Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-20

AUTHORS

Akl C. Fahed, Minxian Wang, Julian R. Homburger, Aniruddh P. Patel, Alexander G. Bick, Cynthia L. Neben, Carmen Lai, Deanna Brockman, Anthony Philippakis, Patrick T. Ellinor, Christopher A. Cassa, Matthew Lebo, Kenney Ng, Eric S. Lander, Alicia Y. Zhou, Sekar Kathiresan, Amit V. Khera

ABSTRACT

Genetic variation can predispose to disease both through (i) monogenic risk variants that disrupt a physiologic pathway with large effect on disease and (ii) polygenic risk that involves many variants of small effect in different pathways. Few studies have explored the interplay between monogenic and polygenic risk. Here, we study 80,928 individuals to examine whether polygenic background can modify penetrance of disease in tier 1 genomic conditions — familial hypercholesterolemia, hereditary breast and ovarian cancer, and Lynch syndrome. Among carriers of a monogenic risk variant, we estimate substantial gradients in disease risk based on polygenic background — the probability of disease by age 75 years ranged from 17% to 78% for coronary artery disease, 13% to 76% for breast cancer, and 11% to 80% for colon cancer. We propose that accounting for polygenic background is likely to increase accuracy of risk estimation for individuals who inherit a monogenic risk variant. More... »

PAGES

3635

References to SciGraph publications

  • 2018-08-13. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations in NATURE GENETICS
  • 2008-12-07. Common variants at 30 loci contribute to polygenic dyslipidemia in NATURE GENETICS
  • 2019-11-26. Low coverage whole genome sequencing enables accurate assessment of common variants and calculation of genome-wide polygenic scores in GENOME MEDICINE
  • 2017-03-13. Genetics of coronary artery disease: discovery, biology and clinical translation in NATURE REVIEWS GENETICS
  • 2019-04-11. International trends in the uptake of cancer risk reduction strategies in women with a BRCA1 or BRCA2 mutation in BRITISH JOURNAL OF CANCER
  • 2018-10-02. Functional equivalence of genome sequencing analysis pipelines enables harmonized variant calling across human genetics projects in NATURE COMMUNICATIONS
  • 2016-08-11. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores in GENETICS IN MEDICINE
  • 2018-10-10. The UK Biobank resource with deep phenotyping and genomic data in NATURE
  • 2019-10-25. Quantifying the polygenic contribution to variable expressivity in eleven rare genetic disorders in NATURE COMMUNICATIONS
  • 2019-01-15. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors in GENETICS IN MEDICINE
  • 2020-01-08. A brief history of human disease genetics in NATURE
  • 2020-05-27. The mutational constraint spectrum quantified from variation in 141,456 humans in NATURE
  • 2020-01-20. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression in NATURE GENETICS
  • 2017-10-23. Association analysis identifies 65 new breast cancer risk loci in NATURE
  • 2018-09-12. Accurate classification of BRCA1 variants with saturation genome editing in NATURE
  • 2019-12-04. The GenomeAsia 100K Project enables genetic discoveries across Asia in NATURE
  • 2002-04-22. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations in NATURE GENETICS
  • 2009-07-01. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder in NATURE
  • 2017-06-17. Preferences for breast cancer risk reduction among BRCA1/BRCA2 mutation carriers: a discrete-choice experiment in BREAST CANCER RESEARCH AND TREATMENT
  • 2019-03-29. Clinical use of current polygenic risk scores may exacerbate health disparities in NATURE GENETICS
  • 2018-12-03. Discovery of common and rare genetic risk variants for colorectal cancer in NATURE GENETICS
  • 2011-01-04. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries in GENOME BIOLOGY
  • 2015-03-05. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology in GENETICS IN MEDICINE
  • 2018-08-23. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals in NATURE COMMUNICATIONS
  • 2016-05-03. Developing and evaluating polygenic risk prediction models for stratified disease prevention in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-020-17374-3

    DOI

    http://dx.doi.org/10.1038/s41467-020-17374-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130214152

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32820175


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Case-Control Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Colorectal Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coronary Artery Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multifactorial Inheritance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Odds Ratio", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Penetrance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Department of Medicine, Harvard Medical School, Boston, MA, USA", 
                "Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fahed", 
            "givenName": "Akl C.", 
            "id": "sg:person.01351755355.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351755355.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Minxian", 
            "id": "sg:person.01056630036.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056630036.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Color Genomics, Burlingame, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.512147.4", 
              "name": [
                "Color Genomics, Burlingame, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Homburger", 
            "givenName": "Julian R.", 
            "id": "sg:person.01077620237.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077620237.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Department of Medicine, Harvard Medical School, Boston, MA, USA", 
                "Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Patel", 
            "givenName": "Aniruddh P.", 
            "id": "sg:person.011073764760.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011073764760.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Department of Medicine, Harvard Medical School, Boston, MA, USA", 
                "Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bick", 
            "givenName": "Alexander G.", 
            "id": "sg:person.0635471020.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635471020.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Color Genomics, Burlingame, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.512147.4", 
              "name": [
                "Color Genomics, Burlingame, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neben", 
            "givenName": "Cynthia L.", 
            "id": "sg:person.01260261420.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260261420.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Color Genomics, Burlingame, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.512147.4", 
              "name": [
                "Color Genomics, Burlingame, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lai", 
            "givenName": "Carmen", 
            "id": "sg:person.015366042367.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366042367.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brockman", 
            "givenName": "Deanna", 
            "id": "sg:person.013050227407.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013050227407.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Philippakis", 
            "givenName": "Anthony", 
            "id": "sg:person.01174174715.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174174715.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Department of Medicine, Harvard Medical School, Boston, MA, USA", 
                "Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ellinor", 
            "givenName": "Patrick T.", 
            "id": "sg:person.01300106701.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300106701.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Genetics, Brigham and Women\u2019s Hospital, Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Division of Genetics, Brigham and Women\u2019s Hospital, Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cassa", 
            "givenName": "Christopher A.", 
            "id": "sg:person.01103352213.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103352213.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.452687.a", 
              "name": [
                "Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lebo", 
            "givenName": "Matthew", 
            "id": "sg:person.01232135245.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232135245.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational Health, IBM Research, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Center for Computational Health, IBM Research, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ng", 
            "givenName": "Kenney", 
            "id": "sg:person.01251111274.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251111274.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Systems Biology, Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Department of Biology, MIT, Cambridge, MA, USA", 
                "Department of Systems Biology, Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lander", 
            "givenName": "Eric S.", 
            "id": "sg:person.01260666165.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260666165.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Color Genomics, Burlingame, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.512147.4", 
              "name": [
                "Color Genomics, Burlingame, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Alicia Y.", 
            "id": "sg:person.01244303567.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244303567.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Verve Therapeutics, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.511023.4", 
              "name": [
                "Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Department of Medicine, Harvard Medical School, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Verve Therapeutics, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kathiresan", 
            "givenName": "Sekar", 
            "id": "sg:person.0767751267.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767751267.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA", 
                "Department of Medicine, Harvard Medical School, Boston, MA, USA", 
                "Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khera", 
            "givenName": "Amit V.", 
            "id": "sg:person.07374640413.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374640413.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/gim.2016.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011851992", 
              "https://doi.org/10.1038/gim.2016.103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0579-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107363293", 
              "https://doi.org/10.1038/s41586-018-0579-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0461-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106931799", 
              "https://doi.org/10.1038/s41586-018-0461-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41416-019-0446-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113355989", 
              "https://doi.org/10.1038/s41416-019-0446-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0286-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110204867", 
              "https://doi.org/10.1038/s41588-018-0286-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1793-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123118670", 
              "https://doi.org/10.1038/s41586-019-1793-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-1-r1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045286538", 
              "https://doi.org/10.1186/gb-2011-12-1-r1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1879-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123949206", 
              "https://doi.org/10.1038/s41586-019-1879-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012667501", 
              "https://doi.org/10.1038/ng879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41436-018-0406-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111333416", 
              "https://doi.org/10.1038/s41436-018-0406-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0183-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106070346", 
              "https://doi.org/10.1038/s41588-018-0183-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2308-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127885244", 
              "https://doi.org/10.1038/s41586-020-2308-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044117587", 
              "https://doi.org/10.1038/ng.291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-019-0682-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122920062", 
              "https://doi.org/10.1186/s13073-019-0682-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-017-4332-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086072904", 
              "https://doi.org/10.1007/s10549-017-4332-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016127632", 
              "https://doi.org/10.1038/nrg.2016.27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-019-0379-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113054547", 
              "https://doi.org/10.1038/s41588-019-0379-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092349555", 
              "https://doi.org/10.1038/nature24284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05747-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106199477", 
              "https://doi.org/10.1038/s41467-018-05747-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129678", 
              "https://doi.org/10.1038/nrg.2016.160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2015.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022229472", 
              "https://doi.org/10.1038/gim.2015.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-06159-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107263122", 
              "https://doi.org/10.1038/s41467-018-06159-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-019-0556-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124188684", 
              "https://doi.org/10.1038/s41588-019-0556-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-12869-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122098266", 
              "https://doi.org/10.1038/s41467-019-12869-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025133227", 
              "https://doi.org/10.1038/nature08185"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-08-20", 
        "datePublishedReg": "2020-08-20", 
        "description": "Genetic variation can predispose to disease both through (i) monogenic risk variants that disrupt a physiologic pathway with large effect on disease and (ii) polygenic risk that involves many variants of small effect in different pathways. Few studies have explored the interplay between monogenic and polygenic risk. Here, we study 80,928 individuals to examine whether polygenic background can modify penetrance of disease in tier 1 genomic conditions \u2014 familial hypercholesterolemia, hereditary breast and ovarian cancer, and Lynch syndrome. Among carriers of a monogenic risk variant, we estimate substantial gradients in disease risk based on polygenic background \u2014 the probability of disease by age 75 years ranged from 17% to 78% for coronary artery disease, 13% to 76% for breast cancer, and 11% to 80% for colon cancer. We propose that accounting for polygenic background is likely to increase accuracy of risk estimation for individuals who inherit a monogenic risk variant.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-020-17374-3", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4730138", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7754294", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2542084", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7753529", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.100068438", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2421237", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2684605", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4242960", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "risk variants", 
          "coronary artery disease", 
          "age 75 years", 
          "polygenic risk", 
          "penetrance of disease", 
          "artery disease", 
          "ovarian cancer", 
          "Lynch syndrome", 
          "breast cancer", 
          "polygenic background", 
          "probability of disease", 
          "colon cancer", 
          "hereditary breast", 
          "disease risk", 
          "monogenic variants", 
          "physiologic pathways", 
          "disease", 
          "cancer", 
          "risk", 
          "risk estimation", 
          "penetrance", 
          "genomic conditions", 
          "hypercholesterolemia", 
          "syndrome", 
          "variants", 
          "different pathways", 
          "pathway", 
          "breast", 
          "individuals", 
          "background", 
          "effect", 
          "small effect", 
          "years", 
          "genetic variation", 
          "substantial gradients", 
          "study", 
          "large effect", 
          "carriers", 
          "interplay", 
          "conditions", 
          "probability", 
          "variation", 
          "accuracy", 
          "gradient", 
          "estimation"
        ], 
        "name": "Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions", 
        "pagination": "3635", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130214152"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-020-17374-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32820175"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-020-17374-3", 
          "https://app.dimensions.ai/details/publication/pub.1130214152"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_853.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-020-17374-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17374-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17374-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17374-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17374-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    420 TRIPLES      21 PREDICATES      110 URIs      77 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-020-17374-3 schema:about N18c0e717e2ad44f196bd97456e9a28ee
    2 N1967a28899f0402fa7d1bca9678bba70
    3 N1a0a6f2c7a2b44b9a284e0e2ad6f9ef8
    4 N37960be6a1e743beb30524abf0b25c10
    5 N3c63d0dbfbca48c99b95c3cb1568972e
    6 N45ff359064ac4f0f8660972bc6d2b933
    7 N53120affbbf3455fb00f136ef70e7225
    8 N6543024c7bc744e0a78390c8e4faf423
    9 Na9a94b16f5f64fcab43191f64f44e1dc
    10 Nd1b113e3fb474b87a47f429dde991c50
    11 Nde3e89001d42475fb6c81895c54d8887
    12 Ne84db8fc8ec0466e947bdb09f8a0c243
    13 Nec1533f5f2c740ce91c2331d88eaa3eb
    14 Nf0df518538ef480aa47e0ecd3c6b3e92
    15 Nf780730f77c74a879fb081e789cbb55d
    16 anzsrc-for:11
    17 anzsrc-for:1112
    18 schema:author N83e1ff3080064719be5055ff38750e0f
    19 schema:citation sg:pub.10.1007/s10549-017-4332-3
    20 sg:pub.10.1038/gim.2015.30
    21 sg:pub.10.1038/gim.2016.103
    22 sg:pub.10.1038/nature08185
    23 sg:pub.10.1038/nature24284
    24 sg:pub.10.1038/ng.291
    25 sg:pub.10.1038/ng879
    26 sg:pub.10.1038/nrg.2016.160
    27 sg:pub.10.1038/nrg.2016.27
    28 sg:pub.10.1038/s41416-019-0446-1
    29 sg:pub.10.1038/s41436-018-0406-9
    30 sg:pub.10.1038/s41467-018-05747-8
    31 sg:pub.10.1038/s41467-018-06159-4
    32 sg:pub.10.1038/s41467-019-12869-0
    33 sg:pub.10.1038/s41586-018-0461-z
    34 sg:pub.10.1038/s41586-018-0579-z
    35 sg:pub.10.1038/s41586-019-1793-z
    36 sg:pub.10.1038/s41586-019-1879-7
    37 sg:pub.10.1038/s41586-020-2308-7
    38 sg:pub.10.1038/s41588-018-0183-z
    39 sg:pub.10.1038/s41588-018-0286-6
    40 sg:pub.10.1038/s41588-019-0379-x
    41 sg:pub.10.1038/s41588-019-0556-y
    42 sg:pub.10.1186/gb-2011-12-1-r1
    43 sg:pub.10.1186/s13073-019-0682-2
    44 schema:datePublished 2020-08-20
    45 schema:datePublishedReg 2020-08-20
    46 schema:description Genetic variation can predispose to disease both through (i) monogenic risk variants that disrupt a physiologic pathway with large effect on disease and (ii) polygenic risk that involves many variants of small effect in different pathways. Few studies have explored the interplay between monogenic and polygenic risk. Here, we study 80,928 individuals to examine whether polygenic background can modify penetrance of disease in tier 1 genomic conditions — familial hypercholesterolemia, hereditary breast and ovarian cancer, and Lynch syndrome. Among carriers of a monogenic risk variant, we estimate substantial gradients in disease risk based on polygenic background — the probability of disease by age 75 years ranged from 17% to 78% for coronary artery disease, 13% to 76% for breast cancer, and 11% to 80% for colon cancer. We propose that accounting for polygenic background is likely to increase accuracy of risk estimation for individuals who inherit a monogenic risk variant.
    47 schema:genre article
    48 schema:isAccessibleForFree true
    49 schema:isPartOf N574323b99f884637b1ebb74826c5debe
    50 Nf62b692feb244bd18fc73462a7bfc262
    51 sg:journal.1043282
    52 schema:keywords Lynch syndrome
    53 accuracy
    54 age 75 years
    55 artery disease
    56 background
    57 breast
    58 breast cancer
    59 cancer
    60 carriers
    61 colon cancer
    62 conditions
    63 coronary artery disease
    64 different pathways
    65 disease
    66 disease risk
    67 effect
    68 estimation
    69 genetic variation
    70 genomic conditions
    71 gradient
    72 hereditary breast
    73 hypercholesterolemia
    74 individuals
    75 interplay
    76 large effect
    77 monogenic variants
    78 ovarian cancer
    79 pathway
    80 penetrance
    81 penetrance of disease
    82 physiologic pathways
    83 polygenic background
    84 polygenic risk
    85 probability
    86 probability of disease
    87 risk
    88 risk estimation
    89 risk variants
    90 small effect
    91 study
    92 substantial gradients
    93 syndrome
    94 variants
    95 variation
    96 years
    97 schema:name Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions
    98 schema:pagination 3635
    99 schema:productId N742353e33f6647778e31e0480c5a0a72
    100 Naca50b36588147369fe638537603e235
    101 Ncafce7491ca142ad94e969c7f173fabb
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130214152
    103 https://doi.org/10.1038/s41467-020-17374-3
    104 schema:sdDatePublished 2022-11-24T21:07
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher N7964cb738cfb48288f323446a84e812f
    107 schema:url https://doi.org/10.1038/s41467-020-17374-3
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N18c0e717e2ad44f196bd97456e9a28ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Penetrance
    113 rdf:type schema:DefinedTerm
    114 N1967a28899f0402fa7d1bca9678bba70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Multifactorial Inheritance
    116 rdf:type schema:DefinedTerm
    117 N1a0a6f2c7a2b44b9a284e0e2ad6f9ef8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Colorectal Neoplasms
    119 rdf:type schema:DefinedTerm
    120 N37960be6a1e743beb30524abf0b25c10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Genome, Human
    122 rdf:type schema:DefinedTerm
    123 N3c570830457645aaa8204a609078b8e3 rdf:first sg:person.01260666165.62
    124 rdf:rest N42d5b3231bbe41648eeaa5c500c9c935
    125 N3c63d0dbfbca48c99b95c3cb1568972e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Risk Factors
    127 rdf:type schema:DefinedTerm
    128 N3eef52a4f7824559bc17f3ca827b77ac rdf:first sg:person.01056630036.12
    129 rdf:rest Nf5cd7ad1fdcc41b5a275ad08af8c327d
    130 N42d5b3231bbe41648eeaa5c500c9c935 rdf:first sg:person.01244303567.79
    131 rdf:rest Nf072b774796449e8bee15459eb683ea2
    132 N45f36992f835432b97f6fbe2f8c071fc rdf:first sg:person.01251111274.74
    133 rdf:rest N3c570830457645aaa8204a609078b8e3
    134 N45ff359064ac4f0f8660972bc6d2b933 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Humans
    136 rdf:type schema:DefinedTerm
    137 N4d0b623e99b54ff49b06d04968e09c7a rdf:first sg:person.013050227407.07
    138 rdf:rest N8dae656bfce344a597a445424aa4607d
    139 N53120affbbf3455fb00f136ef70e7225 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Case-Control Studies
    141 rdf:type schema:DefinedTerm
    142 N574323b99f884637b1ebb74826c5debe schema:issueNumber 1
    143 rdf:type schema:PublicationIssue
    144 N653c27e8f712457991c09f48ef8ba327 rdf:first sg:person.011073764760.85
    145 rdf:rest Nbc5cd017dc95407e8d556063ca02ff4e
    146 N6543024c7bc744e0a78390c8e4faf423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Aged
    148 rdf:type schema:DefinedTerm
    149 N71dfec5b4fe540ccb3d38432536b564e rdf:first sg:person.01232135245.66
    150 rdf:rest N45f36992f835432b97f6fbe2f8c071fc
    151 N742353e33f6647778e31e0480c5a0a72 schema:name doi
    152 schema:value 10.1038/s41467-020-17374-3
    153 rdf:type schema:PropertyValue
    154 N7964cb738cfb48288f323446a84e812f schema:name Springer Nature - SN SciGraph project
    155 rdf:type schema:Organization
    156 N80f933f4b921430eb9563ba6963c589c rdf:first sg:person.07374640413.24
    157 rdf:rest rdf:nil
    158 N83e1ff3080064719be5055ff38750e0f rdf:first sg:person.01351755355.59
    159 rdf:rest N3eef52a4f7824559bc17f3ca827b77ac
    160 N8dae656bfce344a597a445424aa4607d rdf:first sg:person.01174174715.87
    161 rdf:rest Nf3e229a199bc4322b26a7186f1fe6c38
    162 N99c83653df79416db264c0c017742e0c rdf:first sg:person.015366042367.76
    163 rdf:rest N4d0b623e99b54ff49b06d04968e09c7a
    164 Na9a94b16f5f64fcab43191f64f44e1dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Male
    166 rdf:type schema:DefinedTerm
    167 Naca50b36588147369fe638537603e235 schema:name dimensions_id
    168 schema:value pub.1130214152
    169 rdf:type schema:PropertyValue
    170 Naf46f49bfd194819adeb7708eb958d33 rdf:first sg:person.01103352213.60
    171 rdf:rest N71dfec5b4fe540ccb3d38432536b564e
    172 Nbc5cd017dc95407e8d556063ca02ff4e rdf:first sg:person.0635471020.32
    173 rdf:rest Ncef17ff9bd604408aea020baa1627f3a
    174 Ncafce7491ca142ad94e969c7f173fabb schema:name pubmed_id
    175 schema:value 32820175
    176 rdf:type schema:PropertyValue
    177 Ncef17ff9bd604408aea020baa1627f3a rdf:first sg:person.01260261420.48
    178 rdf:rest N99c83653df79416db264c0c017742e0c
    179 Nd1b113e3fb474b87a47f429dde991c50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Odds Ratio
    181 rdf:type schema:DefinedTerm
    182 Nde3e89001d42475fb6c81895c54d8887 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Middle Aged
    184 rdf:type schema:DefinedTerm
    185 Ne84db8fc8ec0466e947bdb09f8a0c243 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Breast Neoplasms
    187 rdf:type schema:DefinedTerm
    188 Nec1533f5f2c740ce91c2331d88eaa3eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Female
    190 rdf:type schema:DefinedTerm
    191 Nf072b774796449e8bee15459eb683ea2 rdf:first sg:person.0767751267.74
    192 rdf:rest N80f933f4b921430eb9563ba6963c589c
    193 Nf0df518538ef480aa47e0ecd3c6b3e92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Coronary Artery Disease
    195 rdf:type schema:DefinedTerm
    196 Nf3e229a199bc4322b26a7186f1fe6c38 rdf:first sg:person.01300106701.65
    197 rdf:rest Naf46f49bfd194819adeb7708eb958d33
    198 Nf5cd7ad1fdcc41b5a275ad08af8c327d rdf:first sg:person.01077620237.23
    199 rdf:rest N653c27e8f712457991c09f48ef8ba327
    200 Nf62b692feb244bd18fc73462a7bfc262 schema:volumeNumber 11
    201 rdf:type schema:PublicationVolume
    202 Nf780730f77c74a879fb081e789cbb55d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Genetic Predisposition to Disease
    204 rdf:type schema:DefinedTerm
    205 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    206 schema:name Medical and Health Sciences
    207 rdf:type schema:DefinedTerm
    208 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    209 schema:name Oncology and Carcinogenesis
    210 rdf:type schema:DefinedTerm
    211 sg:grant.100068438 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17374-3
    212 rdf:type schema:MonetaryGrant
    213 sg:grant.2421237 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17374-3
    214 rdf:type schema:MonetaryGrant
    215 sg:grant.2542084 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17374-3
    216 rdf:type schema:MonetaryGrant
    217 sg:grant.2684605 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17374-3
    218 rdf:type schema:MonetaryGrant
    219 sg:grant.4242960 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17374-3
    220 rdf:type schema:MonetaryGrant
    221 sg:grant.4730138 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17374-3
    222 rdf:type schema:MonetaryGrant
    223 sg:grant.7753529 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17374-3
    224 rdf:type schema:MonetaryGrant
    225 sg:grant.7754294 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17374-3
    226 rdf:type schema:MonetaryGrant
    227 sg:journal.1043282 schema:issn 2041-1723
    228 schema:name Nature Communications
    229 schema:publisher Springer Nature
    230 rdf:type schema:Periodical
    231 sg:person.01056630036.12 schema:affiliation grid-institutes:grid.66859.34
    232 schema:familyName Wang
    233 schema:givenName Minxian
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056630036.12
    235 rdf:type schema:Person
    236 sg:person.01077620237.23 schema:affiliation grid-institutes:grid.512147.4
    237 schema:familyName Homburger
    238 schema:givenName Julian R.
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077620237.23
    240 rdf:type schema:Person
    241 sg:person.01103352213.60 schema:affiliation grid-institutes:grid.38142.3c
    242 schema:familyName Cassa
    243 schema:givenName Christopher A.
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103352213.60
    245 rdf:type schema:Person
    246 sg:person.011073764760.85 schema:affiliation grid-institutes:grid.66859.34
    247 schema:familyName Patel
    248 schema:givenName Aniruddh P.
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011073764760.85
    250 rdf:type schema:Person
    251 sg:person.01174174715.87 schema:affiliation grid-institutes:grid.66859.34
    252 schema:familyName Philippakis
    253 schema:givenName Anthony
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174174715.87
    255 rdf:type schema:Person
    256 sg:person.01232135245.66 schema:affiliation grid-institutes:grid.452687.a
    257 schema:familyName Lebo
    258 schema:givenName Matthew
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232135245.66
    260 rdf:type schema:Person
    261 sg:person.01244303567.79 schema:affiliation grid-institutes:grid.512147.4
    262 schema:familyName Zhou
    263 schema:givenName Alicia Y.
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244303567.79
    265 rdf:type schema:Person
    266 sg:person.01251111274.74 schema:affiliation grid-institutes:None
    267 schema:familyName Ng
    268 schema:givenName Kenney
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251111274.74
    270 rdf:type schema:Person
    271 sg:person.01260261420.48 schema:affiliation grid-institutes:grid.512147.4
    272 schema:familyName Neben
    273 schema:givenName Cynthia L.
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260261420.48
    275 rdf:type schema:Person
    276 sg:person.01260666165.62 schema:affiliation grid-institutes:grid.38142.3c
    277 schema:familyName Lander
    278 schema:givenName Eric S.
    279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260666165.62
    280 rdf:type schema:Person
    281 sg:person.01300106701.65 schema:affiliation grid-institutes:grid.66859.34
    282 schema:familyName Ellinor
    283 schema:givenName Patrick T.
    284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300106701.65
    285 rdf:type schema:Person
    286 sg:person.013050227407.07 schema:affiliation grid-institutes:grid.66859.34
    287 schema:familyName Brockman
    288 schema:givenName Deanna
    289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013050227407.07
    290 rdf:type schema:Person
    291 sg:person.01351755355.59 schema:affiliation grid-institutes:grid.66859.34
    292 schema:familyName Fahed
    293 schema:givenName Akl C.
    294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351755355.59
    295 rdf:type schema:Person
    296 sg:person.015366042367.76 schema:affiliation grid-institutes:grid.512147.4
    297 schema:familyName Lai
    298 schema:givenName Carmen
    299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366042367.76
    300 rdf:type schema:Person
    301 sg:person.0635471020.32 schema:affiliation grid-institutes:grid.66859.34
    302 schema:familyName Bick
    303 schema:givenName Alexander G.
    304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635471020.32
    305 rdf:type schema:Person
    306 sg:person.07374640413.24 schema:affiliation grid-institutes:grid.66859.34
    307 schema:familyName Khera
    308 schema:givenName Amit V.
    309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374640413.24
    310 rdf:type schema:Person
    311 sg:person.0767751267.74 schema:affiliation grid-institutes:grid.511023.4
    312 schema:familyName Kathiresan
    313 schema:givenName Sekar
    314 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767751267.74
    315 rdf:type schema:Person
    316 sg:pub.10.1007/s10549-017-4332-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086072904
    317 https://doi.org/10.1007/s10549-017-4332-3
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/gim.2015.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022229472
    320 https://doi.org/10.1038/gim.2015.30
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/gim.2016.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011851992
    323 https://doi.org/10.1038/gim.2016.103
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/nature08185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025133227
    326 https://doi.org/10.1038/nature08185
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/nature24284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092349555
    329 https://doi.org/10.1038/nature24284
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/ng.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044117587
    332 https://doi.org/10.1038/ng.291
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/ng879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012667501
    335 https://doi.org/10.1038/ng879
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/nrg.2016.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129678
    338 https://doi.org/10.1038/nrg.2016.160
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/nrg.2016.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127632
    341 https://doi.org/10.1038/nrg.2016.27
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/s41416-019-0446-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113355989
    344 https://doi.org/10.1038/s41416-019-0446-1
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/s41436-018-0406-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111333416
    347 https://doi.org/10.1038/s41436-018-0406-9
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/s41467-018-05747-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106199477
    350 https://doi.org/10.1038/s41467-018-05747-8
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/s41467-018-06159-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107263122
    353 https://doi.org/10.1038/s41467-018-06159-4
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1038/s41467-019-12869-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122098266
    356 https://doi.org/10.1038/s41467-019-12869-0
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1038/s41586-018-0461-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106931799
    359 https://doi.org/10.1038/s41586-018-0461-z
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1038/s41586-018-0579-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107363293
    362 https://doi.org/10.1038/s41586-018-0579-z
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1038/s41586-019-1793-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1123118670
    365 https://doi.org/10.1038/s41586-019-1793-z
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1038/s41586-019-1879-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123949206
    368 https://doi.org/10.1038/s41586-019-1879-7
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1038/s41586-020-2308-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127885244
    371 https://doi.org/10.1038/s41586-020-2308-7
    372 rdf:type schema:CreativeWork
    373 sg:pub.10.1038/s41588-018-0183-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106070346
    374 https://doi.org/10.1038/s41588-018-0183-z
    375 rdf:type schema:CreativeWork
    376 sg:pub.10.1038/s41588-018-0286-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110204867
    377 https://doi.org/10.1038/s41588-018-0286-6
    378 rdf:type schema:CreativeWork
    379 sg:pub.10.1038/s41588-019-0379-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1113054547
    380 https://doi.org/10.1038/s41588-019-0379-x
    381 rdf:type schema:CreativeWork
    382 sg:pub.10.1038/s41588-019-0556-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1124188684
    383 https://doi.org/10.1038/s41588-019-0556-y
    384 rdf:type schema:CreativeWork
    385 sg:pub.10.1186/gb-2011-12-1-r1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045286538
    386 https://doi.org/10.1186/gb-2011-12-1-r1
    387 rdf:type schema:CreativeWork
    388 sg:pub.10.1186/s13073-019-0682-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122920062
    389 https://doi.org/10.1186/s13073-019-0682-2
    390 rdf:type schema:CreativeWork
    391 grid-institutes:None schema:alternateName Center for Computational Health, IBM Research, Cambridge, MA, USA
    392 schema:name Center for Computational Health, IBM Research, Cambridge, MA, USA
    393 rdf:type schema:Organization
    394 grid-institutes:grid.38142.3c schema:alternateName Department of Systems Biology, Harvard Medical School, Boston, MA, USA
    395 Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
    396 schema:name Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
    397 Department of Biology, MIT, Cambridge, MA, USA
    398 Department of Systems Biology, Harvard Medical School, Boston, MA, USA
    399 Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
    400 Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
    401 rdf:type schema:Organization
    402 grid-institutes:grid.452687.a schema:alternateName Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Boston, MA, USA
    403 schema:name Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Boston, MA, USA
    404 rdf:type schema:Organization
    405 grid-institutes:grid.511023.4 schema:alternateName Verve Therapeutics, Cambridge, MA, USA
    406 schema:name Department of Medicine, Harvard Medical School, Boston, MA, USA
    407 Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
    408 Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
    409 Verve Therapeutics, Cambridge, MA, USA
    410 rdf:type schema:Organization
    411 grid-institutes:grid.512147.4 schema:alternateName Color Genomics, Burlingame, CA, USA
    412 schema:name Color Genomics, Burlingame, CA, USA
    413 rdf:type schema:Organization
    414 grid-institutes:grid.66859.34 schema:alternateName Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
    415 schema:name Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
    416 Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
    417 Department of Medicine, Harvard Medical School, Boston, MA, USA
    418 Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
    419 Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
    420 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...