Deterministic control of ferroelectric polarization by ultrafast laser pulses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-10

AUTHORS

Peng Chen, Charles Paillard, Hong Jian Zhao, Jorge Íñiguez, Laurent Bellaiche

ABSTRACT

Ultrafast light-matter interactions present a promising route to control ferroelectric polarization at room temperature, which is an exciting idea for designing novel ferroelectric-based devices. One emergent light-induced technique for controlling polarization consists in anharmonically driving a high-frequency phonon mode through its coupling to the polarization. A step towards such control has been recently accomplished, but the polarization has been reported to be only partially reversed and for a short lapse of time. Such transient partial reversal is not currently understood, and it is presently unclear if full control of polarization, by, e.g., fully reversing it or even making it adopt different directions (thus inducing structural phase transitions), can be achieved by activating the high-frequency phonon mode via terahertz pulse stimuli. Here, by means of realistic simulations of a prototypical ferroelectric, we reveal and explain (1) why a transient partial reversal has been observed, and (2) how to deterministically control the ferroelectric polarization thanks to these stimuli. Such results can provide guidance for realizing original ultrafast optoferroic devices. More... »

PAGES

2566

References to SciGraph publications

  • 2016-08-15. Reversible optical switching of antiferromagnetism in TbMnO3 in NATURE PHOTONICS
  • 2021-02-04. Evidence for metastable photo-induced superconductivity in K3C60 in NATURE PHYSICS
  • 2015-07-06. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface in NATURE MATERIALS
  • 2011-08-07. Nonlinear phononics as an ultrafast route to lattice control in NATURE PHYSICS
  • 2020-10-19. Probing light-driven quantum materials with ultrafast resonant inelastic X-ray scattering in COMMUNICATIONS PHYSICS
  • 2013-06-11. Non-volatile memory based on the ferroelectric photovoltaic effect in NATURE COMMUNICATIONS
  • 2016-02-08. Possible light-induced superconductivity in K3C60 at high temperature in NATURE
  • 2017-01-30. Transient superconductivity from electronic squeezing of optically pumped phonons in NATURE PHYSICS
  • 2020-06-22. Polarizing an antiferromagnet by optical engineering of the crystal field in NATURE PHYSICS
  • 2018-08-21. Optical control of polarization in ferroelectric heterostructures in NATURE COMMUNICATIONS
  • 2017-05-30. Designing lead-free antiferroelectrics for energy storage in NATURE COMMUNICATIONS
  • 2018-06-01. Probing dynamics in quantum materials with femtosecond X-rays in NATURE REVIEWS MATERIALS
  • 2017-04-06. THz Electric Field-Induced Second Harmonic Generation in Inorganic Ferroelectric in SCIENTIFIC REPORTS
  • 2020-05-04. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators in NATURE REVIEWS PHYSICS
  • 2019-01-02. An ultrafast symmetry switch in a Weyl semimetal in NATURE
  • 2019-11-04. Light-induced anomalous Hall effect in graphene in NATURE PHYSICS
  • 2018-01-09. Structural absorption by barbule microstructures of super black bird of paradise feathers in NATURE COMMUNICATIONS
  • 2007-09. Control of the electronic phase of a manganite by mode-selective vibrational excitation in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-022-30324-5

    DOI

    http://dx.doi.org/10.1038/s41467-022-30324-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147764092

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35538101


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, 72701, Fayetteville, AR, USA", 
              "id": "http://www.grid.ac/institutes/grid.411017.2", 
              "name": [
                "Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, 72701, Fayetteville, AR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Peng", 
            "id": "sg:person.07577130275.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07577130275.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Paris-Saclay, CentraleSup\u00e9lec, CNRS, Laboratoire SPMS, 91190, Gif-sur-Yvette, France", 
              "id": "http://www.grid.ac/institutes/grid.494567.d", 
              "name": [
                "Universit\u00e9 Paris-Saclay, CentraleSup\u00e9lec, CNRS, Laboratoire SPMS, 91190, Gif-sur-Yvette, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paillard", 
            "givenName": "Charles", 
            "id": "sg:person.016031421661.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031421661.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Center for Computational Method and Software (ICCMS) and Key Laboratory of Physics and Technology for Advanced Batteries, Jilin University, 2699, Qianjin Street, 130012, Changchun, China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, 72701, Fayetteville, AR, USA", 
                "International Center for Computational Method and Software (ICCMS) and Key Laboratory of Physics and Technology for Advanced Batteries, Jilin University, 2699, Qianjin Street, 130012, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Hong Jian", 
            "id": "sg:person.0722340771.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722340771.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422, Belvaux, Luxembourg", 
              "id": "http://www.grid.ac/institutes/grid.16008.3f", 
              "name": [
                "Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362, Esch/Alzette, Luxembourg", 
                "Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422, Belvaux, Luxembourg"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u00cd\u00f1iguez", 
            "givenName": "Jorge", 
            "id": "sg:person.014102223761.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102223761.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, 72701, Fayetteville, AR, USA", 
              "id": "http://www.grid.ac/institutes/grid.411017.2", 
              "name": [
                "Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, 72701, Fayetteville, AR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bellaiche", 
            "givenName": "Laurent", 
            "id": "sg:person.01260054754.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260054754.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphoton.2016.146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003777870", 
              "https://doi.org/10.1038/nphoton.2016.146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-020-0936-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128662490", 
              "https://doi.org/10.1038/s41567-020-0936-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052480746", 
              "https://doi.org/10.1038/nature06119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023275235", 
              "https://doi.org/10.1038/nature16522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085714390", 
              "https://doi.org/10.1038/ncomms15682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074247077", 
              "https://doi.org/10.1038/nphys4024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-00704-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084130814", 
              "https://doi.org/10.1038/s41598-017-00704-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02088-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100092794", 
              "https://doi.org/10.1038/s41467-017-02088-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42254-020-0170-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127346740", 
              "https://doi.org/10.1038/s42254-020-0170-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0809-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110837771", 
              "https://doi.org/10.1038/s41586-018-0809-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41578-018-0024-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104326438", 
              "https://doi.org/10.1038/s41578-018-0024-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-019-0698-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122298943", 
              "https://doi.org/10.1038/s41567-019-0698-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043686050", 
              "https://doi.org/10.1038/nmat4341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-020-01148-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135100650", 
              "https://doi.org/10.1038/s41567-020-01148-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011385711", 
              "https://doi.org/10.1038/ncomms2990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42005-020-00447-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131873716", 
              "https://doi.org/10.1038/s42005-020-00447-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05640-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106173711", 
              "https://doi.org/10.1038/s41467-018-05640-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041208843", 
              "https://doi.org/10.1038/nphys2055"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-05-10", 
        "datePublishedReg": "2022-05-10", 
        "description": "Ultrafast light-matter interactions present a promising route to control ferroelectric polarization at room temperature, which is an exciting idea for designing novel ferroelectric-based devices. One emergent light-induced technique for controlling polarization consists in anharmonically driving a high-frequency phonon mode through its coupling to the polarization. A step towards such control has been recently accomplished, but the polarization has been reported to be only partially reversed and for a short lapse of time. Such transient partial reversal is not currently understood, and it is presently unclear if full control of polarization, by, e.g., fully reversing it or even making it adopt different directions (thus inducing structural phase transitions), can be achieved by activating the high-frequency phonon mode via terahertz pulse stimuli. Here, by means of realistic simulations of a prototypical ferroelectric, we reveal and explain (1) why a transient partial reversal has been observed, and (2) how to deterministically control the ferroelectric polarization thanks to these stimuli. Such results can provide guidance for realizing original ultrafast optoferroic devices.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-022-30324-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "high-frequency phonon modes", 
          "ultrafast light\u2013matter interaction", 
          "ferroelectric polarization", 
          "phonon modes", 
          "light-matter interaction", 
          "ultrafast laser pulses", 
          "laser pulses", 
          "deterministic control", 
          "prototypical ferroelectrics", 
          "polarization", 
          "room temperature", 
          "promising route", 
          "full control", 
          "realistic simulation", 
          "pulses", 
          "devices", 
          "ferroelectrics", 
          "mode", 
          "different directions", 
          "coupling", 
          "exciting ideas", 
          "such control", 
          "simulations", 
          "temperature", 
          "reversal", 
          "Such results", 
          "interaction", 
          "direction", 
          "thanks", 
          "control", 
          "technique", 
          "route", 
          "pulse stimuli", 
          "step", 
          "results", 
          "short lapse", 
          "means", 
          "time", 
          "guidance", 
          "idea", 
          "partial reversal", 
          "lapse", 
          "stimuli"
        ], 
        "name": "Deterministic control of ferroelectric polarization by ultrafast laser pulses", 
        "pagination": "2566", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147764092"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-022-30324-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35538101"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-022-30324-5", 
          "https://app.dimensions.ai/details/publication/pub.1147764092"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_930.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-022-30324-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30324-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30324-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30324-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30324-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    215 TRIPLES      22 PREDICATES      87 URIs      61 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-022-30324-5 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 schema:author N73c917c7d3004611b51c76a5b48b5041
    4 schema:citation sg:pub.10.1038/nature06119
    5 sg:pub.10.1038/nature16522
    6 sg:pub.10.1038/ncomms15682
    7 sg:pub.10.1038/ncomms2990
    8 sg:pub.10.1038/nmat4341
    9 sg:pub.10.1038/nphoton.2016.146
    10 sg:pub.10.1038/nphys2055
    11 sg:pub.10.1038/nphys4024
    12 sg:pub.10.1038/s41467-017-02088-w
    13 sg:pub.10.1038/s41467-018-05640-4
    14 sg:pub.10.1038/s41567-019-0698-y
    15 sg:pub.10.1038/s41567-020-01148-1
    16 sg:pub.10.1038/s41567-020-0936-3
    17 sg:pub.10.1038/s41578-018-0024-9
    18 sg:pub.10.1038/s41586-018-0809-4
    19 sg:pub.10.1038/s41598-017-00704-9
    20 sg:pub.10.1038/s42005-020-00447-6
    21 sg:pub.10.1038/s42254-020-0170-z
    22 schema:datePublished 2022-05-10
    23 schema:datePublishedReg 2022-05-10
    24 schema:description Ultrafast light-matter interactions present a promising route to control ferroelectric polarization at room temperature, which is an exciting idea for designing novel ferroelectric-based devices. One emergent light-induced technique for controlling polarization consists in anharmonically driving a high-frequency phonon mode through its coupling to the polarization. A step towards such control has been recently accomplished, but the polarization has been reported to be only partially reversed and for a short lapse of time. Such transient partial reversal is not currently understood, and it is presently unclear if full control of polarization, by, e.g., fully reversing it or even making it adopt different directions (thus inducing structural phase transitions), can be achieved by activating the high-frequency phonon mode via terahertz pulse stimuli. Here, by means of realistic simulations of a prototypical ferroelectric, we reveal and explain (1) why a transient partial reversal has been observed, and (2) how to deterministically control the ferroelectric polarization thanks to these stimuli. Such results can provide guidance for realizing original ultrafast optoferroic devices.
    25 schema:genre article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N0c91465190ca4648b6e2eaf366e8d162
    29 Nadd77680b0104d8b90ff7def1706ad34
    30 sg:journal.1043282
    31 schema:keywords Such results
    32 control
    33 coupling
    34 deterministic control
    35 devices
    36 different directions
    37 direction
    38 exciting ideas
    39 ferroelectric polarization
    40 ferroelectrics
    41 full control
    42 guidance
    43 high-frequency phonon modes
    44 idea
    45 interaction
    46 lapse
    47 laser pulses
    48 light-matter interaction
    49 means
    50 mode
    51 partial reversal
    52 phonon modes
    53 polarization
    54 promising route
    55 prototypical ferroelectrics
    56 pulse stimuli
    57 pulses
    58 realistic simulation
    59 results
    60 reversal
    61 room temperature
    62 route
    63 short lapse
    64 simulations
    65 step
    66 stimuli
    67 such control
    68 technique
    69 temperature
    70 thanks
    71 time
    72 ultrafast laser pulses
    73 ultrafast light–matter interaction
    74 schema:name Deterministic control of ferroelectric polarization by ultrafast laser pulses
    75 schema:pagination 2566
    76 schema:productId N072b79e680614031ae61dc6274bac11f
    77 N11f4b95d42084c158e1a532cbe3d6d96
    78 N3dff60454da5409a8ed2bca3cc21460c
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147764092
    80 https://doi.org/10.1038/s41467-022-30324-5
    81 schema:sdDatePublished 2022-06-01T22:23
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Nd5a3597cdb0f40bba666beaea4535cd3
    84 schema:url https://doi.org/10.1038/s41467-022-30324-5
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N072b79e680614031ae61dc6274bac11f schema:name dimensions_id
    89 schema:value pub.1147764092
    90 rdf:type schema:PropertyValue
    91 N0c91465190ca4648b6e2eaf366e8d162 schema:issueNumber 1
    92 rdf:type schema:PublicationIssue
    93 N11f4b95d42084c158e1a532cbe3d6d96 schema:name doi
    94 schema:value 10.1038/s41467-022-30324-5
    95 rdf:type schema:PropertyValue
    96 N3dff60454da5409a8ed2bca3cc21460c schema:name pubmed_id
    97 schema:value 35538101
    98 rdf:type schema:PropertyValue
    99 N73c917c7d3004611b51c76a5b48b5041 rdf:first sg:person.07577130275.08
    100 rdf:rest N7f013828286144328c388e54d5ad32d9
    101 N74876e84b6764cc5ae615d10ee41bf33 rdf:first sg:person.014102223761.89
    102 rdf:rest Na2f4322606cc436dbab0934b130b7f8d
    103 N7f013828286144328c388e54d5ad32d9 rdf:first sg:person.016031421661.25
    104 rdf:rest Nf85d87d729d64578b7a254e1443e62ba
    105 Na2f4322606cc436dbab0934b130b7f8d rdf:first sg:person.01260054754.81
    106 rdf:rest rdf:nil
    107 Nadd77680b0104d8b90ff7def1706ad34 schema:volumeNumber 13
    108 rdf:type schema:PublicationVolume
    109 Nd5a3597cdb0f40bba666beaea4535cd3 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Nf85d87d729d64578b7a254e1443e62ba rdf:first sg:person.0722340771.97
    112 rdf:rest N74876e84b6764cc5ae615d10ee41bf33
    113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Physical Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Optical Physics
    118 rdf:type schema:DefinedTerm
    119 sg:journal.1043282 schema:issn 2041-1723
    120 schema:name Nature Communications
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.01260054754.81 schema:affiliation grid-institutes:grid.411017.2
    124 schema:familyName Bellaiche
    125 schema:givenName Laurent
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260054754.81
    127 rdf:type schema:Person
    128 sg:person.014102223761.89 schema:affiliation grid-institutes:grid.16008.3f
    129 schema:familyName Íñiguez
    130 schema:givenName Jorge
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102223761.89
    132 rdf:type schema:Person
    133 sg:person.016031421661.25 schema:affiliation grid-institutes:grid.494567.d
    134 schema:familyName Paillard
    135 schema:givenName Charles
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031421661.25
    137 rdf:type schema:Person
    138 sg:person.0722340771.97 schema:affiliation grid-institutes:grid.64924.3d
    139 schema:familyName Zhao
    140 schema:givenName Hong Jian
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722340771.97
    142 rdf:type schema:Person
    143 sg:person.07577130275.08 schema:affiliation grid-institutes:grid.411017.2
    144 schema:familyName Chen
    145 schema:givenName Peng
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07577130275.08
    147 rdf:type schema:Person
    148 sg:pub.10.1038/nature06119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052480746
    149 https://doi.org/10.1038/nature06119
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/nature16522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023275235
    152 https://doi.org/10.1038/nature16522
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/ncomms15682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085714390
    155 https://doi.org/10.1038/ncomms15682
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/ncomms2990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011385711
    158 https://doi.org/10.1038/ncomms2990
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nmat4341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686050
    161 https://doi.org/10.1038/nmat4341
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/nphoton.2016.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003777870
    164 https://doi.org/10.1038/nphoton.2016.146
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nphys2055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041208843
    167 https://doi.org/10.1038/nphys2055
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nphys4024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074247077
    170 https://doi.org/10.1038/nphys4024
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/s41467-017-02088-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1100092794
    173 https://doi.org/10.1038/s41467-017-02088-w
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/s41467-018-05640-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106173711
    176 https://doi.org/10.1038/s41467-018-05640-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/s41567-019-0698-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1122298943
    179 https://doi.org/10.1038/s41567-019-0698-y
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/s41567-020-01148-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135100650
    182 https://doi.org/10.1038/s41567-020-01148-1
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/s41567-020-0936-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128662490
    185 https://doi.org/10.1038/s41567-020-0936-3
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/s41578-018-0024-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104326438
    188 https://doi.org/10.1038/s41578-018-0024-9
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/s41586-018-0809-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110837771
    191 https://doi.org/10.1038/s41586-018-0809-4
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/s41598-017-00704-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130814
    194 https://doi.org/10.1038/s41598-017-00704-9
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/s42005-020-00447-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131873716
    197 https://doi.org/10.1038/s42005-020-00447-6
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/s42254-020-0170-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1127346740
    200 https://doi.org/10.1038/s42254-020-0170-z
    201 rdf:type schema:CreativeWork
    202 grid-institutes:grid.16008.3f schema:alternateName Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
    203 schema:name Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
    204 Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362, Esch/Alzette, Luxembourg
    205 rdf:type schema:Organization
    206 grid-institutes:grid.411017.2 schema:alternateName Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, 72701, Fayetteville, AR, USA
    207 schema:name Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, 72701, Fayetteville, AR, USA
    208 rdf:type schema:Organization
    209 grid-institutes:grid.494567.d schema:alternateName Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190, Gif-sur-Yvette, France
    210 schema:name Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190, Gif-sur-Yvette, France
    211 rdf:type schema:Organization
    212 grid-institutes:grid.64924.3d schema:alternateName International Center for Computational Method and Software (ICCMS) and Key Laboratory of Physics and Technology for Advanced Batteries, Jilin University, 2699, Qianjin Street, 130012, Changchun, China
    213 schema:name International Center for Computational Method and Software (ICCMS) and Key Laboratory of Physics and Technology for Advanced Batteries, Jilin University, 2699, Qianjin Street, 130012, Changchun, China
    214 Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, 72701, Fayetteville, AR, USA
    215 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...