Observationally constrained projection of Afro-Asian monsoon precipitation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-10

AUTHORS

Ziming Chen, Tianjun Zhou, Xiaolong Chen, Wenxia Zhang, Lixia Zhang, Mingna Wu, Liwei Zou

ABSTRACT

The Afro-Asian summer monsoon (AfroASM) sustains billions of people living in many developing countries covering West Africa and Asia, vulnerable to climate change. Future increase in AfroASM precipitation has been projected by current state-of-the-art climate models, but large inter-model spread exists. Here we show that the projection spread is related to present-day interhemispheric thermal contrast (ITC). Based on 30 models from the Coupled Model Intercomparison Project Phase 6, we find models with a larger ITC trend during 1981–2014 tend to project a greater precipitation increase. Since most models overestimate present-day ITC trends, emergent constraint indicates precipitation increase in constrained projection is reduced to 70% of the raw projection, with the largest reduction in West Africa (49%). The land area experiencing significant increases of precipitation (runoff) is 57% (66%) of the raw projection. Smaller increases of precipitation will likely reduce flooding risk, while posing a challenge to future water resources management. More... »

PAGES

2552

References to SciGraph publications

  • 2015-01-21. Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall in NATURE COMMUNICATIONS
  • 2020-02. Development of Climate and Earth System Models in China: Past Achievements and New CMIP6 Results in JOURNAL OF METEOROLOGICAL RESEARCH
  • 2020-08. Climate Sensitivity and Feedbacks of BCC-CSM to Idealized CO2 Forcing from CMIP5 to CMIP6 in JOURNAL OF METEOROLOGICAL RESEARCH
  • 2016-02-01. Spatio-temporal distribution of flood disasters and analysis of influencing factors in Africa in NATURAL HAZARDS
  • 2013-06-19. A common mode of variability of African and Indian monsoon rainfall at decadal timescale in CLIMATE DYNAMICS
  • 2019-12-10. Reducing Uncertainties in Climate Projections with Emergent Constraints: Concepts, Examples and Prospects in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2018-08-15. Marine heatwaves under global warming in NATURE
  • 2015-09-07. Towards predictive understanding of regional climate change in NATURE CLIMATE CHANGE
  • 2013-11-17. Robust spatially aggregated projections of climate extremes in NATURE CLIMATE CHANGE
  • 2017-06-08. Interdecadal variability of the Afro-Asian summer monsoon system in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2020-11-23. Future changes in monsoon duration and precipitation using CMIP6 in NPJ CLIMATE AND ATMOSPHERIC SCIENCE
  • 2018-01-09. Structural absorption by barbule microstructures of super black bird of paradise feathers in NATURE COMMUNICATIONS
  • 2020-01-29. Emissions – the ‘business as usual’ story is misleading in NATURE
  • 2019-06-25. Theories for Past and Future Monsoon Rainfall Changes in CURRENT CLIMATE CHANGE REPORTS
  • 2002-09-12. Constraints on future changes in climate and the hydrologic cycle in NATURE
  • 2020-01-18. Consistency of extreme temperature changes in China under a historical half-degree warming increment across different reanalysis and observational datasets in CLIMATE DYNAMICS
  • 2021-01-11. Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets in NATURE CLIMATE CHANGE
  • 2011-12-25. Recent change of the global monsoon precipitation (1979–2008) in CLIMATE DYNAMICS
  • 2017-09-18. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall in NATURE CLIMATE CHANGE
  • 2019-10-07. Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming in NATURE GEOSCIENCE
  • 2013-03-20. GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2014-02-23. A global perspective on CMIP5 climate model biases in NATURE CLIMATE CHANGE
  • 2015-10-26. Emergent Constraints for Cloud Feedbacks in CURRENT CLIMATE CHANGE REPORTS
  • 2018-01-18. Emergent constraint on equilibrium climate sensitivity from global temperature variability in NATURE
  • 2014-01-08. Pattern scaling: Its strengths and limitations, and an update on the latest model simulations in CLIMATIC CHANGE
  • 2020-06-04. Emergent constraints on future projections of the western North Pacific Subtropical High in NATURE COMMUNICATIONS
  • 2012-12-04. Challenges and Opportunities in Water Cycle Research: WCRP Contributions in SURVEYS IN GEOPHYSICS
  • 2019-07-22. Decadal global temperature variability increases strongly with climate sensitivity in NATURE CLIMATE CHANGE
  • 2015-04-29. Anthropogenic footprint of climate change in the June 2013 northern India flood in CLIMATE DYNAMICS
  • 2019-03-18. Progressing emergent constraints on future climate change in NATURE CLIMATE CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z

    DOI

    http://dx.doi.org/10.1038/s41467-022-30106-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147762099

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35538080


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Climate Change", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cyclonic Storms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Floods", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Forecasting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Water", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
                "University of Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Ziming", 
            "id": "sg:person.013354620715.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013354620715.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.511503.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
                "University of Chinese Academy of Sciences, 100049, Beijing, China", 
                "CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Tianjun", 
            "id": "sg:person.011071224271.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071224271.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.511503.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
                "CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xiaolong", 
            "id": "sg:person.01253576673.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253576673.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Wenxia", 
            "id": "sg:person.015413404751.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015413404751.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.511503.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
                "CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Lixia", 
            "id": "sg:person.016472040035.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472040035.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
                "University of Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Mingna", 
            "id": "sg:person.013733406443.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733406443.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zou", 
            "givenName": "Liwei", 
            "id": "sg:person.016443672405.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016443672405.66"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41467-020-16631-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128189560", 
              "https://doi.org/10.1038/s41467-020-16631-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-019-00137-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117483924", 
              "https://doi.org/10.1007/s40641-019-00137-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-016-2181-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035327106", 
              "https://doi.org/10.1007/s11069-016-2181-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1266-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004852628", 
              "https://doi.org/10.1007/s00382-011-1266-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41558-019-0436-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112855003", 
              "https://doi.org/10.1038/s41558-019-0436-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-015-0027-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025182217", 
              "https://doi.org/10.1007/s40641-015-0027-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100426955", 
              "https://doi.org/10.1038/nature25450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-1032-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023842732", 
              "https://doi.org/10.1007/s10584-013-1032-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007897400", 
              "https://doi.org/10.1038/nclimate2118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091828818", 
              "https://doi.org/10.1038/nclimate3387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052254111", 
              "https://doi.org/10.1038/ncomms6985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41612-020-00151-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132839733", 
              "https://doi.org/10.1038/s41612-020-00151-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030655148", 
              "https://doi.org/10.1038/nclimate2689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02088-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100092794", 
              "https://doi.org/10.1038/s41467-017-02088-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13351-020-9164-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125453009", 
              "https://doi.org/10.1007/s13351-020-9164-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10712-012-9214-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003904318", 
              "https://doi.org/10.1007/s10712-012-9214-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-019-9140-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123269436", 
              "https://doi.org/10.1007/s00376-019-9140-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-017-6247-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085886231", 
              "https://doi.org/10.1007/s00376-017-6247-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41558-019-0527-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1118149568", 
              "https://doi.org/10.1038/s41558-019-0527-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/d41586-020-00177-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124372901", 
              "https://doi.org/10.1038/d41586-020-00177-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-013-0860-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029404551", 
              "https://doi.org/10.1007/s00704-013-0860-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2613-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048244328", 
              "https://doi.org/10.1007/s00382-015-2613-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13351-020-9204-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130543907", 
              "https://doi.org/10.1007/s13351-020-9204-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1827-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012923746", 
              "https://doi.org/10.1007/s00382-013-1827-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007909771", 
              "https://doi.org/10.1038/nclimate2051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41561-019-0463-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121552243", 
              "https://doi.org/10.1038/s41561-019-0463-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0383-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106088129", 
              "https://doi.org/10.1038/s41586-018-0383-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41558-020-00974-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134472501", 
              "https://doi.org/10.1038/s41558-020-00974-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046916950", 
              "https://doi.org/10.1038/nature01092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-020-05128-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124177139", 
              "https://doi.org/10.1007/s00382-020-05128-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-05-10", 
        "datePublishedReg": "2022-05-10", 
        "description": "The Afro-Asian summer monsoon (AfroASM) sustains billions of people living in many developing countries covering West Africa and Asia, vulnerable to climate change. Future increase in AfroASM precipitation has been projected by current state-of-the-art climate models, but large inter-model spread exists. Here we show that the projection spread is related to present-day interhemispheric thermal contrast (ITC). Based on 30 models from the Coupled Model Intercomparison Project Phase 6, we find models with a larger ITC trend during 1981\u20132014 tend to project a greater precipitation increase. Since most models overestimate present-day ITC trends, emergent constraint indicates precipitation increase in constrained projection is reduced to 70% of the raw projection, with the largest reduction in West Africa (49%). The land area experiencing significant increases of precipitation (runoff) is 57% (66%) of the raw projection. Smaller increases of precipitation will likely reduce flooding risk, while posing a challenge to future water resources management.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-022-30106-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "precipitation increases", 
          "Coupled Model Intercomparison Project Phase 6", 
          "Model Intercomparison Project Phase 6", 
          "large inter-model spread", 
          "future water resource management", 
          "art climate models", 
          "inter-model spread", 
          "water resources management", 
          "West Africa", 
          "raw projections", 
          "monsoon precipitation", 
          "summer monsoon", 
          "climate models", 
          "emergent constraints", 
          "Phase 6", 
          "thermal contrast", 
          "climate change", 
          "future increases", 
          "precipitation", 
          "land area", 
          "most models", 
          "resource management", 
          "billions of people", 
          "projections", 
          "monsoon", 
          "Africa", 
          "trends", 
          "large reduction", 
          "Asia", 
          "model", 
          "area", 
          "small increase", 
          "increase", 
          "changes", 
          "constraints", 
          "billions", 
          "spread", 
          "contrast", 
          "current state", 
          "significant increase", 
          "state", 
          "reduction", 
          "management", 
          "countries", 
          "challenges", 
          "risk", 
          "people"
        ], 
        "name": "Observationally constrained projection of Afro-Asian monsoon precipitation", 
        "pagination": "2552", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147762099"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-022-30106-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35538080"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-022-30106-z", 
          "https://app.dimensions.ai/details/publication/pub.1147762099"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_928.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-022-30106-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    303 TRIPLES      22 PREDICATES      109 URIs      71 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-022-30106-z schema:about N0bfecedcbd4f453d9e948f27f83130b3
    2 N29bcb9e39b46474cbfcde9441c99a7e8
    3 N3afd9c8935034e198d69e0b24ea45fe2
    4 N4093f8b3efd64b2ab38a6a45b24d4759
    5 N58f270751d7e4266995dedb5b71281c0
    6 Nb6dbe0df785f43749751b32e216de998
    7 anzsrc-for:04
    8 anzsrc-for:0401
    9 schema:author N1f3cabc907054d389fa760cf5dbbbcc0
    10 schema:citation sg:pub.10.1007/s00376-017-6247-7
    11 sg:pub.10.1007/s00376-019-9140-8
    12 sg:pub.10.1007/s00382-011-1266-z
    13 sg:pub.10.1007/s00382-013-1827-4
    14 sg:pub.10.1007/s00382-015-2613-2
    15 sg:pub.10.1007/s00382-020-05128-2
    16 sg:pub.10.1007/s00704-013-0860-x
    17 sg:pub.10.1007/s10584-013-1032-9
    18 sg:pub.10.1007/s10712-012-9214-y
    19 sg:pub.10.1007/s11069-016-2181-8
    20 sg:pub.10.1007/s13351-020-9164-0
    21 sg:pub.10.1007/s13351-020-9204-9
    22 sg:pub.10.1007/s40641-015-0027-1
    23 sg:pub.10.1007/s40641-019-00137-8
    24 sg:pub.10.1038/d41586-020-00177-3
    25 sg:pub.10.1038/nature01092
    26 sg:pub.10.1038/nature25450
    27 sg:pub.10.1038/nclimate2051
    28 sg:pub.10.1038/nclimate2118
    29 sg:pub.10.1038/nclimate2689
    30 sg:pub.10.1038/nclimate3387
    31 sg:pub.10.1038/ncomms6985
    32 sg:pub.10.1038/s41467-017-02088-w
    33 sg:pub.10.1038/s41467-020-16631-9
    34 sg:pub.10.1038/s41558-019-0436-6
    35 sg:pub.10.1038/s41558-019-0527-4
    36 sg:pub.10.1038/s41558-020-00974-8
    37 sg:pub.10.1038/s41561-019-0463-y
    38 sg:pub.10.1038/s41586-018-0383-9
    39 sg:pub.10.1038/s41612-020-00151-w
    40 schema:datePublished 2022-05-10
    41 schema:datePublishedReg 2022-05-10
    42 schema:description The Afro-Asian summer monsoon (AfroASM) sustains billions of people living in many developing countries covering West Africa and Asia, vulnerable to climate change. Future increase in AfroASM precipitation has been projected by current state-of-the-art climate models, but large inter-model spread exists. Here we show that the projection spread is related to present-day interhemispheric thermal contrast (ITC). Based on 30 models from the Coupled Model Intercomparison Project Phase 6, we find models with a larger ITC trend during 1981–2014 tend to project a greater precipitation increase. Since most models overestimate present-day ITC trends, emergent constraint indicates precipitation increase in constrained projection is reduced to 70% of the raw projection, with the largest reduction in West Africa (49%). The land area experiencing significant increases of precipitation (runoff) is 57% (66%) of the raw projection. Smaller increases of precipitation will likely reduce flooding risk, while posing a challenge to future water resources management.
    43 schema:genre article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N2590b7b5d4524230b5e101cd7bdb63c4
    47 N4544db92142449bdafdb539f47fc168f
    48 sg:journal.1043282
    49 schema:keywords Africa
    50 Asia
    51 Coupled Model Intercomparison Project Phase 6
    52 Model Intercomparison Project Phase 6
    53 Phase 6
    54 West Africa
    55 area
    56 art climate models
    57 billions
    58 billions of people
    59 challenges
    60 changes
    61 climate change
    62 climate models
    63 constraints
    64 contrast
    65 countries
    66 current state
    67 emergent constraints
    68 future increases
    69 future water resource management
    70 increase
    71 inter-model spread
    72 land area
    73 large inter-model spread
    74 large reduction
    75 management
    76 model
    77 monsoon
    78 monsoon precipitation
    79 most models
    80 people
    81 precipitation
    82 precipitation increases
    83 projections
    84 raw projections
    85 reduction
    86 resource management
    87 risk
    88 significant increase
    89 small increase
    90 spread
    91 state
    92 summer monsoon
    93 thermal contrast
    94 trends
    95 water resources management
    96 schema:name Observationally constrained projection of Afro-Asian monsoon precipitation
    97 schema:pagination 2552
    98 schema:productId N6147a1a275734bf4af54807b32ed16fe
    99 N99b3f22790a54cc59185365e2d186750
    100 Na57e4d92243347a5b37214f0ba108c54
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147762099
    102 https://doi.org/10.1038/s41467-022-30106-z
    103 schema:sdDatePublished 2022-06-01T22:25
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher N8e479cb0253b40b4ad429d76ded670aa
    106 schema:url https://doi.org/10.1038/s41467-022-30106-z
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N0bfecedcbd4f453d9e948f27f83130b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Floods
    112 rdf:type schema:DefinedTerm
    113 N1f3cabc907054d389fa760cf5dbbbcc0 rdf:first sg:person.013354620715.06
    114 rdf:rest N9bad8f7e43cb46e586f590d653515237
    115 N2590b7b5d4524230b5e101cd7bdb63c4 schema:volumeNumber 13
    116 rdf:type schema:PublicationVolume
    117 N29bcb9e39b46474cbfcde9441c99a7e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Climate Change
    119 rdf:type schema:DefinedTerm
    120 N3afd9c8935034e198d69e0b24ea45fe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Water
    122 rdf:type schema:DefinedTerm
    123 N4093f8b3efd64b2ab38a6a45b24d4759 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Cyclonic Storms
    125 rdf:type schema:DefinedTerm
    126 N4544db92142449bdafdb539f47fc168f schema:issueNumber 1
    127 rdf:type schema:PublicationIssue
    128 N539e22871850424fa73d8c0a44907ffe rdf:first sg:person.013733406443.88
    129 rdf:rest Nb9d838a14d2c43c8a1d84542261f62dd
    130 N58f270751d7e4266995dedb5b71281c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Humans
    132 rdf:type schema:DefinedTerm
    133 N6147a1a275734bf4af54807b32ed16fe schema:name pubmed_id
    134 schema:value 35538080
    135 rdf:type schema:PropertyValue
    136 N6773ae0820b84a1ebed8cb56ec9d7aac rdf:first sg:person.015413404751.54
    137 rdf:rest N9d86360f101e406c95846b83271c0d8d
    138 N8e479cb0253b40b4ad429d76ded670aa schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 N99b3f22790a54cc59185365e2d186750 schema:name dimensions_id
    141 schema:value pub.1147762099
    142 rdf:type schema:PropertyValue
    143 N9bad8f7e43cb46e586f590d653515237 rdf:first sg:person.011071224271.00
    144 rdf:rest N9c3c02f97c644caf8ac911affed485d8
    145 N9c3c02f97c644caf8ac911affed485d8 rdf:first sg:person.01253576673.76
    146 rdf:rest N6773ae0820b84a1ebed8cb56ec9d7aac
    147 N9d86360f101e406c95846b83271c0d8d rdf:first sg:person.016472040035.53
    148 rdf:rest N539e22871850424fa73d8c0a44907ffe
    149 Na57e4d92243347a5b37214f0ba108c54 schema:name doi
    150 schema:value 10.1038/s41467-022-30106-z
    151 rdf:type schema:PropertyValue
    152 Nb6dbe0df785f43749751b32e216de998 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Forecasting
    154 rdf:type schema:DefinedTerm
    155 Nb9d838a14d2c43c8a1d84542261f62dd rdf:first sg:person.016443672405.66
    156 rdf:rest rdf:nil
    157 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Earth Sciences
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Atmospheric Sciences
    162 rdf:type schema:DefinedTerm
    163 sg:journal.1043282 schema:issn 2041-1723
    164 schema:name Nature Communications
    165 schema:publisher Springer Nature
    166 rdf:type schema:Periodical
    167 sg:person.011071224271.00 schema:affiliation grid-institutes:grid.511503.3
    168 schema:familyName Zhou
    169 schema:givenName Tianjun
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071224271.00
    171 rdf:type schema:Person
    172 sg:person.01253576673.76 schema:affiliation grid-institutes:grid.511503.3
    173 schema:familyName Chen
    174 schema:givenName Xiaolong
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253576673.76
    176 rdf:type schema:Person
    177 sg:person.013354620715.06 schema:affiliation grid-institutes:grid.410726.6
    178 schema:familyName Chen
    179 schema:givenName Ziming
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013354620715.06
    181 rdf:type schema:Person
    182 sg:person.013733406443.88 schema:affiliation grid-institutes:grid.410726.6
    183 schema:familyName Wu
    184 schema:givenName Mingna
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733406443.88
    186 rdf:type schema:Person
    187 sg:person.015413404751.54 schema:affiliation grid-institutes:grid.424023.3
    188 schema:familyName Zhang
    189 schema:givenName Wenxia
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015413404751.54
    191 rdf:type schema:Person
    192 sg:person.016443672405.66 schema:affiliation grid-institutes:grid.424023.3
    193 schema:familyName Zou
    194 schema:givenName Liwei
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016443672405.66
    196 rdf:type schema:Person
    197 sg:person.016472040035.53 schema:affiliation grid-institutes:grid.511503.3
    198 schema:familyName Zhang
    199 schema:givenName Lixia
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472040035.53
    201 rdf:type schema:Person
    202 sg:pub.10.1007/s00376-017-6247-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886231
    203 https://doi.org/10.1007/s00376-017-6247-7
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00376-019-9140-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123269436
    206 https://doi.org/10.1007/s00376-019-9140-8
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00382-011-1266-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004852628
    209 https://doi.org/10.1007/s00382-011-1266-z
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00382-013-1827-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012923746
    212 https://doi.org/10.1007/s00382-013-1827-4
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00382-015-2613-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048244328
    215 https://doi.org/10.1007/s00382-015-2613-2
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00382-020-05128-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124177139
    218 https://doi.org/10.1007/s00382-020-05128-2
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00704-013-0860-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029404551
    221 https://doi.org/10.1007/s00704-013-0860-x
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s10584-013-1032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023842732
    224 https://doi.org/10.1007/s10584-013-1032-9
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s10712-012-9214-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1003904318
    227 https://doi.org/10.1007/s10712-012-9214-y
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s11069-016-2181-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035327106
    230 https://doi.org/10.1007/s11069-016-2181-8
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s13351-020-9164-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125453009
    233 https://doi.org/10.1007/s13351-020-9164-0
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s13351-020-9204-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130543907
    236 https://doi.org/10.1007/s13351-020-9204-9
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s40641-015-0027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025182217
    239 https://doi.org/10.1007/s40641-015-0027-1
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s40641-019-00137-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117483924
    242 https://doi.org/10.1007/s40641-019-00137-8
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/d41586-020-00177-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124372901
    245 https://doi.org/10.1038/d41586-020-00177-3
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
    248 https://doi.org/10.1038/nature01092
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nature25450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100426955
    251 https://doi.org/10.1038/nature25450
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nclimate2051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007909771
    254 https://doi.org/10.1038/nclimate2051
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nclimate2118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007897400
    257 https://doi.org/10.1038/nclimate2118
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nclimate2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030655148
    260 https://doi.org/10.1038/nclimate2689
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nclimate3387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091828818
    263 https://doi.org/10.1038/nclimate3387
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/ncomms6985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052254111
    266 https://doi.org/10.1038/ncomms6985
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/s41467-017-02088-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1100092794
    269 https://doi.org/10.1038/s41467-017-02088-w
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/s41467-020-16631-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128189560
    272 https://doi.org/10.1038/s41467-020-16631-9
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/s41558-019-0436-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112855003
    275 https://doi.org/10.1038/s41558-019-0436-6
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/s41558-019-0527-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118149568
    278 https://doi.org/10.1038/s41558-019-0527-4
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/s41558-020-00974-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134472501
    281 https://doi.org/10.1038/s41558-020-00974-8
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/s41561-019-0463-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1121552243
    284 https://doi.org/10.1038/s41561-019-0463-y
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/s41586-018-0383-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106088129
    287 https://doi.org/10.1038/s41586-018-0383-9
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/s41612-020-00151-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1132839733
    290 https://doi.org/10.1038/s41612-020-00151-w
    291 rdf:type schema:CreativeWork
    292 grid-institutes:grid.410726.6 schema:alternateName University of Chinese Academy of Sciences, 100049, Beijing, China
    293 schema:name State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
    294 University of Chinese Academy of Sciences, 100049, Beijing, China
    295 rdf:type schema:Organization
    296 grid-institutes:grid.424023.3 schema:alternateName State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
    297 schema:name State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
    298 rdf:type schema:Organization
    299 grid-institutes:grid.511503.3 schema:alternateName CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
    300 schema:name CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
    301 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
    302 University of Chinese Academy of Sciences, 100049, Beijing, China
    303 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...