Ontology type: schema:ScholarlyArticle Open Access: True
2022-05-10
AUTHORSZiming Chen, Tianjun Zhou, Xiaolong Chen, Wenxia Zhang, Lixia Zhang, Mingna Wu, Liwei Zou
ABSTRACTThe Afro-Asian summer monsoon (AfroASM) sustains billions of people living in many developing countries covering West Africa and Asia, vulnerable to climate change. Future increase in AfroASM precipitation has been projected by current state-of-the-art climate models, but large inter-model spread exists. Here we show that the projection spread is related to present-day interhemispheric thermal contrast (ITC). Based on 30 models from the Coupled Model Intercomparison Project Phase 6, we find models with a larger ITC trend during 1981–2014 tend to project a greater precipitation increase. Since most models overestimate present-day ITC trends, emergent constraint indicates precipitation increase in constrained projection is reduced to 70% of the raw projection, with the largest reduction in West Africa (49%). The land area experiencing significant increases of precipitation (runoff) is 57% (66%) of the raw projection. Smaller increases of precipitation will likely reduce flooding risk, while posing a challenge to future water resources management. More... »
PAGES2552
http://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z
DOIhttp://dx.doi.org/10.1038/s41467-022-30106-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147762099
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/35538080
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Climate Change",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cyclonic Storms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Floods",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Forecasting",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Water",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China",
"id": "http://www.grid.ac/institutes/grid.410726.6",
"name": [
"State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China",
"University of Chinese Academy of Sciences, 100049, Beijing, China"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Ziming",
"id": "sg:person.013354620715.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013354620715.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China",
"id": "http://www.grid.ac/institutes/grid.511503.3",
"name": [
"State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China",
"University of Chinese Academy of Sciences, 100049, Beijing, China",
"CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China"
],
"type": "Organization"
},
"familyName": "Zhou",
"givenName": "Tianjun",
"id": "sg:person.011071224271.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071224271.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China",
"id": "http://www.grid.ac/institutes/grid.511503.3",
"name": [
"State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China",
"CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Xiaolong",
"id": "sg:person.01253576673.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253576673.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China",
"id": "http://www.grid.ac/institutes/grid.424023.3",
"name": [
"State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Wenxia",
"id": "sg:person.015413404751.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015413404751.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China",
"id": "http://www.grid.ac/institutes/grid.511503.3",
"name": [
"State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China",
"CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Lixia",
"id": "sg:person.016472040035.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472040035.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China",
"id": "http://www.grid.ac/institutes/grid.410726.6",
"name": [
"State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China",
"University of Chinese Academy of Sciences, 100049, Beijing, China"
],
"type": "Organization"
},
"familyName": "Wu",
"givenName": "Mingna",
"id": "sg:person.013733406443.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733406443.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China",
"id": "http://www.grid.ac/institutes/grid.424023.3",
"name": [
"State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
],
"type": "Organization"
},
"familyName": "Zou",
"givenName": "Liwei",
"id": "sg:person.016443672405.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016443672405.66"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/s41467-020-16631-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128189560",
"https://doi.org/10.1038/s41467-020-16631-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40641-019-00137-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1117483924",
"https://doi.org/10.1007/s40641-019-00137-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11069-016-2181-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035327106",
"https://doi.org/10.1007/s11069-016-2181-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-011-1266-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004852628",
"https://doi.org/10.1007/s00382-011-1266-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41558-019-0436-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112855003",
"https://doi.org/10.1038/s41558-019-0436-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40641-015-0027-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025182217",
"https://doi.org/10.1007/s40641-015-0027-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature25450",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100426955",
"https://doi.org/10.1038/nature25450"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-013-1032-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023842732",
"https://doi.org/10.1007/s10584-013-1032-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nclimate2118",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007897400",
"https://doi.org/10.1038/nclimate2118"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nclimate3387",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091828818",
"https://doi.org/10.1038/nclimate3387"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms6985",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052254111",
"https://doi.org/10.1038/ncomms6985"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41612-020-00151-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1132839733",
"https://doi.org/10.1038/s41612-020-00151-w"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nclimate2689",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030655148",
"https://doi.org/10.1038/nclimate2689"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-017-02088-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100092794",
"https://doi.org/10.1038/s41467-017-02088-w"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13351-020-9164-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1125453009",
"https://doi.org/10.1007/s13351-020-9164-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10712-012-9214-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003904318",
"https://doi.org/10.1007/s10712-012-9214-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00376-019-9140-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1123269436",
"https://doi.org/10.1007/s00376-019-9140-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00376-017-6247-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085886231",
"https://doi.org/10.1007/s00376-017-6247-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41558-019-0527-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1118149568",
"https://doi.org/10.1038/s41558-019-0527-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/d41586-020-00177-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1124372901",
"https://doi.org/10.1038/d41586-020-00177-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00704-013-0860-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029404551",
"https://doi.org/10.1007/s00704-013-0860-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-015-2613-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048244328",
"https://doi.org/10.1007/s00382-015-2613-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13351-020-9204-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1130543907",
"https://doi.org/10.1007/s13351-020-9204-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-013-1827-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012923746",
"https://doi.org/10.1007/s00382-013-1827-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nclimate2051",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007909771",
"https://doi.org/10.1038/nclimate2051"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41561-019-0463-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121552243",
"https://doi.org/10.1038/s41561-019-0463-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41586-018-0383-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106088129",
"https://doi.org/10.1038/s41586-018-0383-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41558-020-00974-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1134472501",
"https://doi.org/10.1038/s41558-020-00974-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature01092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046916950",
"https://doi.org/10.1038/nature01092"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-020-05128-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1124177139",
"https://doi.org/10.1007/s00382-020-05128-2"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-05-10",
"datePublishedReg": "2022-05-10",
"description": "The Afro-Asian summer monsoon (AfroASM) sustains billions of people living in many developing countries covering West Africa and Asia, vulnerable to climate change. Future increase in AfroASM precipitation has been projected by current state-of-the-art climate models, but large inter-model spread exists. Here we show that the projection spread is related to present-day interhemispheric thermal contrast (ITC). Based on 30 models from the Coupled Model Intercomparison Project Phase 6, we find models with a larger ITC trend during 1981\u20132014 tend to project a greater precipitation increase. Since most models overestimate present-day ITC trends, emergent constraint indicates precipitation increase in constrained projection is reduced to 70% of the raw projection, with the largest reduction in West Africa (49%). The land area experiencing significant increases of precipitation (runoff) is 57% (66%) of the raw projection. Smaller increases of precipitation will likely reduce flooding risk, while posing a challenge to future water resources management.",
"genre": "article",
"id": "sg:pub.10.1038/s41467-022-30106-z",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1043282",
"issn": [
"2041-1723"
],
"name": "Nature Communications",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "13"
}
],
"keywords": [
"precipitation increases",
"Coupled Model Intercomparison Project Phase 6",
"Model Intercomparison Project Phase 6",
"large inter-model spread",
"future water resource management",
"art climate models",
"inter-model spread",
"water resources management",
"West Africa",
"raw projections",
"monsoon precipitation",
"summer monsoon",
"climate models",
"emergent constraints",
"Phase 6",
"thermal contrast",
"climate change",
"future increases",
"precipitation",
"land area",
"most models",
"resource management",
"billions of people",
"projections",
"monsoon",
"Africa",
"trends",
"large reduction",
"Asia",
"model",
"area",
"small increase",
"increase",
"changes",
"constraints",
"billions",
"spread",
"contrast",
"current state",
"significant increase",
"state",
"reduction",
"management",
"countries",
"challenges",
"risk",
"people"
],
"name": "Observationally constrained projection of Afro-Asian monsoon precipitation",
"pagination": "2552",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147762099"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41467-022-30106-z"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"35538080"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41467-022-30106-z",
"https://app.dimensions.ai/details/publication/pub.1147762099"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_928.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41467-022-30106-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-022-30106-z'
This table displays all metadata directly associated to this object as RDF triples.
303 TRIPLES
22 PREDICATES
109 URIs
71 LITERALS
13 BLANK NODES