Gene retention, fractionation and subgenome differences in polyploid plants View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-30

AUTHORS

Feng Cheng, Jian Wu, Xu Cai, Jianli Liang, Michael Freeling, Xiaowu Wang

ABSTRACT

All natural plant species are evolved from ancient polyploids. Polyloidization plays an important role in plant genome evolution, species divergence and crop domestication. We review how the pattern of polyploidy within the plant phylogenetic tree has engendered hypotheses involving mass extinctions, lag-times following polyploidy, and epochs of asexuality. Polyploidization has happened repeatedly in plant evolution and, we conclude, is important for crop domestication. Once duplicated, the effect of purifying selection on any one duplicated gene is relaxed, permitting duplicate gene and regulatory element loss (fractionation). We review the general topic of fractionation, and how some gene categories are retained more than others. Several explanations, including neofunctionalization, subfunctionalization and gene product dosage balance, have been shown to influence gene content over time. For allopolyploids, genetic differences between parental lines immediately manifest as subgenome dominance in the wide-hybrid, and persist and propagate for tens of millions of years. While epigenetic modifications are certainly involved in genome dominance, it has been difficult to determine which came first, the chromatin marks being measured or gene expression. Data support the conclusion that genome dominance and heterosis are antagonistic and mechanically entangled; both happen immediately in the synthetic wide-cross hybrid. Also operating in this hybrid are mechanisms of ‘paralogue interference’. We present a foundation model to explain gene expression and vigour in a wide hybrid/new allotetraploid. This Review concludes that some mechanisms operate immediately at the wide-hybrid, and other mechanisms begin their operations later. Direct interaction of new paralogous genes, as measured using high-resolution chromatin conformation capture, should inform future research and single cell transcriptome sequencing should help achieve specificity while studying gene sub- and neo-functionalization. More... »

PAGES

258-268

References to SciGraph publications

  • 2007-10. Gene duplication and the adaptive evolution of a classic genetic switch in NATURE
  • 2006-10. Spreading of silent chromatin: inaction at a distance in NATURE REVIEWS GENETICS
  • 2014-05-23. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes in NATURE COMMUNICATIONS
  • 2008-12. Turning a hobby into a job: How duplicated genes find new functions in NATURE REVIEWS GENETICS
  • 2010-02-24. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryzaand their phylogenetic utility across various taxonomic levels in BMC ECOLOGY AND EVOLUTION
  • 1980. Polyploidy in Plants: Unsolved Problems and Prospects in POLYPLOIDY
  • 2016-02-20. Models for gene duplication when dosage balance works as a transition state to subsequent neo- or sub-functionalization in BMC ECOLOGY AND EVOLUTION
  • 2016-11-04. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias in BMC GENOMICS
  • 2012-11-21. Homoeolog expression bias and expression level dominance in allopolyploid cotton in HEREDITY
  • 2015-12-29. The polyploidy and its key role in plant breeding in PLANTA
  • 2017-03-06. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication in NATURE GENETICS
  • 2005-05-26. An adaptive radiation model for the origin of new gene functions in NATURE GENETICS
  • 2017-01-16. Massively parallel digital transcriptional profiling of single cells in NATURE COMMUNICATIONS
  • 2017-01-06. Both mechanism and age of duplications contribute to biased gene retention patterns in plants in BMC GENOMICS
  • 2014-08-03. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex in NATURE BIOTECHNOLOGY
  • 2005-04-14. Subfunctionalization of duplicated genes as a transition state to neofunctionalization in BMC ECOLOGY AND EVOLUTION
  • 2017-05-15. The evolutionary significance of polyploidy in NATURE REVIEWS GENETICS
  • 1970. Evolution by Gene Duplication in NONE
  • 2016-08-01. Whole-genome duplication as a key factor in crop domestication in NATURE PLANTS
  • 2017-05-24. Statistical analysis of fractionation resistance by functional category and expression in BMC GENOMICS
  • 2017-05-11. Heterosis as a consequence of regulatory incompatibility in BMC BIOLOGY
  • 2017-03-13. Reconstructing the genome of the most recent common ancestor of flowering plants in NATURE GENETICS
  • 2013-07-21. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments in NATURE BIOTECHNOLOGY
  • 2010-01-06. The evolution of gene duplications: classifying and distinguishing between models in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41477-018-0136-7

    DOI

    http://dx.doi.org/10.1038/s41477-018-0136-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103640986

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29725103


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adaptation, Physiological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epigenesis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Dosage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Duplicate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hybrid Vigor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plants", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyploidy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Feng", 
            "id": "sg:person.01334414011.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334414011.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Jian", 
            "id": "sg:person.01076440533.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076440533.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Xu", 
            "id": "sg:person.011160644607.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011160644607.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Jianli", 
            "id": "sg:person.01144553733.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144553733.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Freeling", 
            "givenName": "Michael", 
            "id": "sg:person.0634660645.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634660645.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong Provincial Key Laboratory of Protected Vegetable Molecular Breeding, Shandong Shouguang Vegetable Seed Industry Group Co. Ltd., Shandong Province, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China", 
                "Shandong Provincial Key Laboratory of Protected Vegetable Molecular Breeding, Shandong Shouguang Vegetable Seed Industry Group Co. Ltd., Shandong Province, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiaowu", 
            "id": "sg:person.01111134275.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111134275.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt.2642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011351790", 
              "https://doi.org/10.1038/nbt.2642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nplants.2016.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032757438", 
              "https://doi.org/10.1038/nplants.2016.115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-015-2450-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034690383", 
              "https://doi.org/10.1007/s00425-015-2450-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312685", 
              "https://doi.org/10.1038/nature06151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024772727", 
              "https://doi.org/10.1038/nrg1920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001987369", 
              "https://doi.org/10.1038/nbt.2967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045071161", 
              "https://doi.org/10.1038/nrg2689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016713725", 
              "https://doi.org/10.1038/ng1579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-3423-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004348371", 
              "https://doi.org/10.1186/s12864-016-3423-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2017.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085409542", 
              "https://doi.org/10.1038/nrg.2017.26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2012.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038336472", 
              "https://doi.org/10.1038/hdy.2012.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12915-017-0373-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085396423", 
              "https://doi.org/10.1186/s12915-017-0373-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129152", 
              "https://doi.org/10.1038/ng.3813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019155899", 
              "https://doi.org/10.1038/ncomms14049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12862-016-0616-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043436841", 
              "https://doi.org/10.1186/s12862-016-0616-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-017-3736-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085585175", 
              "https://doi.org/10.1186/s12864-017-3736-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005748112", 
              "https://doi.org/10.1038/ncomms4930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-10-61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022446017", 
              "https://doi.org/10.1186/1471-2148-10-61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-86659-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006433795", 
              "https://doi.org/10.1007/978-3-642-86659-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010022626", 
              "https://doi.org/10.1038/nrg2482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129147", 
              "https://doi.org/10.1038/ng.3807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-3069-1_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029999354", 
              "https://doi.org/10.1007/978-1-4613-3069-1_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-3194-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008641463", 
              "https://doi.org/10.1186/s12864-016-3194-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-5-28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053416755", 
              "https://doi.org/10.1186/1471-2148-5-28"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04-30", 
        "datePublishedReg": "2018-04-30", 
        "description": "All natural plant species are evolved from ancient polyploids. Polyloidization plays an important role in plant genome evolution, species divergence and crop domestication. We review how the pattern of polyploidy within the plant phylogenetic tree has engendered hypotheses involving mass extinctions, lag-times following polyploidy, and epochs of asexuality. Polyploidization has happened repeatedly in plant evolution and, we conclude, is important for crop domestication. Once duplicated, the effect of purifying selection on any one duplicated gene is relaxed, permitting duplicate gene and regulatory element loss (fractionation). We review the general topic of fractionation, and how some gene categories are retained more than others. Several explanations, including neofunctionalization, subfunctionalization and gene product dosage balance, have been shown to influence gene content over time. For allopolyploids, genetic differences between parental lines immediately manifest as subgenome dominance in the wide-hybrid, and persist and propagate for tens of millions of years. While epigenetic modifications are certainly involved in genome dominance, it has been difficult to determine which came first, the chromatin marks being measured or gene expression. Data support the conclusion that genome dominance and heterosis are antagonistic and mechanically entangled; both happen immediately in the synthetic wide-cross hybrid. Also operating in this hybrid are mechanisms of \u2018paralogue interference\u2019. We present a foundation model to explain gene expression and vigour in a wide hybrid/new allotetraploid. This Review concludes that some mechanisms operate immediately at the wide-hybrid, and other mechanisms begin their operations later. Direct interaction of new paralogous genes, as measured using high-resolution chromatin conformation capture, should inform future research and single cell transcriptome sequencing should help achieve specificity while studying gene sub- and neo-functionalization.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41477-018-0136-7", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5540638", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8200768", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8194602", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1051401", 
            "issn": [
              "2055-026X", 
              "2055-0278"
            ], 
            "name": "Nature Plants", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "genome dominance", 
          "crop domestication", 
          "gene expression", 
          "single-cell transcriptome sequencing", 
          "plant genome evolution", 
          "chromatin conformation capture", 
          "natural plant species", 
          "new allotetraploid", 
          "dosage balance", 
          "gene retention", 
          "genome evolution", 
          "plant evolution", 
          "subgenome dominance", 
          "duplicate genes", 
          "paralogous genes", 
          "chromatin marks", 
          "conformation capture", 
          "ancient polyploids", 
          "polyploid plants", 
          "gene content", 
          "plant species", 
          "gene categories", 
          "phylogenetic tree", 
          "transcriptome sequencing", 
          "epigenetic modifications", 
          "parental lines", 
          "genetic differences", 
          "mass extinction", 
          "genes", 
          "direct interaction", 
          "polyploidy", 
          "domestication", 
          "neofunctionalization", 
          "subfunctionalization", 
          "expression", 
          "allopolyploids", 
          "allotetraploid", 
          "polyploids", 
          "polyploidization", 
          "important role", 
          "hybrids", 
          "asexuality", 
          "dominance", 
          "heterosis", 
          "species", 
          "mechanism", 
          "sequencing", 
          "plants", 
          "divergence", 
          "evolution", 
          "tens of millions", 
          "extinction", 
          "fractionation", 
          "trees", 
          "marks", 
          "specificity", 
          "role", 
          "selection", 
          "lines", 
          "interaction", 
          "modification", 
          "hypothesis", 
          "patterns", 
          "loss", 
          "element loss", 
          "differences", 
          "capture", 
          "millions", 
          "content", 
          "balance", 
          "review", 
          "sub", 
          "interference", 
          "future research", 
          "effect", 
          "retention", 
          "explanation", 
          "data", 
          "general topic", 
          "tens", 
          "time", 
          "conclusion", 
          "research", 
          "years", 
          "model", 
          "categories", 
          "topic", 
          "epoch", 
          "operation", 
          "foundation model"
        ], 
        "name": "Gene retention, fractionation and subgenome differences in polyploid plants", 
        "pagination": "258-268", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103640986"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41477-018-0136-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29725103"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41477-018-0136-7", 
          "https://app.dimensions.ai/details/publication/pub.1103640986"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_766.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41477-018-0136-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41477-018-0136-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41477-018-0136-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41477-018-0136-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41477-018-0136-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    339 TRIPLES      21 PREDICATES      150 URIs      118 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41477-018-0136-7 schema:about N0a8ef0d033b548d19396bed35ff407ee
    2 N1f70ca8b28c34c1f88a1e1d6a94fea91
    3 N29c466b9061b47cfa2a06b4c8fb16acf
    4 N67e99733b2094c7ca948c449c1fed125
    5 N9b04fff55c3f4d358481bf3aafe8b730
    6 N9b38f9e262f448b59d8b00f988eaee56
    7 N9eb90f9a1d0d4fb8bd99abc6934e815a
    8 Na1fdae56029e4b548aefac6b9ab964fc
    9 Nc66a908bdc2d4fa98a2b49dbafe75076
    10 Nda093f7e45e8445b99bef8b5dec5efcf
    11 Nf6b37dd794a24b8c9974430ced932d79
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N55394fbbafed419db0ff7b03fbb53bc0
    15 schema:citation sg:pub.10.1007/978-1-4613-3069-1_26
    16 sg:pub.10.1007/978-3-642-86659-3
    17 sg:pub.10.1007/s00425-015-2450-x
    18 sg:pub.10.1038/hdy.2012.94
    19 sg:pub.10.1038/nature06151
    20 sg:pub.10.1038/nbt.2642
    21 sg:pub.10.1038/nbt.2967
    22 sg:pub.10.1038/ncomms14049
    23 sg:pub.10.1038/ncomms4930
    24 sg:pub.10.1038/ng.3807
    25 sg:pub.10.1038/ng.3813
    26 sg:pub.10.1038/ng1579
    27 sg:pub.10.1038/nplants.2016.115
    28 sg:pub.10.1038/nrg.2017.26
    29 sg:pub.10.1038/nrg1920
    30 sg:pub.10.1038/nrg2482
    31 sg:pub.10.1038/nrg2689
    32 sg:pub.10.1186/1471-2148-10-61
    33 sg:pub.10.1186/1471-2148-5-28
    34 sg:pub.10.1186/s12862-016-0616-1
    35 sg:pub.10.1186/s12864-016-3194-0
    36 sg:pub.10.1186/s12864-016-3423-6
    37 sg:pub.10.1186/s12864-017-3736-0
    38 sg:pub.10.1186/s12915-017-0373-7
    39 schema:datePublished 2018-04-30
    40 schema:datePublishedReg 2018-04-30
    41 schema:description All natural plant species are evolved from ancient polyploids. Polyloidization plays an important role in plant genome evolution, species divergence and crop domestication. We review how the pattern of polyploidy within the plant phylogenetic tree has engendered hypotheses involving mass extinctions, lag-times following polyploidy, and epochs of asexuality. Polyploidization has happened repeatedly in plant evolution and, we conclude, is important for crop domestication. Once duplicated, the effect of purifying selection on any one duplicated gene is relaxed, permitting duplicate gene and regulatory element loss (fractionation). We review the general topic of fractionation, and how some gene categories are retained more than others. Several explanations, including neofunctionalization, subfunctionalization and gene product dosage balance, have been shown to influence gene content over time. For allopolyploids, genetic differences between parental lines immediately manifest as subgenome dominance in the wide-hybrid, and persist and propagate for tens of millions of years. While epigenetic modifications are certainly involved in genome dominance, it has been difficult to determine which came first, the chromatin marks being measured or gene expression. Data support the conclusion that genome dominance and heterosis are antagonistic and mechanically entangled; both happen immediately in the synthetic wide-cross hybrid. Also operating in this hybrid are mechanisms of ‘paralogue interference’. We present a foundation model to explain gene expression and vigour in a wide hybrid/new allotetraploid. This Review concludes that some mechanisms operate immediately at the wide-hybrid, and other mechanisms begin their operations later. Direct interaction of new paralogous genes, as measured using high-resolution chromatin conformation capture, should inform future research and single cell transcriptome sequencing should help achieve specificity while studying gene sub- and neo-functionalization.
    42 schema:genre article
    43 schema:isAccessibleForFree false
    44 schema:isPartOf N97655ef50bbf4e859efc65647da2df2f
    45 Nb3c98307ec2a4f0fbd4eb0bcdb6de314
    46 sg:journal.1051401
    47 schema:keywords allopolyploids
    48 allotetraploid
    49 ancient polyploids
    50 asexuality
    51 balance
    52 capture
    53 categories
    54 chromatin conformation capture
    55 chromatin marks
    56 conclusion
    57 conformation capture
    58 content
    59 crop domestication
    60 data
    61 differences
    62 direct interaction
    63 divergence
    64 domestication
    65 dominance
    66 dosage balance
    67 duplicate genes
    68 effect
    69 element loss
    70 epigenetic modifications
    71 epoch
    72 evolution
    73 explanation
    74 expression
    75 extinction
    76 foundation model
    77 fractionation
    78 future research
    79 gene categories
    80 gene content
    81 gene expression
    82 gene retention
    83 general topic
    84 genes
    85 genetic differences
    86 genome dominance
    87 genome evolution
    88 heterosis
    89 hybrids
    90 hypothesis
    91 important role
    92 interaction
    93 interference
    94 lines
    95 loss
    96 marks
    97 mass extinction
    98 mechanism
    99 millions
    100 model
    101 modification
    102 natural plant species
    103 neofunctionalization
    104 new allotetraploid
    105 operation
    106 paralogous genes
    107 parental lines
    108 patterns
    109 phylogenetic tree
    110 plant evolution
    111 plant genome evolution
    112 plant species
    113 plants
    114 polyploid plants
    115 polyploidization
    116 polyploids
    117 polyploidy
    118 research
    119 retention
    120 review
    121 role
    122 selection
    123 sequencing
    124 single-cell transcriptome sequencing
    125 species
    126 specificity
    127 sub
    128 subfunctionalization
    129 subgenome dominance
    130 tens
    131 tens of millions
    132 time
    133 topic
    134 transcriptome sequencing
    135 trees
    136 years
    137 schema:name Gene retention, fractionation and subgenome differences in polyploid plants
    138 schema:pagination 258-268
    139 schema:productId N156816cedf1c48ecbd9c926b323e6cd3
    140 N9b509433fde940f0abd261be0c2a941d
    141 Ne7d4d49e6550410c91f2e262f5fc424f
    142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103640986
    143 https://doi.org/10.1038/s41477-018-0136-7
    144 schema:sdDatePublished 2022-12-01T06:37
    145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    146 schema:sdPublisher N95d9cb7ee86546b9989d97d2061fcd7f
    147 schema:url https://doi.org/10.1038/s41477-018-0136-7
    148 sgo:license sg:explorer/license/
    149 sgo:sdDataset articles
    150 rdf:type schema:ScholarlyArticle
    151 N0a8ef0d033b548d19396bed35ff407ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Gene Expression Regulation, Plant
    153 rdf:type schema:DefinedTerm
    154 N156816cedf1c48ecbd9c926b323e6cd3 schema:name pubmed_id
    155 schema:value 29725103
    156 rdf:type schema:PropertyValue
    157 N1f70ca8b28c34c1f88a1e1d6a94fea91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Phylogeny
    159 rdf:type schema:DefinedTerm
    160 N29c466b9061b47cfa2a06b4c8fb16acf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Polyploidy
    162 rdf:type schema:DefinedTerm
    163 N55394fbbafed419db0ff7b03fbb53bc0 rdf:first sg:person.01334414011.76
    164 rdf:rest N55f962e29bb1410eb39e0203898ba0d6
    165 N55f962e29bb1410eb39e0203898ba0d6 rdf:first sg:person.01076440533.87
    166 rdf:rest N7da75672051e41d8be8c76da1f189c10
    167 N67e99733b2094c7ca948c449c1fed125 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Hybrid Vigor
    169 rdf:type schema:DefinedTerm
    170 N7da75672051e41d8be8c76da1f189c10 rdf:first sg:person.011160644607.85
    171 rdf:rest Na7fc7df03b574e09a431c25ea94344a2
    172 N95d9cb7ee86546b9989d97d2061fcd7f schema:name Springer Nature - SN SciGraph project
    173 rdf:type schema:Organization
    174 N97655ef50bbf4e859efc65647da2df2f schema:volumeNumber 4
    175 rdf:type schema:PublicationVolume
    176 N9b04fff55c3f4d358481bf3aafe8b730 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Epigenesis, Genetic
    178 rdf:type schema:DefinedTerm
    179 N9b38f9e262f448b59d8b00f988eaee56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Genes, Duplicate
    181 rdf:type schema:DefinedTerm
    182 N9b509433fde940f0abd261be0c2a941d schema:name dimensions_id
    183 schema:value pub.1103640986
    184 rdf:type schema:PropertyValue
    185 N9eb90f9a1d0d4fb8bd99abc6934e815a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Selection, Genetic
    187 rdf:type schema:DefinedTerm
    188 Na1fdae56029e4b548aefac6b9ab964fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Adaptation, Physiological
    190 rdf:type schema:DefinedTerm
    191 Na7fc7df03b574e09a431c25ea94344a2 rdf:first sg:person.01144553733.83
    192 rdf:rest Necf48519b3a24e5b9294db8c2f04ebfe
    193 Nb3c98307ec2a4f0fbd4eb0bcdb6de314 schema:issueNumber 5
    194 rdf:type schema:PublicationIssue
    195 Nb75627abad004ac3a134ede0342bd90d rdf:first sg:person.01111134275.07
    196 rdf:rest rdf:nil
    197 Nc66a908bdc2d4fa98a2b49dbafe75076 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Gene Dosage
    199 rdf:type schema:DefinedTerm
    200 Nda093f7e45e8445b99bef8b5dec5efcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Plants
    202 rdf:type schema:DefinedTerm
    203 Ne7d4d49e6550410c91f2e262f5fc424f schema:name doi
    204 schema:value 10.1038/s41477-018-0136-7
    205 rdf:type schema:PropertyValue
    206 Necf48519b3a24e5b9294db8c2f04ebfe rdf:first sg:person.0634660645.76
    207 rdf:rest Nb75627abad004ac3a134ede0342bd90d
    208 Nf6b37dd794a24b8c9974430ced932d79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Evolution, Molecular
    210 rdf:type schema:DefinedTerm
    211 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    212 schema:name Biological Sciences
    213 rdf:type schema:DefinedTerm
    214 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    215 schema:name Genetics
    216 rdf:type schema:DefinedTerm
    217 sg:grant.5540638 http://pending.schema.org/fundedItem sg:pub.10.1038/s41477-018-0136-7
    218 rdf:type schema:MonetaryGrant
    219 sg:grant.8194602 http://pending.schema.org/fundedItem sg:pub.10.1038/s41477-018-0136-7
    220 rdf:type schema:MonetaryGrant
    221 sg:grant.8200768 http://pending.schema.org/fundedItem sg:pub.10.1038/s41477-018-0136-7
    222 rdf:type schema:MonetaryGrant
    223 sg:journal.1051401 schema:issn 2055-026X
    224 2055-0278
    225 schema:name Nature Plants
    226 schema:publisher Springer Nature
    227 rdf:type schema:Periodical
    228 sg:person.01076440533.87 schema:affiliation grid-institutes:grid.464357.7
    229 schema:familyName Wu
    230 schema:givenName Jian
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076440533.87
    232 rdf:type schema:Person
    233 sg:person.01111134275.07 schema:affiliation grid-institutes:None
    234 schema:familyName Wang
    235 schema:givenName Xiaowu
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111134275.07
    237 rdf:type schema:Person
    238 sg:person.011160644607.85 schema:affiliation grid-institutes:grid.464357.7
    239 schema:familyName Cai
    240 schema:givenName Xu
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011160644607.85
    242 rdf:type schema:Person
    243 sg:person.01144553733.83 schema:affiliation grid-institutes:grid.464357.7
    244 schema:familyName Liang
    245 schema:givenName Jianli
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144553733.83
    247 rdf:type schema:Person
    248 sg:person.01334414011.76 schema:affiliation grid-institutes:grid.464357.7
    249 schema:familyName Cheng
    250 schema:givenName Feng
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334414011.76
    252 rdf:type schema:Person
    253 sg:person.0634660645.76 schema:affiliation grid-institutes:grid.47840.3f
    254 schema:familyName Freeling
    255 schema:givenName Michael
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634660645.76
    257 rdf:type schema:Person
    258 sg:pub.10.1007/978-1-4613-3069-1_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029999354
    259 https://doi.org/10.1007/978-1-4613-3069-1_26
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/978-3-642-86659-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006433795
    262 https://doi.org/10.1007/978-3-642-86659-3
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s00425-015-2450-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034690383
    265 https://doi.org/10.1007/s00425-015-2450-x
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/hdy.2012.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336472
    268 https://doi.org/10.1038/hdy.2012.94
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/nature06151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312685
    271 https://doi.org/10.1038/nature06151
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/nbt.2642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011351790
    274 https://doi.org/10.1038/nbt.2642
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/nbt.2967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001987369
    277 https://doi.org/10.1038/nbt.2967
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/ncomms14049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019155899
    280 https://doi.org/10.1038/ncomms14049
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/ncomms4930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005748112
    283 https://doi.org/10.1038/ncomms4930
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/ng.3807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129147
    286 https://doi.org/10.1038/ng.3807
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/ng.3813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129152
    289 https://doi.org/10.1038/ng.3813
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/ng1579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016713725
    292 https://doi.org/10.1038/ng1579
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nplants.2016.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032757438
    295 https://doi.org/10.1038/nplants.2016.115
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nrg.2017.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085409542
    298 https://doi.org/10.1038/nrg.2017.26
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nrg1920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024772727
    301 https://doi.org/10.1038/nrg1920
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nrg2482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010022626
    304 https://doi.org/10.1038/nrg2482
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nrg2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045071161
    307 https://doi.org/10.1038/nrg2689
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1186/1471-2148-10-61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022446017
    310 https://doi.org/10.1186/1471-2148-10-61
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/1471-2148-5-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053416755
    313 https://doi.org/10.1186/1471-2148-5-28
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1186/s12862-016-0616-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043436841
    316 https://doi.org/10.1186/s12862-016-0616-1
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1186/s12864-016-3194-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008641463
    319 https://doi.org/10.1186/s12864-016-3194-0
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1186/s12864-016-3423-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004348371
    322 https://doi.org/10.1186/s12864-016-3423-6
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/s12864-017-3736-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085585175
    325 https://doi.org/10.1186/s12864-017-3736-0
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1186/s12915-017-0373-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085396423
    328 https://doi.org/10.1186/s12915-017-0373-7
    329 rdf:type schema:CreativeWork
    330 grid-institutes:None schema:alternateName Shandong Provincial Key Laboratory of Protected Vegetable Molecular Breeding, Shandong Shouguang Vegetable Seed Industry Group Co. Ltd., Shandong Province, China
    331 schema:name Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
    332 Shandong Provincial Key Laboratory of Protected Vegetable Molecular Breeding, Shandong Shouguang Vegetable Seed Industry Group Co. Ltd., Shandong Province, China
    333 rdf:type schema:Organization
    334 grid-institutes:grid.464357.7 schema:alternateName Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
    335 schema:name Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
    336 rdf:type schema:Organization
    337 grid-institutes:grid.47840.3f schema:alternateName Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
    338 schema:name Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
    339 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...