Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-10

AUTHORS

Minjung Son, Alberta Pinnola, Samuel C. Gordon, Roberto Bassi, Gabriela S. Schlau-Cohen

ABSTRACT

Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo. More... »

PAGES

1295

References to SciGraph publications

  • 2007-11. Identification of a mechanism of photoprotective energy dissipation in higher plants in NATURE
  • 2017-07-17. Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection in NATURE CHEMISTRY
  • 2013-04-11. The back and forth of energy transfer between carotenoids and chlorophylls and its role in the regulation of light harvesting in PHOTOSYNTHESIS RESEARCH
  • 2009-05-06. Linear dichroism and circular dichroism in photosynthesis research in PHOTOSYNTHESIS RESEARCH
  • 2017-12-08. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants in NATURE COMMUNICATIONS
  • 2014. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria in NONE
  • 2018-11-26. Time-resolved fluorescence measurements on leaves: principles and recent developments in PHOTOSYNTHESIS RESEARCH
  • 2017-10-24. Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants in SCIENTIFIC REPORTS
  • 2011-09-23. Lessons from nature about solar light harvesting in NATURE CHEMISTRY
  • 2015-10-23. From light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII) in SCIENTIFIC REPORTS
  • 2005-07. Molecular basis of photoprotection and control of photosynthetic light-harvesting in NATURE
  • 2015-02-23. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins in NATURE CHEMICAL BIOLOGY
  • 2016-04-18. The nature of self-regulation in photosynthetic light-harvesting antenna in NATURE PLANTS
  • 1994-09. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis in PHOTOSYNTHESIS RESEARCH
  • 2004-03. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6

    DOI

    http://dx.doi.org/10.1038/s41467-020-15074-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1125506064

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32157079


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carotenoids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Membrane", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chlorophyll", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Energy Transfer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Light-Harvesting Protein Complexes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Son", 
            "givenName": "Minjung", 
            "id": "sg:person.01201207326.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201207326.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Department of Biology and Biotechnology, University of Pavia, via A. Ferrata 9, 27100, Pavia, Italy", 
                "Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pinnola", 
            "givenName": "Alberta", 
            "id": "sg:person.0670621660.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670621660.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agenus Inc., 3 Forbes Road, 02421, Lexington, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.420152.0", 
              "name": [
                "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
                "Agenus Inc., 3 Forbes Road, 02421, Lexington, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gordon", 
            "givenName": "Samuel C.", 
            "id": "sg:person.016304764544.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304764544.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Accademia Nazionale di Lincei, Via della Lungara 10, 00165, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.466495.c", 
              "name": [
                "Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
                "Accademia Nazionale di Lincei, Via della Lungara 10, 00165, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bassi", 
            "givenName": "Roberto", 
            "id": "sg:person.0605371157.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schlau-Cohen", 
            "givenName": "Gabriela S.", 
            "id": "sg:person.01246446421.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41467-017-02239-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093156841", 
              "https://doi.org/10.1038/s41467-017-02239-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050377161", 
              "https://doi.org/10.1038/nature06262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090740429", 
              "https://doi.org/10.1038/nchem.2818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007392703", 
              "https://doi.org/10.1038/nature03795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-009-9424-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029546390", 
              "https://doi.org/10.1007/s11120-009-9424-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nplants.2016.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051372358", 
              "https://doi.org/10.1038/nplants.2016.45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-018-0607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110203320", 
              "https://doi.org/10.1007/s11120-018-0607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042993471", 
              "https://doi.org/10.1038/nature02373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9032-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039630870", 
              "https://doi.org/10.1007/978-94-017-9032-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-13720-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092277106", 
              "https://doi.org/10.1038/s41598-017-13720-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014109674", 
              "https://doi.org/10.1038/nchembio.1755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-013-9815-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035042272", 
              "https://doi.org/10.1007/s11120-013-9815-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038389219", 
              "https://doi.org/10.1038/nchem.1145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02183041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027447788", 
              "https://doi.org/10.1007/bf02183041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep15661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000338105", 
              "https://doi.org/10.1038/srep15661"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-03-10", 
        "datePublishedReg": "2020-03-10", 
        "description": "Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-020-15074-6", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5494479", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7065043", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "antenna complexes", 
          "non-native conformations", 
          "membrane nanodiscs", 
          "photosynthetic antenna complexes", 
          "high light", 
          "protein structure", 
          "conformational changes", 
          "dissipative pathways", 
          "chlorophyll", 
          "complexes", 
          "membrane", 
          "LHCII", 
          "vivo", 
          "light harvesting", 
          "local environment", 
          "nanodiscs", 
          "plants", 
          "pathway", 
          "energy transfer", 
          "photodamage", 
          "detergents", 
          "conformation", 
          "mechanism", 
          "two-dimensional electronic spectroscopy", 
          "transfer", 
          "excess energy", 
          "harvesting", 
          "evidence", 
          "electronic spectroscopy", 
          "environment", 
          "light", 
          "structure", 
          "large energy gap", 
          "changes", 
          "sensitivity", 
          "timescales", 
          "balance", 
          "mechanism of dissipation", 
          "ultrafast timescales", 
          "experiments", 
          "photophysics", 
          "energy gap", 
          "observations", 
          "contribution", 
          "data", 
          "challenges", 
          "results", 
          "spectroscopy", 
          "requirements", 
          "spectral requirements", 
          "gap", 
          "dissipation", 
          "energy", 
          "heat", 
          "measurements"
        ], 
        "name": "Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs", 
        "pagination": "1295", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1125506064"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-020-15074-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32157079"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-020-15074-6", 
          "https://app.dimensions.ai/details/publication/pub.1125506064"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_852.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-020-15074-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      21 PREDICATES      102 URIs      79 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-020-15074-6 schema:about N11d52c4bd0764171a825fcbae8accf45
    2 N302bc254abe640f089d5dc1af955e69e
    3 Na7dd743326f74bf5a927212aa0125111
    4 Nb704d3c77c584f73877e848c5093133a
    5 Nc53646b66f9b4d48afe64983777e800d
    6 Nd2243302920b4150b8491af4e7012708
    7 Nf0daa333c3734b818f97508782768e24
    8 anzsrc-for:02
    9 anzsrc-for:0299
    10 schema:author N88a0e8b2f6314fe2ab43e412e4804830
    11 schema:citation sg:pub.10.1007/978-94-017-9032-1
    12 sg:pub.10.1007/bf02183041
    13 sg:pub.10.1007/s11120-009-9424-4
    14 sg:pub.10.1007/s11120-013-9815-4
    15 sg:pub.10.1007/s11120-018-0607-8
    16 sg:pub.10.1038/nature02373
    17 sg:pub.10.1038/nature03795
    18 sg:pub.10.1038/nature06262
    19 sg:pub.10.1038/nchem.1145
    20 sg:pub.10.1038/nchem.2818
    21 sg:pub.10.1038/nchembio.1755
    22 sg:pub.10.1038/nplants.2016.45
    23 sg:pub.10.1038/s41467-017-02239-z
    24 sg:pub.10.1038/s41598-017-13720-6
    25 sg:pub.10.1038/srep15661
    26 schema:datePublished 2020-03-10
    27 schema:datePublishedReg 2020-03-10
    28 schema:description Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N42e6af95616d407e966379699bc2e60f
    32 N64c5a5376992457b9d254c1ab8596092
    33 sg:journal.1043282
    34 schema:keywords LHCII
    35 antenna complexes
    36 balance
    37 challenges
    38 changes
    39 chlorophyll
    40 complexes
    41 conformation
    42 conformational changes
    43 contribution
    44 data
    45 detergents
    46 dissipation
    47 dissipative pathways
    48 electronic spectroscopy
    49 energy
    50 energy gap
    51 energy transfer
    52 environment
    53 evidence
    54 excess energy
    55 experiments
    56 gap
    57 harvesting
    58 heat
    59 high light
    60 large energy gap
    61 light
    62 light harvesting
    63 local environment
    64 measurements
    65 mechanism
    66 mechanism of dissipation
    67 membrane
    68 membrane nanodiscs
    69 nanodiscs
    70 non-native conformations
    71 observations
    72 pathway
    73 photodamage
    74 photophysics
    75 photosynthetic antenna complexes
    76 plants
    77 protein structure
    78 requirements
    79 results
    80 sensitivity
    81 spectral requirements
    82 spectroscopy
    83 structure
    84 timescales
    85 transfer
    86 two-dimensional electronic spectroscopy
    87 ultrafast timescales
    88 vivo
    89 schema:name Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs
    90 schema:pagination 1295
    91 schema:productId N2e1218a9edd54a4ab85e4e1b00bce050
    92 N4a47ddaa8a9d49228ed951212e75a0e9
    93 N97c28d6c180040e4af02845f0b9acb2d
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125506064
    95 https://doi.org/10.1038/s41467-020-15074-6
    96 schema:sdDatePublished 2022-11-24T21:07
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N0577a44ed3dd4e2595b4a7d3ce9f7e3e
    99 schema:url https://doi.org/10.1038/s41467-020-15074-6
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N0577a44ed3dd4e2595b4a7d3ce9f7e3e schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 N11d52c4bd0764171a825fcbae8accf45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Energy Transfer
    107 rdf:type schema:DefinedTerm
    108 N2e1218a9edd54a4ab85e4e1b00bce050 schema:name dimensions_id
    109 schema:value pub.1125506064
    110 rdf:type schema:PropertyValue
    111 N302bc254abe640f089d5dc1af955e69e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Cell Membrane
    113 rdf:type schema:DefinedTerm
    114 N42e6af95616d407e966379699bc2e60f schema:volumeNumber 11
    115 rdf:type schema:PublicationVolume
    116 N457d7c01a86d48e39126c1d45a01a274 rdf:first sg:person.01246446421.54
    117 rdf:rest rdf:nil
    118 N4a47ddaa8a9d49228ed951212e75a0e9 schema:name pubmed_id
    119 schema:value 32157079
    120 rdf:type schema:PropertyValue
    121 N55fe83e6ace84a7db96b30e6e8a90ad2 rdf:first sg:person.0605371157.35
    122 rdf:rest N457d7c01a86d48e39126c1d45a01a274
    123 N58d11f1bdf194229b1ff7ffee05ad898 rdf:first sg:person.0670621660.42
    124 rdf:rest Nb0e6dc0f142340959d15b70b7273ca88
    125 N64c5a5376992457b9d254c1ab8596092 schema:issueNumber 1
    126 rdf:type schema:PublicationIssue
    127 N88a0e8b2f6314fe2ab43e412e4804830 rdf:first sg:person.01201207326.02
    128 rdf:rest N58d11f1bdf194229b1ff7ffee05ad898
    129 N97c28d6c180040e4af02845f0b9acb2d schema:name doi
    130 schema:value 10.1038/s41467-020-15074-6
    131 rdf:type schema:PropertyValue
    132 Na7dd743326f74bf5a927212aa0125111 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Carotenoids
    134 rdf:type schema:DefinedTerm
    135 Nb0e6dc0f142340959d15b70b7273ca88 rdf:first sg:person.016304764544.73
    136 rdf:rest N55fe83e6ace84a7db96b30e6e8a90ad2
    137 Nb704d3c77c584f73877e848c5093133a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Protein Conformation
    139 rdf:type schema:DefinedTerm
    140 Nc53646b66f9b4d48afe64983777e800d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Chlorophyll
    142 rdf:type schema:DefinedTerm
    143 Nd2243302920b4150b8491af4e7012708 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Nanostructures
    145 rdf:type schema:DefinedTerm
    146 Nf0daa333c3734b818f97508782768e24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Light-Harvesting Protein Complexes
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Physical Sciences
    151 rdf:type schema:DefinedTerm
    152 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Other Physical Sciences
    154 rdf:type schema:DefinedTerm
    155 sg:grant.5494479 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-15074-6
    156 rdf:type schema:MonetaryGrant
    157 sg:grant.7065043 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-15074-6
    158 rdf:type schema:MonetaryGrant
    159 sg:journal.1043282 schema:issn 2041-1723
    160 schema:name Nature Communications
    161 schema:publisher Springer Nature
    162 rdf:type schema:Periodical
    163 sg:person.01201207326.02 schema:affiliation grid-institutes:grid.116068.8
    164 schema:familyName Son
    165 schema:givenName Minjung
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201207326.02
    167 rdf:type schema:Person
    168 sg:person.01246446421.54 schema:affiliation grid-institutes:grid.116068.8
    169 schema:familyName Schlau-Cohen
    170 schema:givenName Gabriela S.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54
    172 rdf:type schema:Person
    173 sg:person.016304764544.73 schema:affiliation grid-institutes:grid.420152.0
    174 schema:familyName Gordon
    175 schema:givenName Samuel C.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304764544.73
    177 rdf:type schema:Person
    178 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.466495.c
    179 schema:familyName Bassi
    180 schema:givenName Roberto
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
    182 rdf:type schema:Person
    183 sg:person.0670621660.42 schema:affiliation grid-institutes:grid.5611.3
    184 schema:familyName Pinnola
    185 schema:givenName Alberta
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670621660.42
    187 rdf:type schema:Person
    188 sg:pub.10.1007/978-94-017-9032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039630870
    189 https://doi.org/10.1007/978-94-017-9032-1
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/bf02183041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027447788
    192 https://doi.org/10.1007/bf02183041
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s11120-009-9424-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029546390
    195 https://doi.org/10.1007/s11120-009-9424-4
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s11120-013-9815-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035042272
    198 https://doi.org/10.1007/s11120-013-9815-4
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s11120-018-0607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110203320
    201 https://doi.org/10.1007/s11120-018-0607-8
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature02373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042993471
    204 https://doi.org/10.1038/nature02373
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature03795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007392703
    207 https://doi.org/10.1038/nature03795
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nature06262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050377161
    210 https://doi.org/10.1038/nature06262
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nchem.1145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038389219
    213 https://doi.org/10.1038/nchem.1145
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nchem.2818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090740429
    216 https://doi.org/10.1038/nchem.2818
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nchembio.1755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014109674
    219 https://doi.org/10.1038/nchembio.1755
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nplants.2016.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051372358
    222 https://doi.org/10.1038/nplants.2016.45
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/s41467-017-02239-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1093156841
    225 https://doi.org/10.1038/s41467-017-02239-z
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/s41598-017-13720-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092277106
    228 https://doi.org/10.1038/s41598-017-13720-6
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/srep15661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000338105
    231 https://doi.org/10.1038/srep15661
    232 rdf:type schema:CreativeWork
    233 grid-institutes:grid.116068.8 schema:alternateName Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
    234 schema:name Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
    235 rdf:type schema:Organization
    236 grid-institutes:grid.420152.0 schema:alternateName Agenus Inc., 3 Forbes Road, 02421, Lexington, MA, USA
    237 schema:name Agenus Inc., 3 Forbes Road, 02421, Lexington, MA, USA
    238 Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
    239 rdf:type schema:Organization
    240 grid-institutes:grid.466495.c schema:alternateName Accademia Nazionale di Lincei, Via della Lungara 10, 00165, Rome, Italy
    241 schema:name Accademia Nazionale di Lincei, Via della Lungara 10, 00165, Rome, Italy
    242 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
    243 rdf:type schema:Organization
    244 grid-institutes:grid.5611.3 schema:alternateName Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
    245 schema:name Department of Biology and Biotechnology, University of Pavia, via A. Ferrata 9, 27100, Pavia, Italy
    246 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...