Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-02

AUTHORS

Feng Gao, Tianyi Shao, Yunpeng Yu, Yujie Xiong, Lihua Yang

ABSTRACT

Acting by producing reactive oxygen species (ROS) in situ, nanozymes are promising as antimicrobials. ROS’ intrinsic inability to distinguish bacteria from mammalian cells, however, deprives nanozymes of the selectivity necessary for an ideal antimicrobial. Here we report that nanozymes that generate surface-bound ROS selectively kill bacteria over mammalian cells. This result is robust across three distinct nanozymes that universally generate surface-bound ROS, with an oxidase-like silver-palladium bimetallic alloy nanocage, AgPd0.38, being the lead model. The selectivity is attributable to both the surface-bound nature of ROS these nanozymes generate and an unexpected antidote role of endocytosis. Though surface-bound, the ROS on AgPd0.38 efficiently eliminated antibiotic-resistant bacteria and effectively delayed the onset of bacterial resistance emergence. When used as coating additives, AgPd0.38 enabled an inert substrate to inhibit biofilm formation and suppress infection-related immune responses in mouse models. This work opens an avenue toward biocompatible nanozymes and may have implication in our fight against antimicrobial resistance. More... »

PAGES

745

References to SciGraph publications

  • 2007-08. Pathways of clathrin-independent endocytosis in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2010-03-25. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy in NATURE PROTOCOLS
  • 2006-07. Non-inherited antibiotic resistance in NATURE REVIEWS MICROBIOLOGY
  • 2008-05. A microbial symbiosis factor prevents intestinal inflammatory disease in NATURE
  • 2013-05-08. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms in NATURE
  • 2003-07. An EPR study of thermally and photochemically generated oxygen radicals on hydrated and dehydrated titania surfaces in RESEARCH ON CHEMICAL INTERMEDIATES
  • 2017-02-07. Phytoalexin Phenalenone Derivatives Inactivate Mosquito Larvae and Root-knot Nematode as Type-II Photosensitizer in SCIENTIFIC REPORTS
  • 2011-01-24. Contribution of platelets to tumour metastasis in NATURE REVIEWS CANCER
  • 2010-08-02. The biofilm matrix in NATURE REVIEWS MICROBIOLOGY
  • 2018-01-09. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria in NATURE COMMUNICATIONS
  • 2003-03. Regulated portals of entry into the cell in NATURE
  • 2018-08-20. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors in NATURE COMMUNICATIONS
  • 2017-12-04. Bacterial resistance to silver nanoparticles and how to overcome it in NATURE NANOTECHNOLOGY
  • 2005-12. Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems in BIOMEDICAL MICRODEVICES
  • 2010-04-25. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts in NATURE CHEMISTRY
  • 2012-05-23. Recover the lost art of drug discovery in NATURE
  • 2016-03-31. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation in NANO RESEARCH
  • 2012-07-01. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation in NATURE NANOTECHNOLOGY
  • 2013-04-30. Platforms for antibiotic discovery in NATURE REVIEWS DRUG DISCOVERY
  • 2016-08-11. Biofilms: an emergent form of bacterial life in NATURE REVIEWS MICROBIOLOGY
  • 2017-03-02. The drug-resistant bacteria that pose the greatest health threats in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-021-20965-3

    DOI

    http://dx.doi.org/10.1038/s41467-021-20965-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1135037952

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33531505


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anti-Bacterial Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anti-Infective Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biofilms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbial Sensitivity Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanoparticles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reactive Oxygen Species", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China", 
                "CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, China", 
                "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Feng", 
            "id": "sg:person.01274747505.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274747505.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China", 
                "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shao", 
            "givenName": "Tianyi", 
            "id": "sg:person.015052222023.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015052222023.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China", 
                "CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, China", 
                "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Yunpeng", 
            "id": "sg:person.010537472223.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537472223.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China", 
                "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Yujie", 
            "id": "sg:person.0600113217.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China", 
                "CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, China", 
                "School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Lihua", 
            "id": "sg:person.01343062705.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343062705.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrmicro.2016.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021095240", 
              "https://doi.org/10.1038/nrmicro.2016.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10544-005-6070-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010575775", 
              "https://doi.org/10.1007/s10544-005-6070-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006291616", 
              "https://doi.org/10.1038/nrmicro2415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-016-1053-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011220084", 
              "https://doi.org/10.1007/s12274-016-1053-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1163/156856703322148991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017596032", 
              "https://doi.org/10.1163/156856703322148991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd3975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038515300", 
              "https://doi.org/10.1038/nrd3975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/485439a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036284788", 
              "https://doi.org/10.1038/485439a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042246955", 
              "https://doi.org/10.1038/nature12155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041689033", 
              "https://doi.org/10.1038/nchem.623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013559694", 
              "https://doi.org/10.1038/nprot.2010.2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011907049", 
              "https://doi.org/10.1038/nrmicro1445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-017-0013-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093139694", 
              "https://doi.org/10.1038/s41565-017-0013-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008010563", 
              "https://doi.org/10.1038/nrm2216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027701618", 
              "https://doi.org/10.1038/nature01451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048900456", 
              "https://doi.org/10.1038/nrc3004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02502-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100179010", 
              "https://doi.org/10.1038/s41467-017-02502-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006761326", 
              "https://doi.org/10.1038/nature07008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature.2017.21550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128461", 
              "https://doi.org/10.1038/nature.2017.21550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015457179", 
              "https://doi.org/10.1038/nnano.2012.91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05798-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106160262", 
              "https://doi.org/10.1038/s41467-018-05798-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep42058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083688642", 
              "https://doi.org/10.1038/srep42058"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-02-02", 
        "datePublishedReg": "2021-02-02", 
        "description": "Acting by producing reactive oxygen species (ROS) in situ, nanozymes are promising as antimicrobials. ROS\u2019 intrinsic inability to distinguish bacteria from mammalian cells, however, deprives nanozymes of the selectivity necessary for an ideal antimicrobial. Here we report that nanozymes that generate surface-bound ROS selectively kill bacteria over mammalian cells. This result is robust across three distinct nanozymes that universally generate surface-bound ROS, with an oxidase-like silver-palladium bimetallic alloy nanocage, AgPd0.38, being the lead model. The selectivity is attributable to both the surface-bound nature of ROS these nanozymes generate and an unexpected antidote role of endocytosis. Though surface-bound, the ROS on AgPd0.38 efficiently eliminated antibiotic-resistant bacteria and effectively delayed the onset of bacterial resistance emergence. When used as coating additives, AgPd0.38 enabled an inert substrate to inhibit biofilm formation and suppress infection-related immune responses in mouse models. This work opens an avenue toward biocompatible nanozymes and may have implication in our fight against antimicrobial resistance.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-021-20965-3", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8158906", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8196558", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "surface-bound reactive oxygen species", 
          "coating additives", 
          "inert substrate", 
          "selective antibacterial action", 
          "nanozymes", 
          "additives", 
          "lead models", 
          "reactive oxygen species", 
          "ideal antimicrobial", 
          "substrate", 
          "biocompatible nanozymes", 
          "selectivity", 
          "model", 
          "oxygen species", 
          "situ", 
          "nanocages", 
          "antibacterial action", 
          "resistance", 
          "work", 
          "biofilm formation", 
          "results", 
          "formation", 
          "antibiotic-resistant bacteria", 
          "mammalian cells", 
          "antimicrobials", 
          "species", 
          "nature", 
          "bacteria", 
          "avenues", 
          "response", 
          "cells", 
          "intrinsic inability", 
          "immune response", 
          "mouse model", 
          "endocytosis", 
          "resistance emergence", 
          "antimicrobial resistance", 
          "onset", 
          "action", 
          "role", 
          "inability", 
          "emergence", 
          "implications", 
          "fight"
        ], 
        "name": "Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action", 
        "pagination": "745", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1135037952"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-021-20965-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33531505"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-021-20965-3", 
          "https://app.dimensions.ai/details/publication/pub.1135037952"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_907.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-021-20965-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-021-20965-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-021-20965-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-021-20965-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-021-20965-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    254 TRIPLES      21 PREDICATES      98 URIs      69 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-021-20965-3 schema:about N008fe4ffd6cc4609b846c9379d0e899e
    2 N0fc17e6604b14e118e1c2a3506d825bf
    3 N330669b36bb04d0ead15ad20f47b830e
    4 N5d272f7b7a504ddbb5ddcdc11797ecaf
    5 N7c37714b2ad9446f9b1ceaa0bd31af04
    6 N94cf11f68e1f4526ab09b9c983f8868f
    7 Nb32901858ea34101a1a5139a87fdb3c5
    8 Ndbc48f7d29ed400daa53cb9117fa5025
    9 anzsrc-for:06
    10 anzsrc-for:0605
    11 schema:author Ndab603eebc314af3ac92c09e11e946b6
    12 schema:citation sg:pub.10.1007/s10544-005-6070-2
    13 sg:pub.10.1007/s12274-016-1053-6
    14 sg:pub.10.1038/485439a
    15 sg:pub.10.1038/nature.2017.21550
    16 sg:pub.10.1038/nature01451
    17 sg:pub.10.1038/nature07008
    18 sg:pub.10.1038/nature12155
    19 sg:pub.10.1038/nchem.623
    20 sg:pub.10.1038/nnano.2012.91
    21 sg:pub.10.1038/nprot.2010.2
    22 sg:pub.10.1038/nrc3004
    23 sg:pub.10.1038/nrd3975
    24 sg:pub.10.1038/nrm2216
    25 sg:pub.10.1038/nrmicro.2016.94
    26 sg:pub.10.1038/nrmicro1445
    27 sg:pub.10.1038/nrmicro2415
    28 sg:pub.10.1038/s41467-017-02502-3
    29 sg:pub.10.1038/s41467-018-05798-x
    30 sg:pub.10.1038/s41565-017-0013-y
    31 sg:pub.10.1038/srep42058
    32 sg:pub.10.1163/156856703322148991
    33 schema:datePublished 2021-02-02
    34 schema:datePublishedReg 2021-02-02
    35 schema:description Acting by producing reactive oxygen species (ROS) in situ, nanozymes are promising as antimicrobials. ROS’ intrinsic inability to distinguish bacteria from mammalian cells, however, deprives nanozymes of the selectivity necessary for an ideal antimicrobial. Here we report that nanozymes that generate surface-bound ROS selectively kill bacteria over mammalian cells. This result is robust across three distinct nanozymes that universally generate surface-bound ROS, with an oxidase-like silver-palladium bimetallic alloy nanocage, AgPd0.38, being the lead model. The selectivity is attributable to both the surface-bound nature of ROS these nanozymes generate and an unexpected antidote role of endocytosis. Though surface-bound, the ROS on AgPd0.38 efficiently eliminated antibiotic-resistant bacteria and effectively delayed the onset of bacterial resistance emergence. When used as coating additives, AgPd0.38 enabled an inert substrate to inhibit biofilm formation and suppress infection-related immune responses in mouse models. This work opens an avenue toward biocompatible nanozymes and may have implication in our fight against antimicrobial resistance.
    36 schema:genre article
    37 schema:isAccessibleForFree true
    38 schema:isPartOf Nd1db6554465a42899afb21a1c3e0d872
    39 Nee699e69b32549239dc9251cd2d170dc
    40 sg:journal.1043282
    41 schema:keywords action
    42 additives
    43 antibacterial action
    44 antibiotic-resistant bacteria
    45 antimicrobial resistance
    46 antimicrobials
    47 avenues
    48 bacteria
    49 biocompatible nanozymes
    50 biofilm formation
    51 cells
    52 coating additives
    53 emergence
    54 endocytosis
    55 fight
    56 formation
    57 ideal antimicrobial
    58 immune response
    59 implications
    60 inability
    61 inert substrate
    62 intrinsic inability
    63 lead models
    64 mammalian cells
    65 model
    66 mouse model
    67 nanocages
    68 nanozymes
    69 nature
    70 onset
    71 oxygen species
    72 reactive oxygen species
    73 resistance
    74 resistance emergence
    75 response
    76 results
    77 role
    78 selective antibacterial action
    79 selectivity
    80 situ
    81 species
    82 substrate
    83 surface-bound reactive oxygen species
    84 work
    85 schema:name Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action
    86 schema:pagination 745
    87 schema:productId N2cd4986362064d90a2519319cb781180
    88 N8a3755977e904743bcf666d35dcb7f70
    89 Nb3090bf9e1784bf4bc36856fe4c0f7fd
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135037952
    91 https://doi.org/10.1038/s41467-021-20965-3
    92 schema:sdDatePublished 2022-12-01T06:43
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Na437602e670741b5a0201750070377d9
    95 schema:url https://doi.org/10.1038/s41467-021-20965-3
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N008fe4ffd6cc4609b846c9379d0e899e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Biofilms
    101 rdf:type schema:DefinedTerm
    102 N0fc17e6604b14e118e1c2a3506d825bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Anti-Bacterial Agents
    104 rdf:type schema:DefinedTerm
    105 N2cd4986362064d90a2519319cb781180 schema:name pubmed_id
    106 schema:value 33531505
    107 rdf:type schema:PropertyValue
    108 N306841604d1d4dc79b116cb3d5bb0688 rdf:first sg:person.015052222023.70
    109 rdf:rest N735e7701bc914249ab47395ddf07a85b
    110 N330669b36bb04d0ead15ad20f47b830e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Microbial Sensitivity Tests
    112 rdf:type schema:DefinedTerm
    113 N43d44384565e4c8fb877d65e7238010d rdf:first sg:person.01343062705.18
    114 rdf:rest rdf:nil
    115 N5d272f7b7a504ddbb5ddcdc11797ecaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Reactive Oxygen Species
    117 rdf:type schema:DefinedTerm
    118 N6027a57c898c4567bd7d0ffadccc36da rdf:first sg:person.0600113217.27
    119 rdf:rest N43d44384565e4c8fb877d65e7238010d
    120 N735e7701bc914249ab47395ddf07a85b rdf:first sg:person.010537472223.13
    121 rdf:rest N6027a57c898c4567bd7d0ffadccc36da
    122 N7c37714b2ad9446f9b1ceaa0bd31af04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Animals
    124 rdf:type schema:DefinedTerm
    125 N8a3755977e904743bcf666d35dcb7f70 schema:name dimensions_id
    126 schema:value pub.1135037952
    127 rdf:type schema:PropertyValue
    128 N94cf11f68e1f4526ab09b9c983f8868f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Anti-Infective Agents
    130 rdf:type schema:DefinedTerm
    131 Na437602e670741b5a0201750070377d9 schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 Nb3090bf9e1784bf4bc36856fe4c0f7fd schema:name doi
    134 schema:value 10.1038/s41467-021-20965-3
    135 rdf:type schema:PropertyValue
    136 Nb32901858ea34101a1a5139a87fdb3c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Mice
    138 rdf:type schema:DefinedTerm
    139 Nd1db6554465a42899afb21a1c3e0d872 schema:volumeNumber 12
    140 rdf:type schema:PublicationVolume
    141 Ndab603eebc314af3ac92c09e11e946b6 rdf:first sg:person.01274747505.21
    142 rdf:rest N306841604d1d4dc79b116cb3d5bb0688
    143 Ndbc48f7d29ed400daa53cb9117fa5025 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Nanoparticles
    145 rdf:type schema:DefinedTerm
    146 Nee699e69b32549239dc9251cd2d170dc schema:issueNumber 1
    147 rdf:type schema:PublicationIssue
    148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Biological Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Microbiology
    153 rdf:type schema:DefinedTerm
    154 sg:grant.8158906 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-021-20965-3
    155 rdf:type schema:MonetaryGrant
    156 sg:grant.8196558 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-021-20965-3
    157 rdf:type schema:MonetaryGrant
    158 sg:journal.1043282 schema:issn 2041-1723
    159 schema:name Nature Communications
    160 schema:publisher Springer Nature
    161 rdf:type schema:Periodical
    162 sg:person.010537472223.13 schema:affiliation grid-institutes:grid.59053.3a
    163 schema:familyName Yu
    164 schema:givenName Yunpeng
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537472223.13
    166 rdf:type schema:Person
    167 sg:person.01274747505.21 schema:affiliation grid-institutes:grid.59053.3a
    168 schema:familyName Gao
    169 schema:givenName Feng
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274747505.21
    171 rdf:type schema:Person
    172 sg:person.01343062705.18 schema:affiliation grid-institutes:grid.59053.3a
    173 schema:familyName Yang
    174 schema:givenName Lihua
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343062705.18
    176 rdf:type schema:Person
    177 sg:person.015052222023.70 schema:affiliation grid-institutes:grid.59053.3a
    178 schema:familyName Shao
    179 schema:givenName Tianyi
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015052222023.70
    181 rdf:type schema:Person
    182 sg:person.0600113217.27 schema:affiliation grid-institutes:grid.59053.3a
    183 schema:familyName Xiong
    184 schema:givenName Yujie
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27
    186 rdf:type schema:Person
    187 sg:pub.10.1007/s10544-005-6070-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010575775
    188 https://doi.org/10.1007/s10544-005-6070-2
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s12274-016-1053-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011220084
    191 https://doi.org/10.1007/s12274-016-1053-6
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/485439a schema:sameAs https://app.dimensions.ai/details/publication/pub.1036284788
    194 https://doi.org/10.1038/485439a
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature.2017.21550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128461
    197 https://doi.org/10.1038/nature.2017.21550
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature01451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027701618
    200 https://doi.org/10.1038/nature01451
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature07008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006761326
    203 https://doi.org/10.1038/nature07008
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature12155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042246955
    206 https://doi.org/10.1038/nature12155
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nchem.623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041689033
    209 https://doi.org/10.1038/nchem.623
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nnano.2012.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015457179
    212 https://doi.org/10.1038/nnano.2012.91
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nprot.2010.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013559694
    215 https://doi.org/10.1038/nprot.2010.2
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nrc3004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048900456
    218 https://doi.org/10.1038/nrc3004
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nrd3975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038515300
    221 https://doi.org/10.1038/nrd3975
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nrm2216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008010563
    224 https://doi.org/10.1038/nrm2216
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nrmicro.2016.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021095240
    227 https://doi.org/10.1038/nrmicro.2016.94
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nrmicro1445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011907049
    230 https://doi.org/10.1038/nrmicro1445
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nrmicro2415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006291616
    233 https://doi.org/10.1038/nrmicro2415
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/s41467-017-02502-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100179010
    236 https://doi.org/10.1038/s41467-017-02502-3
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/s41467-018-05798-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1106160262
    239 https://doi.org/10.1038/s41467-018-05798-x
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/s41565-017-0013-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1093139694
    242 https://doi.org/10.1038/s41565-017-0013-y
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/srep42058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083688642
    245 https://doi.org/10.1038/srep42058
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1163/156856703322148991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017596032
    248 https://doi.org/10.1163/156856703322148991
    249 rdf:type schema:CreativeWork
    250 grid-institutes:grid.59053.3a schema:alternateName School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
    251 schema:name CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, China
    252 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
    253 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
    254 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...