The piston Riemann problem in a photon superfluid View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-06

AUTHORS

Abdelkrim Bendahmane, Gang Xu, Matteo Conforti, Alexandre Kudlinski, Arnaud Mussot, Stefano Trillo

ABSTRACT

Light flow in nonlinear media can exhibit quantum hydrodynamical features which are profoundly different from those of classical fluids. Here, we show that a rather extreme regime of quantum hydrodynamics can be accessed by exploring the piston problem (a paradigm in gas dynamics) for light, and its generalization, named after the celebrated mathematician Riemann, where the piston acts on a concomitant abrupt change of photon density. Our experiment reveals regimes featuring optical rarefaction (retracting piston) or shock (pushing piston) wave pairs, and most importantly the transition to a peculiar type of flow, occurring above a precise critical piston velocity, where the light shocks are smoothly interconnected by a large contrast, periodic, fully nonlinear wave. The transition to such extreme hydrodynamic state is generic for superfluids, but to date remained elusive to any other quantum fluid system. Our full-fiber setup used to observe this phenomenon in temporal domain proves to be a versatile alternative to other platforms currently employed to investigate the hydrodynamical properties of quantum fluids of light. More... »

PAGES

3137

References to SciGraph publications

  • 2018-05-29. Superfluid motion and drag-force cancellation in a fluid of light in NATURE COMMUNICATIONS
  • 2018-11-07. Dissipative shock waves generated by a quantum-mechanical piston in NATURE COMMUNICATIONS
  • 1995-11. Finite-gap attractors and transition processes of the shock-wave type in integrable systems in JOURNAL OF MATHEMATICAL SCIENCES
  • 1987-06. Nonlinear Schrödinger equation and the bogolyubov-whitham method of averaging in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2015-03. The classical Rankine-Hugoniot jump conditions, an important cornerstone of modern shock wave physics: ideal assumptions vs. reality in THE EUROPEAN PHYSICAL JOURNAL H
  • 2011-09-11. All-optical control of the quantum flow of a polariton condensate in NATURE PHOTONICS
  • 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction in NONE
  • 1989-10. Large-time asymptotics of the solution of the nonlinear Schrödinger equation with boundary conditions of step type in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2019-08-15. Shock Waves in HANDBOOK OF OPTICAL FIBERS
  • 2019-11-08. Topological control of extreme waves in NATURE COMMUNICATIONS
  • 2015-12-21. Frequency-agile dual-comb spectroscopy in NATURE PHOTONICS
  • 2009-09-20. Superfluidity of polaritons in semiconductor microcavities in NATURE PHYSICS
  • 2017-05-03. Mid-infrared dual-comb spectroscopy with electro-optic modulators in LIGHT: SCIENCE & APPLICATIONS
  • 2020-07-13. Dynamics of the Berezinskii–Kosterlitz–Thouless transition in a photon fluid in NATURE PHOTONICS
  • 2006-12-17. Dispersive superfluid-like shock waves in nonlinear optics in NATURE PHYSICS
  • 2019-11-06. Vectorial dispersive shock waves in optical fibers in COMMUNICATIONS PHYSICS
  • 2015-09-08. From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows in NATURE COMMUNICATIONS
  • 2009. History of Shock Waves, Explosions and Impact, A Chronological and Biographical Reference in NONE
  • 2007-01. Nonlinear optics: Shocking superfluids in NATURE PHYSICS
  • 2004-04-15. Turbulent drag reduction in dam-break flows in EXPERIMENTS IN FLUIDS
  • 2006-06-29. On the Whitham Equations for the Defocusing Nonlinear Schrodinger Equation with Step Initial Data in JOURNAL OF NONLINEAR SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-022-30734-5

    DOI

    http://dx.doi.org/10.1038/s41467-022-30734-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148450884

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35668094


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France", 
              "id": "http://www.grid.ac/institutes/grid.503422.2", 
              "name": [
                "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bendahmane", 
            "givenName": "Abdelkrim", 
            "id": "sg:person.01121774734.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121774734.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France", 
              "id": "http://www.grid.ac/institutes/grid.503422.2", 
              "name": [
                "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Gang", 
            "id": "sg:person.01172520415.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172520415.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France", 
              "id": "http://www.grid.ac/institutes/grid.503422.2", 
              "name": [
                "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Conforti", 
            "givenName": "Matteo", 
            "id": "sg:person.0764653251.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France", 
              "id": "http://www.grid.ac/institutes/grid.503422.2", 
              "name": [
                "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kudlinski", 
            "givenName": "Alexandre", 
            "id": "sg:person.01245750522.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245750522.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France", 
              "id": "http://www.grid.ac/institutes/grid.503422.2", 
              "name": [
                "CNRS, UMR 8523\u2014PhLAM\u2014Physique des Lasers Atomes et Mol\u00e9cules, Univ. Lille, Lille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mussot", 
            "givenName": "Arnaud", 
            "id": "sg:person.01231032443.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231032443.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Engineering, University of Ferrara, Ferrara, Italy", 
              "id": "http://www.grid.ac/institutes/grid.8484.0", 
              "name": [
                "Department of Engineering, University of Ferrara, Ferrara, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trillo", 
            "givenName": "Stefano", 
            "id": "sg:person.01242414260.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41467-018-07147-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107969594", 
              "https://doi.org/10.1038/s41467-018-07147-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021186830", 
              "https://doi.org/10.1038/nphys498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034205718", 
              "https://doi.org/10.1038/nphys486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04534-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104192190", 
              "https://doi.org/10.1038/s41467-018-04534-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b79761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046249510", 
              "https://doi.org/10.1007/b79761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41566-020-0636-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129309217", 
              "https://doi.org/10.1038/s41566-020-0636-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01015504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017743340", 
              "https://doi.org/10.1007/bf01015504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30421-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023900632", 
              "https://doi.org/10.1007/978-3-540-30421-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/lsa.2017.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092312252", 
              "https://doi.org/10.1038/lsa.2017.76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001312614", 
              "https://doi.org/10.1038/nphys1364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01017090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005990816", 
              "https://doi.org/10.1007/bf01017090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02367229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022208579", 
              "https://doi.org/10.1007/bf02367229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-7087-7_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120327771", 
              "https://doi.org/10.1007/978-981-10-7087-7_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-004-0804-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000036957", 
              "https://doi.org/10.1007/s00348-004-0804-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010111561", 
              "https://doi.org/10.1038/ncomms9131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018608682", 
              "https://doi.org/10.1038/nphoton.2015.250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-12815-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122392878", 
              "https://doi.org/10.1038/s41467-019-12815-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000281569", 
              "https://doi.org/10.1038/nphoton.2011.211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjh/e2015-50010-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039471836", 
              "https://doi.org/10.1140/epjh/e2015-50010-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00332-005-0733-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032659864", 
              "https://doi.org/10.1007/s00332-005-0733-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42005-019-0241-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122327346", 
              "https://doi.org/10.1038/s42005-019-0241-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-06", 
        "datePublishedReg": "2022-06-06", 
        "description": "Light flow in nonlinear media can exhibit quantum hydrodynamical features which are profoundly different from those of classical fluids. Here, we show that a rather extreme regime of quantum hydrodynamics can be accessed by exploring the piston problem (a paradigm in gas dynamics) for light, and its generalization, named after the celebrated mathematician Riemann, where the piston acts on a concomitant abrupt change of photon density. Our experiment reveals regimes featuring optical rarefaction (retracting piston) or shock (pushing piston) wave pairs, and most importantly the transition to a peculiar type of flow, occurring above a precise critical piston velocity, where the light shocks are smoothly interconnected by a large contrast, periodic, fully nonlinear wave. The transition to such extreme hydrodynamic state is generic for superfluids, but to date remained elusive to any other quantum fluid system. Our full-fiber setup used to observe this phenomenon in temporal domain proves to be a versatile alternative to other platforms currently employed to investigate the hydrodynamical properties of quantum fluids of light.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-022-30734-5", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "quantum hydrodynamics", 
          "quantum fluids", 
          "photon density", 
          "light flow", 
          "nonlinear media", 
          "wave pairs", 
          "nonlinear waves", 
          "classical fluids", 
          "extreme regimes", 
          "superfluid", 
          "hydrodynamical properties", 
          "hydrodynamical features", 
          "large contrast", 
          "hydrodynamic state", 
          "transition", 
          "light", 
          "regime", 
          "versatile alternative", 
          "waves", 
          "peculiar type", 
          "abrupt changes", 
          "setup", 
          "temporal domain", 
          "density", 
          "hydrodynamics", 
          "piston problem", 
          "state", 
          "velocity", 
          "properties", 
          "phenomenon", 
          "experiments", 
          "piston velocity", 
          "pairs", 
          "fluid system", 
          "rarefaction", 
          "shock", 
          "flow", 
          "medium", 
          "piston", 
          "system", 
          "features", 
          "contrast", 
          "Riemann problem", 
          "generalization", 
          "Riemann", 
          "platform", 
          "fluid", 
          "domain", 
          "problem", 
          "changes", 
          "types", 
          "date", 
          "alternative", 
          "light shock"
        ], 
        "name": "The piston Riemann problem in a photon superfluid", 
        "pagination": "3137", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148450884"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-022-30734-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35668094"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-022-30734-5", 
          "https://app.dimensions.ai/details/publication/pub.1148450884"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_923.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-022-30734-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30734-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30734-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30734-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30734-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    236 TRIPLES      21 PREDICATES      100 URIs      71 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-022-30734-5 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N097a7d615e0f498ab642008c0a64b9a9
    4 schema:citation sg:pub.10.1007/978-3-540-30421-0
    5 sg:pub.10.1007/978-981-10-7087-7_16
    6 sg:pub.10.1007/b79761
    7 sg:pub.10.1007/bf01015504
    8 sg:pub.10.1007/bf01017090
    9 sg:pub.10.1007/bf02367229
    10 sg:pub.10.1007/s00332-005-0733-2
    11 sg:pub.10.1007/s00348-004-0804-4
    12 sg:pub.10.1038/lsa.2017.76
    13 sg:pub.10.1038/ncomms9131
    14 sg:pub.10.1038/nphoton.2011.211
    15 sg:pub.10.1038/nphoton.2015.250
    16 sg:pub.10.1038/nphys1364
    17 sg:pub.10.1038/nphys486
    18 sg:pub.10.1038/nphys498
    19 sg:pub.10.1038/s41467-018-04534-9
    20 sg:pub.10.1038/s41467-018-07147-4
    21 sg:pub.10.1038/s41467-019-12815-0
    22 sg:pub.10.1038/s41566-020-0636-7
    23 sg:pub.10.1038/s42005-019-0241-6
    24 sg:pub.10.1140/epjh/e2015-50010-4
    25 schema:datePublished 2022-06-06
    26 schema:datePublishedReg 2022-06-06
    27 schema:description Light flow in nonlinear media can exhibit quantum hydrodynamical features which are profoundly different from those of classical fluids. Here, we show that a rather extreme regime of quantum hydrodynamics can be accessed by exploring the piston problem (a paradigm in gas dynamics) for light, and its generalization, named after the celebrated mathematician Riemann, where the piston acts on a concomitant abrupt change of photon density. Our experiment reveals regimes featuring optical rarefaction (retracting piston) or shock (pushing piston) wave pairs, and most importantly the transition to a peculiar type of flow, occurring above a precise critical piston velocity, where the light shocks are smoothly interconnected by a large contrast, periodic, fully nonlinear wave. The transition to such extreme hydrodynamic state is generic for superfluids, but to date remained elusive to any other quantum fluid system. Our full-fiber setup used to observe this phenomenon in temporal domain proves to be a versatile alternative to other platforms currently employed to investigate the hydrodynamical properties of quantum fluids of light.
    28 schema:genre article
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N3196a9d4d2314b1e80d42b0ab74c9cfa
    31 N908541b758d24a9da83607c74d93d3e4
    32 sg:journal.1043282
    33 schema:keywords Riemann
    34 Riemann problem
    35 abrupt changes
    36 alternative
    37 changes
    38 classical fluids
    39 contrast
    40 date
    41 density
    42 domain
    43 experiments
    44 extreme regimes
    45 features
    46 flow
    47 fluid
    48 fluid system
    49 generalization
    50 hydrodynamic state
    51 hydrodynamical features
    52 hydrodynamical properties
    53 hydrodynamics
    54 large contrast
    55 light
    56 light flow
    57 light shock
    58 medium
    59 nonlinear media
    60 nonlinear waves
    61 pairs
    62 peculiar type
    63 phenomenon
    64 photon density
    65 piston
    66 piston problem
    67 piston velocity
    68 platform
    69 problem
    70 properties
    71 quantum fluids
    72 quantum hydrodynamics
    73 rarefaction
    74 regime
    75 setup
    76 shock
    77 state
    78 superfluid
    79 system
    80 temporal domain
    81 transition
    82 types
    83 velocity
    84 versatile alternative
    85 wave pairs
    86 waves
    87 schema:name The piston Riemann problem in a photon superfluid
    88 schema:pagination 3137
    89 schema:productId N48393a049eaa46fd8d5e2cac1a31ea0a
    90 N9cde16f887ff4d9eb6055af6c7be0046
    91 Nac21245782b14014ada3992a5f779eea
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148450884
    93 https://doi.org/10.1038/s41467-022-30734-5
    94 schema:sdDatePublished 2022-12-01T06:43
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher N9581a830f46c45beb412dc44fbb6115b
    97 schema:url https://doi.org/10.1038/s41467-022-30734-5
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N097a7d615e0f498ab642008c0a64b9a9 rdf:first sg:person.01121774734.00
    102 rdf:rest N15ce220e493d4a54bf074458c908f9cd
    103 N15ce220e493d4a54bf074458c908f9cd rdf:first sg:person.01172520415.52
    104 rdf:rest Ne268007d7d1f45a7bd5f9807510f63fb
    105 N3196a9d4d2314b1e80d42b0ab74c9cfa schema:issueNumber 1
    106 rdf:type schema:PublicationIssue
    107 N3a2996f59baa4c4eafdcb0748f7834bb rdf:first sg:person.01231032443.88
    108 rdf:rest N428cfce80c6d468ca863c2a6aab58514
    109 N3aaf146c430e4e4f8d81f54da07b411e rdf:first sg:person.01245750522.31
    110 rdf:rest N3a2996f59baa4c4eafdcb0748f7834bb
    111 N428cfce80c6d468ca863c2a6aab58514 rdf:first sg:person.01242414260.33
    112 rdf:rest rdf:nil
    113 N48393a049eaa46fd8d5e2cac1a31ea0a schema:name pubmed_id
    114 schema:value 35668094
    115 rdf:type schema:PropertyValue
    116 N908541b758d24a9da83607c74d93d3e4 schema:volumeNumber 13
    117 rdf:type schema:PublicationVolume
    118 N9581a830f46c45beb412dc44fbb6115b schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 N9cde16f887ff4d9eb6055af6c7be0046 schema:name doi
    121 schema:value 10.1038/s41467-022-30734-5
    122 rdf:type schema:PropertyValue
    123 Nac21245782b14014ada3992a5f779eea schema:name dimensions_id
    124 schema:value pub.1148450884
    125 rdf:type schema:PropertyValue
    126 Ne268007d7d1f45a7bd5f9807510f63fb rdf:first sg:person.0764653251.31
    127 rdf:rest N3aaf146c430e4e4f8d81f54da07b411e
    128 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Physical Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Quantum Physics
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1043282 schema:issn 2041-1723
    135 schema:name Nature Communications
    136 schema:publisher Springer Nature
    137 rdf:type schema:Periodical
    138 sg:person.01121774734.00 schema:affiliation grid-institutes:grid.503422.2
    139 schema:familyName Bendahmane
    140 schema:givenName Abdelkrim
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121774734.00
    142 rdf:type schema:Person
    143 sg:person.01172520415.52 schema:affiliation grid-institutes:grid.503422.2
    144 schema:familyName Xu
    145 schema:givenName Gang
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172520415.52
    147 rdf:type schema:Person
    148 sg:person.01231032443.88 schema:affiliation grid-institutes:grid.503422.2
    149 schema:familyName Mussot
    150 schema:givenName Arnaud
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231032443.88
    152 rdf:type schema:Person
    153 sg:person.01242414260.33 schema:affiliation grid-institutes:grid.8484.0
    154 schema:familyName Trillo
    155 schema:givenName Stefano
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33
    157 rdf:type schema:Person
    158 sg:person.01245750522.31 schema:affiliation grid-institutes:grid.503422.2
    159 schema:familyName Kudlinski
    160 schema:givenName Alexandre
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245750522.31
    162 rdf:type schema:Person
    163 sg:person.0764653251.31 schema:affiliation grid-institutes:grid.503422.2
    164 schema:familyName Conforti
    165 schema:givenName Matteo
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31
    167 rdf:type schema:Person
    168 sg:pub.10.1007/978-3-540-30421-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023900632
    169 https://doi.org/10.1007/978-3-540-30421-0
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/978-981-10-7087-7_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120327771
    172 https://doi.org/10.1007/978-981-10-7087-7_16
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/b79761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046249510
    175 https://doi.org/10.1007/b79761
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/bf01015504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017743340
    178 https://doi.org/10.1007/bf01015504
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/bf01017090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005990816
    181 https://doi.org/10.1007/bf01017090
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/bf02367229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022208579
    184 https://doi.org/10.1007/bf02367229
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00332-005-0733-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032659864
    187 https://doi.org/10.1007/s00332-005-0733-2
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00348-004-0804-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000036957
    190 https://doi.org/10.1007/s00348-004-0804-4
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/lsa.2017.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092312252
    193 https://doi.org/10.1038/lsa.2017.76
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ncomms9131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010111561
    196 https://doi.org/10.1038/ncomms9131
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nphoton.2011.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000281569
    199 https://doi.org/10.1038/nphoton.2011.211
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nphoton.2015.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018608682
    202 https://doi.org/10.1038/nphoton.2015.250
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nphys1364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001312614
    205 https://doi.org/10.1038/nphys1364
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nphys486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034205718
    208 https://doi.org/10.1038/nphys486
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nphys498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021186830
    211 https://doi.org/10.1038/nphys498
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/s41467-018-04534-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104192190
    214 https://doi.org/10.1038/s41467-018-04534-9
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/s41467-018-07147-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107969594
    217 https://doi.org/10.1038/s41467-018-07147-4
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/s41467-019-12815-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122392878
    220 https://doi.org/10.1038/s41467-019-12815-0
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41566-020-0636-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129309217
    223 https://doi.org/10.1038/s41566-020-0636-7
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/s42005-019-0241-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122327346
    226 https://doi.org/10.1038/s42005-019-0241-6
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1140/epjh/e2015-50010-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039471836
    229 https://doi.org/10.1140/epjh/e2015-50010-4
    230 rdf:type schema:CreativeWork
    231 grid-institutes:grid.503422.2 schema:alternateName CNRS, UMR 8523—PhLAM—Physique des Lasers Atomes et Molécules, Univ. Lille, Lille, France
    232 schema:name CNRS, UMR 8523—PhLAM—Physique des Lasers Atomes et Molécules, Univ. Lille, Lille, France
    233 rdf:type schema:Organization
    234 grid-institutes:grid.8484.0 schema:alternateName Department of Engineering, University of Ferrara, Ferrara, Italy
    235 schema:name Department of Engineering, University of Ferrara, Ferrara, Italy
    236 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...