Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-13

AUTHORS

Ning Zhang, Xiaobin Feng, Dewei Rao, Xi Deng, Lejuan Cai, Bocheng Qiu, Ran Long, Yujie Xiong, Yang Lu, Yang Chai

ABSTRACT

Anodic oxygen evolution reaction (OER) is recognized as kinetic bottleneck in water electrolysis. Transition metal sites with high valence states can accelerate the reaction kinetics to offer highly intrinsic activity, but suffer from thermodynamic formation barrier. Here, we show subtle engineering of highly oxidized Ni4+ species in surface reconstructed (oxy)hydroxides on multicomponent FeCoCrNi alloy film through interatomically electronic interplay. Our spectroscopic investigations with theoretical studies uncover that Fe component enables the formation of Ni4+ species, which is energetically favored by the multistep evolution of Ni2+→Ni3+→Ni4+. The dynamically constructed Ni4+ species drives holes into oxygen ligands to facilitate intramolecular oxygen coupling, triggering lattice oxygen activation to form Fe-Ni dual-sites as ultimate catalytic center with highly intrinsic activity. As a result, the surface reconstructed FeCoCrNi OER catalyst delivers outstanding mass activity and turnover frequency of 3601 A gmetal−1 and 0.483 s−1 at an overpotential of 300 mV in alkaline electrolyte, respectively. More... »

PAGES

4066

References to SciGraph publications

  • 2019-08-05. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation in NATURE CATALYSIS
  • 2017-01-09. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution in NATURE CHEMISTRY
  • 2019-06-18. High-entropy alloys in NATURE REVIEWS MATERIALS
  • 2019-06-20. Atomic-scale perturbation of oxygen octahedra via surface ion exchange in perovskite nickelates boosts water oxidation in NATURE COMMUNICATIONS
  • 2016-01-22. Anionic redox processes for electrochemical devices in NATURE MATERIALS
  • 2016-12-23. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries in NATURE COMMUNICATIONS
  • 2015-10-12. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution in NATURE COMMUNICATIONS
  • 2019-03-25. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts in NATURE ENERGY
  • 2019-01-14. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis in NATURE ENERGY
  • 2017-11-20. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption in NATURE CHEMISTRY
  • 2017-01-11. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting in NATURE REVIEWS CHEMISTRY
  • 2015-01-19. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions in NATURE COMMUNICATIONS
  • 2020-03-01. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction in NATURE ENERGY
  • 2018-06-18. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution in NATURE COMMUNICATIONS
  • 2016-11-28. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution in NATURE ENERGY
  • 2018-09-12. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction in NATURE CATALYSIS
  • 2019-05-27. Considerations for the scaling-up of water splitting catalysts in NATURE ENERGY
  • 2018-11-05. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy in NATURE CATALYSIS
  • 2018-07-23. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide in NATURE COMMUNICATIONS
  • 2016-12-19. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction in NATURE ENERGY
  • 2018-12-31. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution in NATURE CATALYSIS
  • 2018-04-09. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries in NATURE ENERGY
  • 2017-07-17. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-020-17934-7

    DOI

    http://dx.doi.org/10.1038/s41467-020-17934-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130068230

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32792524


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.16890.36", 
              "name": [
                "Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China", 
                "The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ning", 
            "id": "sg:person.011707713025.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011707713025.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, P. R. China", 
                "Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Xiaobin", 
            "id": "sg:person.07523157115.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07523157115.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.440785.a", 
              "name": [
                "School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rao", 
            "givenName": "Dewei", 
            "id": "sg:person.0647152372.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647152372.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deng", 
            "givenName": "Xi", 
            "id": "sg:person.013423467267.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013423467267.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.16890.36", 
              "name": [
                "Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China", 
                "The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Lejuan", 
            "id": "sg:person.013741230017.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013741230017.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.16890.36", 
              "name": [
                "Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China", 
                "The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qiu", 
            "givenName": "Bocheng", 
            "id": "sg:person.0605412644.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605412644.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Long", 
            "givenName": "Ran", 
            "id": "sg:person.0640412546.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640412546.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Yujie", 
            "id": "sg:person.0600113217.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, P. R. China", 
                "Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yang", 
            "id": "sg:person.014443267517.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443267517.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.16890.36", 
              "name": [
                "Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China", 
                "The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chai", 
            "givenName": "Yang", 
            "id": "sg:person.010224060617.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010224060617.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat4551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001045037", 
              "https://doi.org/10.1038/nmat4551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41578-019-0121-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117325344", 
              "https://doi.org/10.1038/s41578-019-0121-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41560-018-0097-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103193775", 
              "https://doi.org/10.1038/s41560-018-0097-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2016.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035524165", 
              "https://doi.org/10.1038/nenergy.2016.184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020794848", 
              "https://doi.org/10.1038/ncomms7097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04788-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104575304", 
              "https://doi.org/10.1038/s41467-018-04788-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41560-020-0576-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125716943", 
              "https://doi.org/10.1038/s41560-020-0576-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05341-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105646311", 
              "https://doi.org/10.1038/s41467-018-05341-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022751957", 
              "https://doi.org/10.1038/ncomms13814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41560-019-0407-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115905351", 
              "https://doi.org/10.1038/s41560-019-0407-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41570-016-0003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027381619", 
              "https://doi.org/10.1038/s41570-016-0003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092797032", 
              "https://doi.org/10.1038/nchem.2886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-10838-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117296391", 
              "https://doi.org/10.1038/s41467-019-10838-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41929-018-0203-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110584168", 
              "https://doi.org/10.1038/s41929-018-0203-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41929-019-0325-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120128556", 
              "https://doi.org/10.1038/s41929-019-0325-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41560-018-0308-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111223606", 
              "https://doi.org/10.1038/s41560-018-0308-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41929-018-0162-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107913040", 
              "https://doi.org/10.1038/s41929-018-0162-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016630009", 
              "https://doi.org/10.1038/ncomms9625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050615355", 
              "https://doi.org/10.1038/nchem.2695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090738140", 
              "https://doi.org/10.1038/nmat4938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41929-018-0141-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106837441", 
              "https://doi.org/10.1038/s41929-018-0141-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41560-019-0355-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112968875", 
              "https://doi.org/10.1038/s41560-019-0355-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2016.189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041401652", 
              "https://doi.org/10.1038/nenergy.2016.189"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-08-13", 
        "datePublishedReg": "2020-08-13", 
        "description": "Anodic oxygen evolution reaction (OER) is recognized as kinetic bottleneck in water electrolysis. Transition metal sites with high valence states can accelerate the reaction kinetics to offer highly intrinsic activity, but suffer from thermodynamic formation barrier. Here, we show subtle engineering of highly oxidized Ni4+ species in surface reconstructed (oxy)hydroxides on multicomponent FeCoCrNi alloy film through interatomically electronic interplay. Our spectroscopic investigations with theoretical studies uncover that Fe component enables the formation of Ni4+ species, which is energetically favored by the multistep evolution of Ni2+\u2192Ni3+\u2192Ni4+. The dynamically constructed Ni4+ species drives holes into oxygen ligands to facilitate intramolecular oxygen coupling, triggering lattice oxygen activation to form Fe-Ni dual-sites as ultimate catalytic center with highly intrinsic activity. As a result, the surface reconstructed FeCoCrNi OER catalyst delivers outstanding mass activity and turnover frequency of 3601\u2009A gmetal\u22121 and 0.483\u2009s\u22121 at an overpotential of 300\u2009mV in alkaline electrolyte, respectively.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-020-17934-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8927736", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "lattice oxygen activation", 
          "oxygen evolution reaction", 
          "metal sites", 
          "oxygen activation", 
          "high-valence metal sites", 
          "anodic oxygen evolution reaction", 
          "enhanced water oxidation", 
          "transition metal sites", 
          "high valence state", 
          "outstanding mass activity", 
          "intrinsic activity", 
          "water oxidation", 
          "OER catalysts", 
          "alkaline electrolyte", 
          "turnover frequency", 
          "evolution reaction", 
          "mass activity", 
          "oxygen ligands", 
          "water electrolysis", 
          "spectroscopic investigations", 
          "electronic interplay", 
          "formation barrier", 
          "valence state", 
          "subtle engineering", 
          "kinetic bottleneck", 
          "catalytic center", 
          "Ni4", 
          "reaction kinetics", 
          "oxygen coupling", 
          "Fe component", 
          "theoretical study", 
          "overpotential", 
          "catalyst", 
          "electrolyte", 
          "electrolysis", 
          "surface", 
          "ligands", 
          "oxidation", 
          "reaction", 
          "alloy films", 
          "films", 
          "mV", 
          "kinetics", 
          "species", 
          "Fe-Ni", 
          "formation", 
          "activity", 
          "sites", 
          "coupling", 
          "investigation", 
          "engineering", 
          "barriers", 
          "holes", 
          "state", 
          "interplay", 
          "activation", 
          "multistep evolution", 
          "components", 
          "center", 
          "bottleneck", 
          "results", 
          "study", 
          "evolution", 
          "frequency"
        ], 
        "name": "Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation", 
        "pagination": "4066", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130068230"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-020-17934-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32792524"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-020-17934-7", 
          "https://app.dimensions.ai/details/publication/pub.1130068230"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_832.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-020-17934-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17934-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17934-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17934-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17934-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    292 TRIPLES      21 PREDICATES      112 URIs      81 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-020-17934-7 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N547f968f389342659f4addd0494bd32f
    4 schema:citation sg:pub.10.1038/nchem.2695
    5 sg:pub.10.1038/nchem.2886
    6 sg:pub.10.1038/ncomms13814
    7 sg:pub.10.1038/ncomms7097
    8 sg:pub.10.1038/ncomms9625
    9 sg:pub.10.1038/nenergy.2016.184
    10 sg:pub.10.1038/nenergy.2016.189
    11 sg:pub.10.1038/nmat4551
    12 sg:pub.10.1038/nmat4938
    13 sg:pub.10.1038/s41467-018-04788-3
    14 sg:pub.10.1038/s41467-018-05341-y
    15 sg:pub.10.1038/s41467-019-10838-1
    16 sg:pub.10.1038/s41560-018-0097-0
    17 sg:pub.10.1038/s41560-018-0308-8
    18 sg:pub.10.1038/s41560-019-0355-9
    19 sg:pub.10.1038/s41560-019-0407-1
    20 sg:pub.10.1038/s41560-020-0576-y
    21 sg:pub.10.1038/s41570-016-0003
    22 sg:pub.10.1038/s41578-019-0121-4
    23 sg:pub.10.1038/s41929-018-0141-2
    24 sg:pub.10.1038/s41929-018-0162-x
    25 sg:pub.10.1038/s41929-018-0203-5
    26 sg:pub.10.1038/s41929-019-0325-4
    27 schema:datePublished 2020-08-13
    28 schema:datePublishedReg 2020-08-13
    29 schema:description Anodic oxygen evolution reaction (OER) is recognized as kinetic bottleneck in water electrolysis. Transition metal sites with high valence states can accelerate the reaction kinetics to offer highly intrinsic activity, but suffer from thermodynamic formation barrier. Here, we show subtle engineering of highly oxidized Ni4+ species in surface reconstructed (oxy)hydroxides on multicomponent FeCoCrNi alloy film through interatomically electronic interplay. Our spectroscopic investigations with theoretical studies uncover that Fe component enables the formation of Ni4+ species, which is energetically favored by the multistep evolution of Ni2+→Ni3+→Ni4+. The dynamically constructed Ni4+ species drives holes into oxygen ligands to facilitate intramolecular oxygen coupling, triggering lattice oxygen activation to form Fe-Ni dual-sites as ultimate catalytic center with highly intrinsic activity. As a result, the surface reconstructed FeCoCrNi OER catalyst delivers outstanding mass activity and turnover frequency of 3601 A gmetal−1 and 0.483 s−1 at an overpotential of 300 mV in alkaline electrolyte, respectively.
    30 schema:genre article
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N6e5b245898f24149b50b3c9af3b5c68b
    33 N92260741a5dc4c55af8ca89ba7a15158
    34 sg:journal.1043282
    35 schema:keywords Fe component
    36 Fe-Ni
    37 Ni4
    38 OER catalysts
    39 activation
    40 activity
    41 alkaline electrolyte
    42 alloy films
    43 anodic oxygen evolution reaction
    44 barriers
    45 bottleneck
    46 catalyst
    47 catalytic center
    48 center
    49 components
    50 coupling
    51 electrolysis
    52 electrolyte
    53 electronic interplay
    54 engineering
    55 enhanced water oxidation
    56 evolution
    57 evolution reaction
    58 films
    59 formation
    60 formation barrier
    61 frequency
    62 high valence state
    63 high-valence metal sites
    64 holes
    65 interplay
    66 intrinsic activity
    67 investigation
    68 kinetic bottleneck
    69 kinetics
    70 lattice oxygen activation
    71 ligands
    72 mV
    73 mass activity
    74 metal sites
    75 multistep evolution
    76 outstanding mass activity
    77 overpotential
    78 oxidation
    79 oxygen activation
    80 oxygen coupling
    81 oxygen evolution reaction
    82 oxygen ligands
    83 reaction
    84 reaction kinetics
    85 results
    86 sites
    87 species
    88 spectroscopic investigations
    89 state
    90 study
    91 subtle engineering
    92 surface
    93 theoretical study
    94 transition metal sites
    95 turnover frequency
    96 valence state
    97 water electrolysis
    98 water oxidation
    99 schema:name Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation
    100 schema:pagination 4066
    101 schema:productId N34172cf98243467db5cb3ba2013eecaf
    102 N8112912e31114220ab6c34b10bc48209
    103 Nf5b071dd4dcc4e579729825d11abe2fb
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130068230
    105 https://doi.org/10.1038/s41467-020-17934-7
    106 schema:sdDatePublished 2022-12-01T06:40
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N1f1b0088feb8457585f6e0663e8c7fa2
    109 schema:url https://doi.org/10.1038/s41467-020-17934-7
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N022c2265e6764acd8ed9de2882ce47c1 rdf:first sg:person.0600113217.27
    114 rdf:rest Nba445b1edae04ff2ad4c6c934943ae71
    115 N1f1b0088feb8457585f6e0663e8c7fa2 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 N34172cf98243467db5cb3ba2013eecaf schema:name doi
    118 schema:value 10.1038/s41467-020-17934-7
    119 rdf:type schema:PropertyValue
    120 N547f968f389342659f4addd0494bd32f rdf:first sg:person.011707713025.38
    121 rdf:rest N75661517aee841e283e063f2fc0db7ac
    122 N6e5b245898f24149b50b3c9af3b5c68b schema:volumeNumber 11
    123 rdf:type schema:PublicationVolume
    124 N75661517aee841e283e063f2fc0db7ac rdf:first sg:person.07523157115.01
    125 rdf:rest Nec9780054ff14e2c9da6da4cb04069a1
    126 N788bde12ff094b96815b8ebda9c716e1 rdf:first sg:person.0640412546.43
    127 rdf:rest N022c2265e6764acd8ed9de2882ce47c1
    128 N8112912e31114220ab6c34b10bc48209 schema:name pubmed_id
    129 schema:value 32792524
    130 rdf:type schema:PropertyValue
    131 N8730a80ab5eb4a8fa1ba57bc11504886 rdf:first sg:person.0605412644.98
    132 rdf:rest N788bde12ff094b96815b8ebda9c716e1
    133 N92260741a5dc4c55af8ca89ba7a15158 schema:issueNumber 1
    134 rdf:type schema:PublicationIssue
    135 Na3eeec2488dd4fdf88c4f05f49baf331 rdf:first sg:person.013423467267.30
    136 rdf:rest Nec45f32948334e608087a9ec83686fdf
    137 Na7248244323044d7b01a541e9cfb9d30 rdf:first sg:person.010224060617.00
    138 rdf:rest rdf:nil
    139 Nba445b1edae04ff2ad4c6c934943ae71 rdf:first sg:person.014443267517.00
    140 rdf:rest Na7248244323044d7b01a541e9cfb9d30
    141 Nec45f32948334e608087a9ec83686fdf rdf:first sg:person.013741230017.50
    142 rdf:rest N8730a80ab5eb4a8fa1ba57bc11504886
    143 Nec9780054ff14e2c9da6da4cb04069a1 rdf:first sg:person.0647152372.52
    144 rdf:rest Na3eeec2488dd4fdf88c4f05f49baf331
    145 Nf5b071dd4dcc4e579729825d11abe2fb schema:name dimensions_id
    146 schema:value pub.1130068230
    147 rdf:type schema:PropertyValue
    148 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Chemical Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Physical Chemistry (incl. Structural)
    153 rdf:type schema:DefinedTerm
    154 sg:grant.8927736 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17934-7
    155 rdf:type schema:MonetaryGrant
    156 sg:journal.1043282 schema:issn 2041-1723
    157 schema:name Nature Communications
    158 schema:publisher Springer Nature
    159 rdf:type schema:Periodical
    160 sg:person.010224060617.00 schema:affiliation grid-institutes:grid.16890.36
    161 schema:familyName Chai
    162 schema:givenName Yang
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010224060617.00
    164 rdf:type schema:Person
    165 sg:person.011707713025.38 schema:affiliation grid-institutes:grid.16890.36
    166 schema:familyName Zhang
    167 schema:givenName Ning
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011707713025.38
    169 rdf:type schema:Person
    170 sg:person.013423467267.30 schema:affiliation grid-institutes:grid.511309.f
    171 schema:familyName Deng
    172 schema:givenName Xi
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013423467267.30
    174 rdf:type schema:Person
    175 sg:person.013741230017.50 schema:affiliation grid-institutes:grid.16890.36
    176 schema:familyName Cai
    177 schema:givenName Lejuan
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013741230017.50
    179 rdf:type schema:Person
    180 sg:person.014443267517.00 schema:affiliation grid-institutes:grid.35030.35
    181 schema:familyName Lu
    182 schema:givenName Yang
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443267517.00
    184 rdf:type schema:Person
    185 sg:person.0600113217.27 schema:affiliation grid-institutes:grid.511309.f
    186 schema:familyName Xiong
    187 schema:givenName Yujie
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27
    189 rdf:type schema:Person
    190 sg:person.0605412644.98 schema:affiliation grid-institutes:grid.16890.36
    191 schema:familyName Qiu
    192 schema:givenName Bocheng
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605412644.98
    194 rdf:type schema:Person
    195 sg:person.0640412546.43 schema:affiliation grid-institutes:grid.511309.f
    196 schema:familyName Long
    197 schema:givenName Ran
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640412546.43
    199 rdf:type schema:Person
    200 sg:person.0647152372.52 schema:affiliation grid-institutes:grid.440785.a
    201 schema:familyName Rao
    202 schema:givenName Dewei
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647152372.52
    204 rdf:type schema:Person
    205 sg:person.07523157115.01 schema:affiliation grid-institutes:grid.35030.35
    206 schema:familyName Feng
    207 schema:givenName Xiaobin
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07523157115.01
    209 rdf:type schema:Person
    210 sg:pub.10.1038/nchem.2695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050615355
    211 https://doi.org/10.1038/nchem.2695
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nchem.2886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092797032
    214 https://doi.org/10.1038/nchem.2886
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/ncomms13814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022751957
    217 https://doi.org/10.1038/ncomms13814
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/ncomms7097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020794848
    220 https://doi.org/10.1038/ncomms7097
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/ncomms9625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016630009
    223 https://doi.org/10.1038/ncomms9625
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nenergy.2016.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035524165
    226 https://doi.org/10.1038/nenergy.2016.184
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nenergy.2016.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041401652
    229 https://doi.org/10.1038/nenergy.2016.189
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nmat4551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001045037
    232 https://doi.org/10.1038/nmat4551
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nmat4938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090738140
    235 https://doi.org/10.1038/nmat4938
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/s41467-018-04788-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104575304
    238 https://doi.org/10.1038/s41467-018-04788-3
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/s41467-018-05341-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105646311
    241 https://doi.org/10.1038/s41467-018-05341-y
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/s41467-019-10838-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117296391
    244 https://doi.org/10.1038/s41467-019-10838-1
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/s41560-018-0097-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103193775
    247 https://doi.org/10.1038/s41560-018-0097-0
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/s41560-018-0308-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111223606
    250 https://doi.org/10.1038/s41560-018-0308-8
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/s41560-019-0355-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112968875
    253 https://doi.org/10.1038/s41560-019-0355-9
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/s41560-019-0407-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115905351
    256 https://doi.org/10.1038/s41560-019-0407-1
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/s41560-020-0576-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1125716943
    259 https://doi.org/10.1038/s41560-020-0576-y
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/s41570-016-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027381619
    262 https://doi.org/10.1038/s41570-016-0003
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/s41578-019-0121-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117325344
    265 https://doi.org/10.1038/s41578-019-0121-4
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/s41929-018-0141-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106837441
    268 https://doi.org/10.1038/s41929-018-0141-2
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/s41929-018-0162-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107913040
    271 https://doi.org/10.1038/s41929-018-0162-x
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/s41929-018-0203-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110584168
    274 https://doi.org/10.1038/s41929-018-0203-5
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/s41929-019-0325-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120128556
    277 https://doi.org/10.1038/s41929-019-0325-4
    278 rdf:type schema:CreativeWork
    279 grid-institutes:grid.16890.36 schema:alternateName The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China
    280 schema:name Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
    281 The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China
    282 rdf:type schema:Organization
    283 grid-institutes:grid.35030.35 schema:alternateName Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China
    284 schema:name Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
    285 Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China
    286 rdf:type schema:Organization
    287 grid-institutes:grid.440785.a schema:alternateName School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, P. R. China
    288 schema:name School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, P. R. China
    289 rdf:type schema:Organization
    290 grid-institutes:grid.511309.f schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
    291 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
    292 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...