Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-07-03

AUTHORS

Mattia Conte, Luca Fiorillo, Simona Bianco, Andrea M. Chiariello, Andrea Esposito, Mario Nicodemi

ABSTRACT

The spatial organization of chromosomes has key functional roles, yet how chromosomes fold remains poorly understood at the single-molecule level. Here, we employ models of polymer physics to investigate DNA loci in human HCT116 and IMR90 wild-type and cohesin depleted cells. Model predictions on single-molecule structures are validated against single-cell imaging data, providing evidence that chromosomal architecture is controlled by a thermodynamics mechanism of polymer phase separation whereby chromatin self-assembles in segregated globules by combinatorial interactions of chromatin factors that include CTCF and cohesin. The thermodynamics degeneracy of single-molecule conformations results in broad structural and temporal variability of TAD-like contact patterns. Globules establish stable environments where specific contacts are highly favored over stochastic encounters. Cohesin depletion reverses phase separation into randomly folded states, erasing average interaction patterns. Overall, globule phase separation appears to be a robust yet reversible mechanism of chromatin organization where stochasticity and specificity coexist. More... »

PAGES

3289

References to SciGraph publications

  • 2012-04-11. Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions in NATURE
  • 2018-08-08. Interphase human chromosome exhibits out of equilibrium glassy dynamics in NATURE COMMUNICATIONS
  • 2017-07-06. Cell-cycle dynamics of chromosomal organisation at single-cell resolution in NATURE
  • 2012-09-05. An Integrated Encyclopedia of DNA Elements in the Human Genome in NATURE
  • 2018-04-24. Structural variation in the 3D genome in NATURE REVIEWS GENETICS
  • 2017-09-27. Two independent modes of chromatin organization revealed by cohesin removal in NATURE
  • 2017-07-31. The three-dimensional genome organization of Drosophila melanogaster through data integration in GENOME BIOLOGY
  • 2017-06-21. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin in NATURE
  • 2018-04-16. Polymer physics predicts the effects of structural variants on chromatin architecture in NATURE GENETICS
  • 2017-03-08. Complex multi-enhancer contacts captured by Genome Architecture Mapping (GAM) in NATURE
  • 2013-09-25. Single cell Hi-C reveals cell-to-cell variability in chromosome structure in NATURE
  • 2019-08-07. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates in NATURE
  • 2017-11-24. Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions in NATURE COMMUNICATIONS
  • 2016-01-13. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states in NATURE
  • 2017-03-29. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition in NATURE
  • 2017-03-13. 3D structure of individual mammalian genomes studied by single cell Hi-C in NATURE
  • 2017-06-21. Phase separation drives heterochromatin domain formation in NATURE
  • 2014-07-24. Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells in NATURE COMMUNICATIONS
  • 2017-04-24. Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2012-04-11. Spatial partitioning of the regulatory landscape of the X-inactivation centre in NATURE
  • 2016-07-13. Polymer physics of chromosome large-scale 3D organisation in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-020-17141-4

    DOI

    http://dx.doi.org/10.1038/s41467-020-17141-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1128943567

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32620890


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CCCTC-Binding Factor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Cycle Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin Assembly and Disassembly", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomal Proteins, Non-Histone", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "HCT116 Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Physical Phenomena", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Binding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Single-Cell Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stochastic Processes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thermodynamics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Conte", 
            "givenName": "Mattia", 
            "id": "sg:person.011036534707.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036534707.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fiorillo", 
            "givenName": "Luca", 
            "id": "sg:person.014520744663.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014520744663.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bianco", 
            "givenName": "Simona", 
            "id": "sg:person.011213327541.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011213327541.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chiariello", 
            "givenName": "Andrea M.", 
            "id": "sg:person.0631341604.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631341604.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Esposito", 
            "givenName": "Andrea", 
            "id": "sg:person.012010710141.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010710141.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.484013.a", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant\u2019Angelo, 80126 Naples, Italy", 
                "Berlin Institute for Medical Systems Biology, Max-Delbr\u00fcck Centre (MDC) for Molecular Medicine, Berlin, Germany", 
                "Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nicodemi", 
            "givenName": "Mario", 
            "id": "sg:person.0714371637.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714371637.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature12593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022035194", 
              "https://doi.org/10.1038/nature12593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086098070", 
              "https://doi.org/10.1038/nature22822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41576-018-0007-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103597567", 
              "https://doi.org/10.1038/s41576-018-0007-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040271530", 
              "https://doi.org/10.1038/nature11082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029065430", 
              "https://doi.org/10.1038/nature11247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086106384", 
              "https://doi.org/10.1038/nature22989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091924058", 
              "https://doi.org/10.1038/nature24281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01962-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092832030", 
              "https://doi.org/10.1038/s41467-017-01962-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090343989", 
              "https://doi.org/10.1038/nature23001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.3402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085051627", 
              "https://doi.org/10.1038/nsmb.3402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044812533", 
              "https://doi.org/10.1038/nature16496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011397271", 
              "https://doi.org/10.1038/ncomms5494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004787340", 
              "https://doi.org/10.1038/nature11049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0098-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103265664", 
              "https://doi.org/10.1038/s41588-018-0098-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128557", 
              "https://doi.org/10.1038/nature21429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1464-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120188450", 
              "https://doi.org/10.1038/s41586-019-1464-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05606-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105982811", 
              "https://doi.org/10.1038/s41467-018-05606-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep29775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028981829", 
              "https://doi.org/10.1038/srep29775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128543", 
              "https://doi.org/10.1038/nature21411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128601", 
              "https://doi.org/10.1038/nature21711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-017-1264-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090929384", 
              "https://doi.org/10.1186/s13059-017-1264-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-07-03", 
        "datePublishedReg": "2020-07-03", 
        "description": "The spatial organization of chromosomes has key functional roles, yet how chromosomes fold remains poorly understood at the single-molecule level. Here, we employ models of polymer physics to investigate DNA loci in human HCT116 and IMR90 wild-type and cohesin depleted cells. Model predictions on single-molecule structures are validated against single-cell imaging data, providing evidence that chromosomal architecture is controlled by a thermodynamics mechanism of polymer phase separation whereby chromatin self-assembles in segregated globules by combinatorial interactions of chromatin factors that include CTCF and cohesin. The thermodynamics degeneracy of single-molecule conformations results in broad structural and temporal variability of TAD-like contact patterns. Globules establish stable environments where specific contacts are highly favored over stochastic encounters. Cohesin depletion reverses phase separation into randomly folded states, erasing average interaction patterns. Overall, globule phase separation appears to be a robust yet reversible mechanism of chromatin organization where stochasticity and specificity coexist.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-020-17141-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4455054", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7820073", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "single-cell imaging data", 
          "key functional role", 
          "chromatin factors", 
          "chromatin organization", 
          "chromosomal architecture", 
          "DNA loci", 
          "combinatorial interactions", 
          "single-molecule level", 
          "specific contacts", 
          "single-molecule conformations", 
          "functional role", 
          "single-cell results", 
          "human HCT116", 
          "cohesin", 
          "chromatin", 
          "spatial organization", 
          "chromosomes", 
          "reversible mechanism", 
          "stable environment", 
          "thermodynamic degeneracy", 
          "polymer physics", 
          "stochastic encounters", 
          "CTCF", 
          "IMR90", 
          "loci", 
          "HCT116", 
          "mechanism", 
          "globules", 
          "stochasticity", 
          "thermodynamic mechanism", 
          "temporal variability", 
          "interaction patterns", 
          "cells", 
          "conformation", 
          "patterns", 
          "variability", 
          "single molecule structures", 
          "role", 
          "interaction", 
          "organization", 
          "evidence", 
          "levels", 
          "coexist", 
          "structure", 
          "environment", 
          "factors", 
          "phase separation", 
          "model predictions", 
          "separation", 
          "contact", 
          "architecture", 
          "data", 
          "results", 
          "prediction", 
          "contact patterns", 
          "state", 
          "encounters", 
          "model", 
          "polymer phase separation", 
          "degeneracy", 
          "imaging data", 
          "state degeneracy", 
          "physics", 
          "segregated globules", 
          "TAD-like contact patterns", 
          "Cohesin depletion reverses phase separation", 
          "depletion reverses phase separation", 
          "reverses phase separation", 
          "average interaction patterns", 
          "globule phase separation", 
          "specificity coexist"
        ], 
        "name": "Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation", 
        "pagination": "3289", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1128943567"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-020-17141-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32620890"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-020-17141-4", 
          "https://app.dimensions.ai/details/publication/pub.1128943567"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_846.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-020-17141-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17141-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17141-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17141-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17141-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    320 TRIPLES      22 PREDICATES      133 URIs      104 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-020-17141-4 schema:about N00e5ddd7e0434965a8e4e7636d612ad6
    2 N21cdf3c298ce4946a87a5db6b4f8ef2a
    3 N2b047fae7d044207949cb654f3a72bbc
    4 N4da4b20f73f34f2c9602e75d99c6c8b2
    5 N569b272ce2214d06b9cfd13bf78702f2
    6 N65656e1c12944a57b7988ef13303273a
    7 N7400eafeee234689b1ea0b89456fe2da
    8 N7465956586ed4bf2b235ed7a0c0e8e3d
    9 N80a21e9bc1c5465984d2e6bee21fd7e2
    10 N8e0a0ef15d7e4d83a92db7556f29a45a
    11 N95e5c520539a4f3a84fa2112f0c6837a
    12 N9ce82674de96448f8b0339bde8e3e3ba
    13 N9f2678a0b9cf41d8b1c33549d74abba5
    14 Na9a70f90bf9c4ab39a12aed1b8bdd1cb
    15 Nca6e9b1064334288a88385b31f05d470
    16 anzsrc-for:02
    17 anzsrc-for:0299
    18 schema:author N28cc1ed8b35548d29615d865f68c0b16
    19 schema:citation sg:pub.10.1038/nature11049
    20 sg:pub.10.1038/nature11082
    21 sg:pub.10.1038/nature11247
    22 sg:pub.10.1038/nature12593
    23 sg:pub.10.1038/nature16496
    24 sg:pub.10.1038/nature21411
    25 sg:pub.10.1038/nature21429
    26 sg:pub.10.1038/nature21711
    27 sg:pub.10.1038/nature22822
    28 sg:pub.10.1038/nature22989
    29 sg:pub.10.1038/nature23001
    30 sg:pub.10.1038/nature24281
    31 sg:pub.10.1038/ncomms5494
    32 sg:pub.10.1038/nsmb.3402
    33 sg:pub.10.1038/s41467-017-01962-x
    34 sg:pub.10.1038/s41467-018-05606-6
    35 sg:pub.10.1038/s41576-018-0007-0
    36 sg:pub.10.1038/s41586-019-1464-0
    37 sg:pub.10.1038/s41588-018-0098-8
    38 sg:pub.10.1038/srep29775
    39 sg:pub.10.1186/s13059-017-1264-5
    40 schema:datePublished 2020-07-03
    41 schema:datePublishedReg 2020-07-03
    42 schema:description The spatial organization of chromosomes has key functional roles, yet how chromosomes fold remains poorly understood at the single-molecule level. Here, we employ models of polymer physics to investigate DNA loci in human HCT116 and IMR90 wild-type and cohesin depleted cells. Model predictions on single-molecule structures are validated against single-cell imaging data, providing evidence that chromosomal architecture is controlled by a thermodynamics mechanism of polymer phase separation whereby chromatin self-assembles in segregated globules by combinatorial interactions of chromatin factors that include CTCF and cohesin. The thermodynamics degeneracy of single-molecule conformations results in broad structural and temporal variability of TAD-like contact patterns. Globules establish stable environments where specific contacts are highly favored over stochastic encounters. Cohesin depletion reverses phase separation into randomly folded states, erasing average interaction patterns. Overall, globule phase separation appears to be a robust yet reversible mechanism of chromatin organization where stochasticity and specificity coexist.
    43 schema:genre article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N2eb7d7e60b404bb497a487d4d6a71bc4
    47 Nbdc40ad6505548b397ab73c57a51709a
    48 sg:journal.1043282
    49 schema:keywords CTCF
    50 Cohesin depletion reverses phase separation
    51 DNA loci
    52 HCT116
    53 IMR90
    54 TAD-like contact patterns
    55 architecture
    56 average interaction patterns
    57 cells
    58 chromatin
    59 chromatin factors
    60 chromatin organization
    61 chromosomal architecture
    62 chromosomes
    63 coexist
    64 cohesin
    65 combinatorial interactions
    66 conformation
    67 contact
    68 contact patterns
    69 data
    70 degeneracy
    71 depletion reverses phase separation
    72 encounters
    73 environment
    74 evidence
    75 factors
    76 functional role
    77 globule phase separation
    78 globules
    79 human HCT116
    80 imaging data
    81 interaction
    82 interaction patterns
    83 key functional role
    84 levels
    85 loci
    86 mechanism
    87 model
    88 model predictions
    89 organization
    90 patterns
    91 phase separation
    92 physics
    93 polymer phase separation
    94 polymer physics
    95 prediction
    96 results
    97 reverses phase separation
    98 reversible mechanism
    99 role
    100 segregated globules
    101 separation
    102 single molecule structures
    103 single-cell imaging data
    104 single-cell results
    105 single-molecule conformations
    106 single-molecule level
    107 spatial organization
    108 specific contacts
    109 specificity coexist
    110 stable environment
    111 state
    112 state degeneracy
    113 stochastic encounters
    114 stochasticity
    115 structure
    116 temporal variability
    117 thermodynamic degeneracy
    118 thermodynamic mechanism
    119 variability
    120 schema:name Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation
    121 schema:pagination 3289
    122 schema:productId N37bccd2d762e468ebd2bbc56c69627ee
    123 N4d2eb41952a149878a2ad99b366b1a43
    124 Nd32aa3636ad04241962ec8f2acc331f4
    125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128943567
    126 https://doi.org/10.1038/s41467-020-17141-4
    127 schema:sdDatePublished 2022-01-01T18:56
    128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    129 schema:sdPublisher N4adbed0038d64d579463a4dc77636ca8
    130 schema:url https://doi.org/10.1038/s41467-020-17141-4
    131 sgo:license sg:explorer/license/
    132 sgo:sdDataset articles
    133 rdf:type schema:ScholarlyArticle
    134 N00e5ddd7e0434965a8e4e7636d612ad6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Chromatin Assembly and Disassembly
    136 rdf:type schema:DefinedTerm
    137 N21cdf3c298ce4946a87a5db6b4f8ef2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Single-Cell Analysis
    139 rdf:type schema:DefinedTerm
    140 N28cc1ed8b35548d29615d865f68c0b16 rdf:first sg:person.011036534707.97
    141 rdf:rest N3951c1a306ba4d27abc53517548b45f2
    142 N2b047fae7d044207949cb654f3a72bbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Protein Binding
    144 rdf:type schema:DefinedTerm
    145 N2eb7d7e60b404bb497a487d4d6a71bc4 schema:volumeNumber 11
    146 rdf:type schema:PublicationVolume
    147 N376af193ce0340dd9e456cc09b890778 rdf:first sg:person.011213327541.41
    148 rdf:rest N79f1a56395364cf794e8978929c8495a
    149 N37bccd2d762e468ebd2bbc56c69627ee schema:name pubmed_id
    150 schema:value 32620890
    151 rdf:type schema:PropertyValue
    152 N3951c1a306ba4d27abc53517548b45f2 rdf:first sg:person.014520744663.20
    153 rdf:rest N376af193ce0340dd9e456cc09b890778
    154 N3a30e73ade5048a5905dc068259202f6 rdf:first sg:person.0714371637.39
    155 rdf:rest rdf:nil
    156 N4adbed0038d64d579463a4dc77636ca8 schema:name Springer Nature - SN SciGraph project
    157 rdf:type schema:Organization
    158 N4d2eb41952a149878a2ad99b366b1a43 schema:name dimensions_id
    159 schema:value pub.1128943567
    160 rdf:type schema:PropertyValue
    161 N4da4b20f73f34f2c9602e75d99c6c8b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Physical Phenomena
    163 rdf:type schema:DefinedTerm
    164 N569b272ce2214d06b9cfd13bf78702f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Molecular Conformation
    166 rdf:type schema:DefinedTerm
    167 N65656e1c12944a57b7988ef13303273a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name HCT116 Cells
    169 rdf:type schema:DefinedTerm
    170 N7400eafeee234689b1ea0b89456fe2da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Chromatin
    172 rdf:type schema:DefinedTerm
    173 N7465956586ed4bf2b235ed7a0c0e8e3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name CCCTC-Binding Factor
    175 rdf:type schema:DefinedTerm
    176 N79f1a56395364cf794e8978929c8495a rdf:first sg:person.0631341604.65
    177 rdf:rest Nc81e8420f75d4ea5aa7abb6f36985a54
    178 N80a21e9bc1c5465984d2e6bee21fd7e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Humans
    180 rdf:type schema:DefinedTerm
    181 N8e0a0ef15d7e4d83a92db7556f29a45a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Cell Line
    183 rdf:type schema:DefinedTerm
    184 N95e5c520539a4f3a84fa2112f0c6837a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Thermodynamics
    186 rdf:type schema:DefinedTerm
    187 N9ce82674de96448f8b0339bde8e3e3ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Stochastic Processes
    189 rdf:type schema:DefinedTerm
    190 N9f2678a0b9cf41d8b1c33549d74abba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Chromosomal Proteins, Non-Histone
    192 rdf:type schema:DefinedTerm
    193 Na9a70f90bf9c4ab39a12aed1b8bdd1cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Polymers
    195 rdf:type schema:DefinedTerm
    196 Nbdc40ad6505548b397ab73c57a51709a schema:issueNumber 1
    197 rdf:type schema:PublicationIssue
    198 Nc81e8420f75d4ea5aa7abb6f36985a54 rdf:first sg:person.012010710141.70
    199 rdf:rest N3a30e73ade5048a5905dc068259202f6
    200 Nca6e9b1064334288a88385b31f05d470 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Cell Cycle Proteins
    202 rdf:type schema:DefinedTerm
    203 Nd32aa3636ad04241962ec8f2acc331f4 schema:name doi
    204 schema:value 10.1038/s41467-020-17141-4
    205 rdf:type schema:PropertyValue
    206 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    207 schema:name Physical Sciences
    208 rdf:type schema:DefinedTerm
    209 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Other Physical Sciences
    211 rdf:type schema:DefinedTerm
    212 sg:grant.4455054 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17141-4
    213 rdf:type schema:MonetaryGrant
    214 sg:grant.7820073 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-17141-4
    215 rdf:type schema:MonetaryGrant
    216 sg:journal.1043282 schema:issn 2041-1723
    217 schema:name Nature Communications
    218 schema:publisher Springer Nature
    219 rdf:type schema:Periodical
    220 sg:person.011036534707.97 schema:affiliation grid-institutes:grid.4691.a
    221 schema:familyName Conte
    222 schema:givenName Mattia
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036534707.97
    224 rdf:type schema:Person
    225 sg:person.011213327541.41 schema:affiliation grid-institutes:grid.4691.a
    226 schema:familyName Bianco
    227 schema:givenName Simona
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011213327541.41
    229 rdf:type schema:Person
    230 sg:person.012010710141.70 schema:affiliation grid-institutes:grid.4691.a
    231 schema:familyName Esposito
    232 schema:givenName Andrea
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010710141.70
    234 rdf:type schema:Person
    235 sg:person.014520744663.20 schema:affiliation grid-institutes:grid.4691.a
    236 schema:familyName Fiorillo
    237 schema:givenName Luca
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014520744663.20
    239 rdf:type schema:Person
    240 sg:person.0631341604.65 schema:affiliation grid-institutes:grid.4691.a
    241 schema:familyName Chiariello
    242 schema:givenName Andrea M.
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631341604.65
    244 rdf:type schema:Person
    245 sg:person.0714371637.39 schema:affiliation grid-institutes:grid.484013.a
    246 schema:familyName Nicodemi
    247 schema:givenName Mario
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714371637.39
    249 rdf:type schema:Person
    250 sg:pub.10.1038/nature11049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004787340
    251 https://doi.org/10.1038/nature11049
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nature11082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040271530
    254 https://doi.org/10.1038/nature11082
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
    257 https://doi.org/10.1038/nature11247
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature12593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022035194
    260 https://doi.org/10.1038/nature12593
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature16496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044812533
    263 https://doi.org/10.1038/nature16496
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nature21411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128543
    266 https://doi.org/10.1038/nature21411
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nature21429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128557
    269 https://doi.org/10.1038/nature21429
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nature21711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128601
    272 https://doi.org/10.1038/nature21711
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nature22822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086098070
    275 https://doi.org/10.1038/nature22822
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nature22989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086106384
    278 https://doi.org/10.1038/nature22989
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nature23001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090343989
    281 https://doi.org/10.1038/nature23001
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nature24281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091924058
    284 https://doi.org/10.1038/nature24281
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/ncomms5494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011397271
    287 https://doi.org/10.1038/ncomms5494
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nsmb.3402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085051627
    290 https://doi.org/10.1038/nsmb.3402
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/s41467-017-01962-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092832030
    293 https://doi.org/10.1038/s41467-017-01962-x
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/s41467-018-05606-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105982811
    296 https://doi.org/10.1038/s41467-018-05606-6
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/s41576-018-0007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103597567
    299 https://doi.org/10.1038/s41576-018-0007-0
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/s41586-019-1464-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120188450
    302 https://doi.org/10.1038/s41586-019-1464-0
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/s41588-018-0098-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103265664
    305 https://doi.org/10.1038/s41588-018-0098-8
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/srep29775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028981829
    308 https://doi.org/10.1038/srep29775
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1186/s13059-017-1264-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090929384
    311 https://doi.org/10.1186/s13059-017-1264-5
    312 rdf:type schema:CreativeWork
    313 grid-institutes:grid.4691.a schema:alternateName Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
    314 schema:name Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
    315 rdf:type schema:Organization
    316 grid-institutes:grid.484013.a schema:alternateName Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany
    317 schema:name Berlin Institute for Medical Systems Biology, Max-Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany
    318 Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany
    319 Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
    320 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...