Proliferative polyploid cells give rise to tumors via ploidy reduction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-01-28

AUTHORS

Tomonori Matsumoto, Leslie Wakefield, Alexander Peters, Myron Peto, Paul Spellman, Markus Grompe

ABSTRACT

Polyploidy is a hallmark of cancer, and closely related to chromosomal instability involved in cancer progression. Importantly, polyploid cells also exist in some normal tissues. Polyploid hepatocytes proliferate and dynamically reduce their ploidy during liver regeneration. This raises the question whether proliferating polyploids are prone to cancer via chromosome missegregation during mitosis and/or ploidy reduction. Conversely polyploids could be resistant to tumor development due to their redundant genomes. Therefore, the tumor-initiation risk of physiologic polyploidy and ploidy reduction is still unclear. Using in vivo lineage tracing we here show that polyploid hepatocytes readily form liver tumors via frequent ploidy reduction. Polyploid hepatocytes give rise to regenerative nodules with chromosome aberrations, which are enhanced by ploidy reduction. Although polyploidy should theoretically prevent tumor suppressor loss, the high frequency of ploidy reduction negates this protection. Importantly, polyploid hepatocytes that undergo multiple rounds of cell division become predominantly mononucleated and are resistant to ploidy reduction. Our results suggest that ploidy reduction is an early step in the initiation of carcinogenesis from polyploid hepatocytes. More... »

PAGES

646

References to SciGraph publications

  • 2018-01-03. Determinants and clinical implications of chromosomal instability in cancer in NATURE REVIEWS CLINICAL ONCOLOGY
  • 1996-03. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I in NATURE GENETICS
  • 2009-06-07. A mechanism linking extra centrosomes to chromosomal instability in NATURE
  • 2018-07-16. Genome doubling shapes the evolution and prognosis of advanced cancers in NATURE GENETICS
  • 2006-09-21. Structural impact of hydrodynamic injection on mouse liver in GENE THERAPY
  • 2019-10-23. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver in NATURE
  • 2020-04-02. Polyploidy in liver development, homeostasis and disease in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2020-02-05. The evolutionary history of 2,658 cancers in NATURE
  • 2017-05-15. The evolutionary significance of polyploidy in NATURE REVIEWS GENETICS
  • 2014-04-22. APC/C is an essential regulator of centrosome clustering in NATURE COMMUNICATIONS
  • 1992-03. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours in NATURE
  • 2013-09-26. Pan-cancer patterns of somatic copy number alteration in NATURE GENETICS
  • 2005-10. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells in NATURE
  • 2010-09-22. The ploidy conveyor of mature hepatocytes as a source of genetic variation in NATURE
  • 1995-08. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I in NATURE GENETICS
  • 2006-12. Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo in NATURE PROTOCOLS
  • 2004-01. From polyploidy to aneuploidy, genome instability and cancer in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2016-06-15. Dynamic zonation of liver polyploidy in CELL AND TISSUE RESEARCH
  • 2018-12-06. Cytokinesis defects and cancer in NATURE REVIEWS CANCER
  • 2009-05-03. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-021-20916-y

    DOI

    http://dx.doi.org/10.1038/s41467-021-20916-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1134928566

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33510149


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Transformation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomal Instability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hepatocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, 129 Strain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Inbred C57BL", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Knockout", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Transgenic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mitosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ploidies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyploidy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matsumoto", 
            "givenName": "Tomonori", 
            "id": "sg:person.0710264117.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710264117.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wakefield", 
            "givenName": "Leslie", 
            "id": "sg:person.01013503132.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013503132.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peters", 
            "givenName": "Alexander", 
            "id": "sg:person.013047036453.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013047036453.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peto", 
            "givenName": "Myron", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spellman", 
            "givenName": "Paul", 
            "id": "sg:person.01064253031.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064253031.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grompe", 
            "givenName": "Markus", 
            "id": "sg:person.01126164604.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126164604.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature09414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044509580", 
              "https://doi.org/10.1038/nature09414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0165-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105584566", 
              "https://doi.org/10.1038/s41588-018-0165-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41568-018-0084-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110402420", 
              "https://doi.org/10.1038/s41568-018-0084-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2006.473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049679691", 
              "https://doi.org/10.1038/nprot.2006.473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41575-020-0284-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126052988", 
              "https://doi.org/10.1038/s41575-020-0284-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042520483", 
              "https://doi.org/10.1038/ng.2760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043038833", 
              "https://doi.org/10.1038/nrm1276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2017.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085409542", 
              "https://doi.org/10.1038/nrg.2017.26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014745794", 
              "https://doi.org/10.1038/nature08136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0895-453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044553748", 
              "https://doi.org/10.1038/ng0895-453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00441-016-2427-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033659759", 
              "https://doi.org/10.1007/s00441-016-2427-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/356215a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027559823", 
              "https://doi.org/10.1038/356215a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1907-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124588398", 
              "https://doi.org/10.1038/s41586-019-1907-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034767313", 
              "https://doi.org/10.1038/ng.343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1670-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122020651", 
              "https://doi.org/10.1038/s41586-019-1670-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2017.198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100152802", 
              "https://doi.org/10.1038/nrclinonc.2017.198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0396-266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043996615", 
              "https://doi.org/10.1038/ng0396-266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043261736", 
              "https://doi.org/10.1038/nature04217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3302865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047341307", 
              "https://doi.org/10.1038/sj.gt.3302865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028559508", 
              "https://doi.org/10.1038/ncomms4686"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-01-28", 
        "datePublishedReg": "2021-01-28", 
        "description": "Polyploidy is a hallmark of cancer, and closely related to chromosomal instability involved in cancer progression. Importantly, polyploid cells also exist in some normal tissues. Polyploid hepatocytes proliferate and dynamically reduce their ploidy during liver regeneration. This raises the question whether proliferating polyploids are prone to cancer via chromosome missegregation during mitosis and/or ploidy reduction. Conversely polyploids could be resistant to tumor development due to their redundant genomes. Therefore, the tumor-initiation risk of physiologic polyploidy and ploidy reduction is still unclear. Using in vivo lineage tracing we here show that polyploid hepatocytes readily form liver tumors via frequent ploidy reduction. Polyploid hepatocytes give rise to regenerative nodules with chromosome aberrations, which are enhanced by ploidy reduction. Although polyploidy should theoretically prevent tumor suppressor loss, the high frequency of ploidy reduction negates this protection. Importantly, polyploid hepatocytes that undergo multiple rounds of cell division become predominantly mononucleated and are resistant to ploidy reduction. Our results suggest that ploidy reduction is an early step in the initiation of carcinogenesis from polyploid hepatocytes.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-021-20916-y", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3933605", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2495263", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "ploidy reduction", 
          "polyploid cells", 
          "polyploid hepatocytes", 
          "hallmarks of cancer", 
          "tumor suppressor loss", 
          "chromosome missegregation", 
          "redundant genomes", 
          "cell division", 
          "vivo lineage", 
          "polyploidy", 
          "chromosomal instability", 
          "suppressor loss", 
          "cancer progression", 
          "early steps", 
          "polyploids", 
          "initiation of carcinogenesis", 
          "chromosome aberrations", 
          "multiple rounds", 
          "hepatocytes", 
          "missegregation", 
          "cells", 
          "genome", 
          "normal tissues", 
          "lineages", 
          "liver regeneration", 
          "ploidy", 
          "hallmark", 
          "division", 
          "regeneration", 
          "carcinogenesis", 
          "cancer", 
          "tissue", 
          "aberrations", 
          "high frequency", 
          "progression", 
          "initiation", 
          "development", 
          "tumors", 
          "loss", 
          "reduction", 
          "nodules", 
          "rounds", 
          "rise", 
          "protection", 
          "step", 
          "negates", 
          "instability", 
          "results", 
          "questions", 
          "frequency", 
          "liver tumors", 
          "risk"
        ], 
        "name": "Proliferative polyploid cells give rise to tumors via ploidy reduction", 
        "pagination": "646", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1134928566"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-021-20916-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33510149"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-021-20916-y", 
          "https://app.dimensions.ai/details/publication/pub.1134928566"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_877.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-021-20916-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-021-20916-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-021-20916-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-021-20916-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-021-20916-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    292 TRIPLES      21 PREDICATES      112 URIs      84 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-021-20916-y schema:about N137ecb95c6624943ae61e76fefeeb936
    2 N2164d3626c4f404eb3d70d6f19269c49
    3 N6864b319e1db4f878f772e533c836672
    4 N713686dc93de421395a53f867244f8b1
    5 N7aaea2ff231847b3936087ca6a7b30a7
    6 N81f9877651534f40bc285b8d87f983d7
    7 N935c12a06bce43d59338b5716cb798d8
    8 Nae884d98cec74bd8978a828a3b9f411a
    9 Nb4d29131573542279446e9d6724fce01
    10 Nc68aadf705554973810d74eb4fe0abcf
    11 Nd620b1cce32747da9480ecf9d867563d
    12 Ndb488001221648999403ef17e35bfea9
    13 Ne353786504384ef4995057d0fa20db65
    14 Ne4069b8d012d468fa542c4b3659d030c
    15 Nea4f5bc0e29c4ee5ba3c6d81371ae3a1
    16 anzsrc-for:11
    17 anzsrc-for:1112
    18 schema:author N600398073807474f8c0b1c82085db306
    19 schema:citation sg:pub.10.1007/s00441-016-2427-5
    20 sg:pub.10.1038/356215a0
    21 sg:pub.10.1038/nature04217
    22 sg:pub.10.1038/nature08136
    23 sg:pub.10.1038/nature09414
    24 sg:pub.10.1038/ncomms4686
    25 sg:pub.10.1038/ng.2760
    26 sg:pub.10.1038/ng.343
    27 sg:pub.10.1038/ng0396-266
    28 sg:pub.10.1038/ng0895-453
    29 sg:pub.10.1038/nprot.2006.473
    30 sg:pub.10.1038/nrclinonc.2017.198
    31 sg:pub.10.1038/nrg.2017.26
    32 sg:pub.10.1038/nrm1276
    33 sg:pub.10.1038/s41568-018-0084-6
    34 sg:pub.10.1038/s41575-020-0284-x
    35 sg:pub.10.1038/s41586-019-1670-9
    36 sg:pub.10.1038/s41586-019-1907-7
    37 sg:pub.10.1038/s41588-018-0165-1
    38 sg:pub.10.1038/sj.gt.3302865
    39 schema:datePublished 2021-01-28
    40 schema:datePublishedReg 2021-01-28
    41 schema:description Polyploidy is a hallmark of cancer, and closely related to chromosomal instability involved in cancer progression. Importantly, polyploid cells also exist in some normal tissues. Polyploid hepatocytes proliferate and dynamically reduce their ploidy during liver regeneration. This raises the question whether proliferating polyploids are prone to cancer via chromosome missegregation during mitosis and/or ploidy reduction. Conversely polyploids could be resistant to tumor development due to their redundant genomes. Therefore, the tumor-initiation risk of physiologic polyploidy and ploidy reduction is still unclear. Using in vivo lineage tracing we here show that polyploid hepatocytes readily form liver tumors via frequent ploidy reduction. Polyploid hepatocytes give rise to regenerative nodules with chromosome aberrations, which are enhanced by ploidy reduction. Although polyploidy should theoretically prevent tumor suppressor loss, the high frequency of ploidy reduction negates this protection. Importantly, polyploid hepatocytes that undergo multiple rounds of cell division become predominantly mononucleated and are resistant to ploidy reduction. Our results suggest that ploidy reduction is an early step in the initiation of carcinogenesis from polyploid hepatocytes.
    42 schema:genre article
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N1517c736d5664b539469f55cb0af4639
    45 N57f6aa2dbf694a77af6afd8aa8773f6c
    46 sg:journal.1043282
    47 schema:keywords aberrations
    48 cancer
    49 cancer progression
    50 carcinogenesis
    51 cell division
    52 cells
    53 chromosomal instability
    54 chromosome aberrations
    55 chromosome missegregation
    56 development
    57 division
    58 early steps
    59 frequency
    60 genome
    61 hallmark
    62 hallmarks of cancer
    63 hepatocytes
    64 high frequency
    65 initiation
    66 initiation of carcinogenesis
    67 instability
    68 lineages
    69 liver regeneration
    70 liver tumors
    71 loss
    72 missegregation
    73 multiple rounds
    74 negates
    75 nodules
    76 normal tissues
    77 ploidy
    78 ploidy reduction
    79 polyploid cells
    80 polyploid hepatocytes
    81 polyploids
    82 polyploidy
    83 progression
    84 protection
    85 questions
    86 reduction
    87 redundant genomes
    88 regeneration
    89 results
    90 rise
    91 risk
    92 rounds
    93 step
    94 suppressor loss
    95 tissue
    96 tumor suppressor loss
    97 tumors
    98 vivo lineage
    99 schema:name Proliferative polyploid cells give rise to tumors via ploidy reduction
    100 schema:pagination 646
    101 schema:productId N44cc80cb62f54a118ccd11e9d0e637f3
    102 N6aa47845e7b44096a946042732e6c9c3
    103 N9b725e8a52e748f4a27429cee679cc3b
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134928566
    105 https://doi.org/10.1038/s41467-021-20916-y
    106 schema:sdDatePublished 2022-08-04T17:09
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N84ebc90f6d4040a69352ee4efda0d333
    109 schema:url https://doi.org/10.1038/s41467-021-20916-y
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N137ecb95c6624943ae61e76fefeeb936 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Mice, 129 Strain
    115 rdf:type schema:DefinedTerm
    116 N1517c736d5664b539469f55cb0af4639 schema:volumeNumber 12
    117 rdf:type schema:PublicationVolume
    118 N2164d3626c4f404eb3d70d6f19269c49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Liver Neoplasms
    120 rdf:type schema:DefinedTerm
    121 N41b1dc57caf44d7190b87d99a9932bfd rdf:first sg:person.013047036453.01
    122 rdf:rest N6c4a5ff184884aac889dce7046ea70be
    123 N44cc80cb62f54a118ccd11e9d0e637f3 schema:name doi
    124 schema:value 10.1038/s41467-021-20916-y
    125 rdf:type schema:PropertyValue
    126 N57f6aa2dbf694a77af6afd8aa8773f6c schema:issueNumber 1
    127 rdf:type schema:PublicationIssue
    128 N600398073807474f8c0b1c82085db306 rdf:first sg:person.0710264117.40
    129 rdf:rest N74f71eb646304ef39887d1cb6f5f7ae2
    130 N6864b319e1db4f878f772e533c836672 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Chromosomal Instability
    132 rdf:type schema:DefinedTerm
    133 N6aa47845e7b44096a946042732e6c9c3 schema:name dimensions_id
    134 schema:value pub.1134928566
    135 rdf:type schema:PropertyValue
    136 N6c4a5ff184884aac889dce7046ea70be rdf:first Nfcfe03a1741d4c0dbd1e8ae42ee550c1
    137 rdf:rest Na6d2fe27fb3a4f11a18abbbab0c16c96
    138 N713686dc93de421395a53f867244f8b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Ploidies
    140 rdf:type schema:DefinedTerm
    141 N74f71eb646304ef39887d1cb6f5f7ae2 rdf:first sg:person.01013503132.12
    142 rdf:rest N41b1dc57caf44d7190b87d99a9932bfd
    143 N7aaea2ff231847b3936087ca6a7b30a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Animals
    145 rdf:type schema:DefinedTerm
    146 N81f9877651534f40bc285b8d87f983d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Mice, Inbred C57BL
    148 rdf:type schema:DefinedTerm
    149 N84ebc90f6d4040a69352ee4efda0d333 schema:name Springer Nature - SN SciGraph project
    150 rdf:type schema:Organization
    151 N935c12a06bce43d59338b5716cb798d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Humans
    153 rdf:type schema:DefinedTerm
    154 N9b725e8a52e748f4a27429cee679cc3b schema:name pubmed_id
    155 schema:value 33510149
    156 rdf:type schema:PropertyValue
    157 Na6d2fe27fb3a4f11a18abbbab0c16c96 rdf:first sg:person.01064253031.26
    158 rdf:rest Nc7eb5770baee4c10aedd86c02a37f4fa
    159 Nae884d98cec74bd8978a828a3b9f411a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Liver
    161 rdf:type schema:DefinedTerm
    162 Nb4d29131573542279446e9d6724fce01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Cell Transformation, Neoplastic
    164 rdf:type schema:DefinedTerm
    165 Nc68aadf705554973810d74eb4fe0abcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Mice, Transgenic
    167 rdf:type schema:DefinedTerm
    168 Nc7eb5770baee4c10aedd86c02a37f4fa rdf:first sg:person.01126164604.61
    169 rdf:rest rdf:nil
    170 Nd620b1cce32747da9480ecf9d867563d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Polyploidy
    172 rdf:type schema:DefinedTerm
    173 Ndb488001221648999403ef17e35bfea9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Mice, Knockout
    175 rdf:type schema:DefinedTerm
    176 Ne353786504384ef4995057d0fa20db65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Mitosis
    178 rdf:type schema:DefinedTerm
    179 Ne4069b8d012d468fa542c4b3659d030c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Hepatocytes
    181 rdf:type schema:DefinedTerm
    182 Nea4f5bc0e29c4ee5ba3c6d81371ae3a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Cells, Cultured
    184 rdf:type schema:DefinedTerm
    185 Nfcfe03a1741d4c0dbd1e8ae42ee550c1 schema:affiliation grid-institutes:grid.5288.7
    186 schema:familyName Peto
    187 schema:givenName Myron
    188 rdf:type schema:Person
    189 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Medical and Health Sciences
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Oncology and Carcinogenesis
    194 rdf:type schema:DefinedTerm
    195 sg:grant.2495263 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-021-20916-y
    196 rdf:type schema:MonetaryGrant
    197 sg:grant.3933605 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-021-20916-y
    198 rdf:type schema:MonetaryGrant
    199 sg:journal.1043282 schema:issn 2041-1723
    200 schema:name Nature Communications
    201 schema:publisher Springer Nature
    202 rdf:type schema:Periodical
    203 sg:person.01013503132.12 schema:affiliation grid-institutes:grid.5288.7
    204 schema:familyName Wakefield
    205 schema:givenName Leslie
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013503132.12
    207 rdf:type schema:Person
    208 sg:person.01064253031.26 schema:affiliation grid-institutes:grid.5288.7
    209 schema:familyName Spellman
    210 schema:givenName Paul
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064253031.26
    212 rdf:type schema:Person
    213 sg:person.01126164604.61 schema:affiliation grid-institutes:grid.5288.7
    214 schema:familyName Grompe
    215 schema:givenName Markus
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126164604.61
    217 rdf:type schema:Person
    218 sg:person.013047036453.01 schema:affiliation grid-institutes:grid.5288.7
    219 schema:familyName Peters
    220 schema:givenName Alexander
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013047036453.01
    222 rdf:type schema:Person
    223 sg:person.0710264117.40 schema:affiliation grid-institutes:grid.5288.7
    224 schema:familyName Matsumoto
    225 schema:givenName Tomonori
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710264117.40
    227 rdf:type schema:Person
    228 sg:pub.10.1007/s00441-016-2427-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033659759
    229 https://doi.org/10.1007/s00441-016-2427-5
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/356215a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027559823
    232 https://doi.org/10.1038/356215a0
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nature04217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043261736
    235 https://doi.org/10.1038/nature04217
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nature08136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014745794
    238 https://doi.org/10.1038/nature08136
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nature09414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044509580
    241 https://doi.org/10.1038/nature09414
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ncomms4686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028559508
    244 https://doi.org/10.1038/ncomms4686
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/ng.2760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042520483
    247 https://doi.org/10.1038/ng.2760
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/ng.343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034767313
    250 https://doi.org/10.1038/ng.343
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/ng0396-266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043996615
    253 https://doi.org/10.1038/ng0396-266
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/ng0895-453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044553748
    256 https://doi.org/10.1038/ng0895-453
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nprot.2006.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049679691
    259 https://doi.org/10.1038/nprot.2006.473
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nrclinonc.2017.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100152802
    262 https://doi.org/10.1038/nrclinonc.2017.198
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nrg.2017.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085409542
    265 https://doi.org/10.1038/nrg.2017.26
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nrm1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043038833
    268 https://doi.org/10.1038/nrm1276
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/s41568-018-0084-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110402420
    271 https://doi.org/10.1038/s41568-018-0084-6
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/s41575-020-0284-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1126052988
    274 https://doi.org/10.1038/s41575-020-0284-x
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/s41586-019-1670-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122020651
    277 https://doi.org/10.1038/s41586-019-1670-9
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/s41586-019-1907-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124588398
    280 https://doi.org/10.1038/s41586-019-1907-7
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/s41588-018-0165-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105584566
    283 https://doi.org/10.1038/s41588-018-0165-1
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/sj.gt.3302865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047341307
    286 https://doi.org/10.1038/sj.gt.3302865
    287 rdf:type schema:CreativeWork
    288 grid-institutes:grid.5288.7 schema:alternateName Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
    289 Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
    290 schema:name Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
    291 Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
    292 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...