Ontology type: schema:ScholarlyArticle Open Access: True
2020-07-14
AUTHORSHuang Lin, Shyamal Das Peddada
ABSTRACTDifferential abundance (DA) analysis of microbiome data continues to be a challenging problem due to the complexity of the data. In this article we define the notion of “sampling fraction” and demonstrate a major hurdle in performing DA analysis of microbiome data is the bias introduced by differences in the sampling fractions across samples. We introduce a methodology called Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC), which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework. This formulation makes a fundamental advancement in the field because, unlike the existing methods, it (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. More... »
PAGES3514
http://scigraph.springernature.com/pub.10.1038/s41467-020-17041-7
DOIhttp://dx.doi.org/10.1038/s41467-020-17041-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1129323965
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/32665548
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computational Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Ecology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Microbiology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Microbiota",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA",
"id": "http://www.grid.ac/institutes/grid.21925.3d",
"name": [
"Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA"
],
"type": "Organization"
},
"familyName": "Lin",
"givenName": "Huang",
"id": "sg:person.011234107137.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234107137.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA",
"id": "http://www.grid.ac/institutes/grid.21925.3d",
"name": [
"Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA"
],
"type": "Organization"
},
"familyName": "Peddada",
"givenName": "Shyamal Das",
"id": "sg:person.015365450637.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365450637.65"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/s13059-014-0550-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015222646",
"https://doi.org/10.1186/s13059-014-0550-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.2658",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002139060",
"https://doi.org/10.1038/nmeth.2658"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms7505",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046556597",
"https://doi.org/10.1038/ncomms7505"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-019-10656-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1117296456",
"https://doi.org/10.1038/s41467-019-10656-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/d41586-019-00857-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112899140",
"https://doi.org/10.1038/d41586-019-00857-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature11053",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052378845",
"https://doi.org/10.1038/nature11053"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40168-017-0237-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084252802",
"https://doi.org/10.1186/s40168-017-0237-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2020-07-14",
"datePublishedReg": "2020-07-14",
"description": "Differential abundance (DA) analysis of microbiome data continues to be a challenging problem due to the complexity of the data. In this article we define the notion of \u201csampling fraction\u201d and demonstrate a major hurdle in performing DA analysis of microbiome data is the bias introduced by differences in the sampling fractions across samples. We introduce a methodology called Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC), which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework. This formulation makes a fundamental advancement in the field because, unlike the existing methods, it (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement.",
"genre": "article",
"id": "sg:pub.10.1038/s41467-020-17041-7",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1043282",
"issn": [
"2041-1723"
],
"name": "Nature Communications",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "11"
}
],
"keywords": [
"bias correction",
"analysis of composition",
"abundance data",
"sampling fraction",
"absolute abundance data",
"DA analysis",
"linear regression framework",
"microbiome data",
"composition",
"false discovery rate",
"regression framework",
"appropriate p value",
"data",
"abundance",
"fraction",
"taxa",
"abundance analysis",
"challenging problem",
"bias",
"differential abundance analysis",
"samples",
"discovery rate",
"correction",
"fundamental advancement",
"interval",
"analysis",
"formulation",
"problem",
"field",
"complexity",
"differences",
"valid test",
"confidence intervals",
"methodology",
"framework",
"adequate power",
"notion",
"rate",
"power",
"p-value",
"method",
"article",
"major hurdle",
"advancement",
"test",
"microbiome",
"differential abundance",
"hurdles"
],
"name": "Analysis of compositions of microbiomes with bias correction",
"pagination": "3514",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1129323965"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41467-020-17041-7"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"32665548"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41467-020-17041-7",
"https://app.dimensions.ai/details/publication/pub.1129323965"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:10",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_838.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41467-020-17041-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17041-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17041-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17041-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-17041-7'
This table displays all metadata directly associated to this object as RDF triples.
163 TRIPLES
21 PREDICATES
84 URIs
69 LITERALS
12 BLANK NODES