person.0641462427.24 schema:affiliation grid-institutes:grid.24696.3f
    250 schema:familyName Zhang
    251 schema:givenName Jie
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641462427.24
    253 rdf:type schema:Person
    254 sg:pub.10.1007/s11892-013-0375-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009737927
    255 https://doi.org/10.1007/s11892-013-0375-y
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/ncb2167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014154450
    258 https://doi.org/10.1038/ncb2167
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nchembio880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049896259
    261 https://doi.org/10.1038/nchembio880
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nrc3982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036508003
    264 https://doi.org/10.1038/nrc3982
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nrn3880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005784241
    267 https://doi.org/10.1038/nrn3880
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nrneurol.2018.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100685255
    270 https://doi.org/10.1038/nrneurol.2018.8
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/s41371-018-0071-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104374485
    273 https://doi.org/10.1038/s41371-018-0071-0
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/s41589-018-0034-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103250407
    276 https://doi.org/10.1038/s41589-018-0034-3
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/s41598-017-12495-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091918387
    279 https://doi.org/10.1038/s41598-017-12495-0
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/srep04347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041626591
    282 https://doi.org/10.1038/srep04347
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/srep28207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002900166
    285 https://doi.org/10.1038/srep28207
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1186/s12967-018-1616-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106415987
    288 https://doi.org/10.1186/s12967-018-1616-2
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1186/s12974-018-1161-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103665100
    291 https://doi.org/10.1186/s12974-018-1161-1
    292 rdf:type schema:CreativeWork
    293 grid-institutes:None schema:alternateName Department of Geriatrics, Tai’an City Central Hospital, Tai’an, 271000 China
    294 Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, 271000 China
    295 School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, 271000 China
    296 schema:name Department of Geriatrics, Tai’an City Central Hospital, Tai’an, 271000 China
    297 Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, 271000 China
    298 School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, 271000 China
    299 rdf:type schema:Organization
    300 grid-institutes:grid.1038.a schema:alternateName School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027 Australia
    301 schema:name Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China
    302 School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027 Australia
    303 School of public health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, 271000 China
    304 rdf:type schema:Organization
    305 grid-institutes:grid.24696.3f schema:alternateName Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100095 China
    306 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China
    307 schema:name Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100095 China
    308 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China
    309 rdf:type schema:Organization
    310 grid-institutes:grid.27255.37 schema:alternateName Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, 271000 China
    311 schema:name Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, 271000 China
    312 rdf:type schema:Organization
    313 grid-institutes:grid.476957.e schema:alternateName Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, 100095 China
    314 schema:name Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, 100095 China
    315 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...