Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-10

AUTHORS

Minjung Son, Alberta Pinnola, Samuel C. Gordon, Roberto Bassi, Gabriela S. Schlau-Cohen

ABSTRACT

Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo. More... »

PAGES

1295

References to SciGraph publications

  • 2007-11. Identification of a mechanism of photoprotective energy dissipation in higher plants in NATURE
  • 2017-07-17. Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection in NATURE CHEMISTRY
  • 2013-04-11. The back and forth of energy transfer between carotenoids and chlorophylls and its role in the regulation of light harvesting in PHOTOSYNTHESIS RESEARCH
  • 2009-05-06. Linear dichroism and circular dichroism in photosynthesis research in PHOTOSYNTHESIS RESEARCH
  • 2017-12-08. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants in NATURE COMMUNICATIONS
  • 2014. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria in NONE
  • 2018-11-26. Time-resolved fluorescence measurements on leaves: principles and recent developments in PHOTOSYNTHESIS RESEARCH
  • 2017-10-24. Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants in SCIENTIFIC REPORTS
  • 2011-09-23. Lessons from nature about solar light harvesting in NATURE CHEMISTRY
  • 2015-10-23. From light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII) in SCIENTIFIC REPORTS
  • 2005-07. Molecular basis of photoprotection and control of photosynthetic light-harvesting in NATURE
  • 2015-02-23. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins in NATURE CHEMICAL BIOLOGY
  • 2016-04-18. The nature of self-regulation in photosynthetic light-harvesting antenna in NATURE PLANTS
  • 1994-09. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis in PHOTOSYNTHESIS RESEARCH
  • 2004-03. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6

    DOI

    http://dx.doi.org/10.1038/s41467-020-15074-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1125506064

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32157079


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carotenoids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Membrane", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chlorophyll", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Energy Transfer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Light-Harvesting Protein Complexes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Son", 
            "givenName": "Minjung", 
            "id": "sg:person.01201207326.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201207326.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Department of Biology and Biotechnology, University of Pavia, via A. Ferrata 9, 27100, Pavia, Italy", 
                "Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pinnola", 
            "givenName": "Alberta", 
            "id": "sg:person.0670621660.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670621660.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agenus Inc., 3 Forbes Road, 02421, Lexington, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.420152.0", 
              "name": [
                "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
                "Agenus Inc., 3 Forbes Road, 02421, Lexington, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gordon", 
            "givenName": "Samuel C.", 
            "id": "sg:person.016304764544.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304764544.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Accademia Nazionale di Lincei, Via della Lungara 10, 00165, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.466495.c", 
              "name": [
                "Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
                "Accademia Nazionale di Lincei, Via della Lungara 10, 00165, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bassi", 
            "givenName": "Roberto", 
            "id": "sg:person.0605371157.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schlau-Cohen", 
            "givenName": "Gabriela S.", 
            "id": "sg:person.01246446421.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11120-013-9815-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035042272", 
              "https://doi.org/10.1007/s11120-013-9815-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9032-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039630870", 
              "https://doi.org/10.1007/978-94-017-9032-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014109674", 
              "https://doi.org/10.1038/nchembio.1755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-018-0607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110203320", 
              "https://doi.org/10.1007/s11120-018-0607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-009-9424-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029546390", 
              "https://doi.org/10.1007/s11120-009-9424-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042993471", 
              "https://doi.org/10.1038/nature02373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02183041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027447788", 
              "https://doi.org/10.1007/bf02183041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007392703", 
              "https://doi.org/10.1038/nature03795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090740429", 
              "https://doi.org/10.1038/nchem.2818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep15661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000338105", 
              "https://doi.org/10.1038/srep15661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nplants.2016.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051372358", 
              "https://doi.org/10.1038/nplants.2016.45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-13720-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092277106", 
              "https://doi.org/10.1038/s41598-017-13720-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038389219", 
              "https://doi.org/10.1038/nchem.1145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02239-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093156841", 
              "https://doi.org/10.1038/s41467-017-02239-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050377161", 
              "https://doi.org/10.1038/nature06262"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-03-10", 
        "datePublishedReg": "2020-03-10", 
        "description": "Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-020-15074-6", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5494479", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7065043", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "antenna complexes", 
          "non-native conformations", 
          "membrane nanodiscs", 
          "photosynthetic antenna complexes", 
          "high light", 
          "protein structure", 
          "conformational changes", 
          "dissipative pathways", 
          "chlorophyll", 
          "complexes", 
          "membrane", 
          "LHCII", 
          "vivo", 
          "light harvesting", 
          "local environment", 
          "nanodiscs", 
          "plants", 
          "pathway", 
          "energy transfer", 
          "photodamage", 
          "detergents", 
          "conformation", 
          "mechanism", 
          "two-dimensional electronic spectroscopy", 
          "transfer", 
          "excess energy", 
          "harvesting", 
          "evidence", 
          "electronic spectroscopy", 
          "environment", 
          "light", 
          "structure", 
          "large energy gap", 
          "changes", 
          "sensitivity", 
          "timescales", 
          "balance", 
          "mechanism of dissipation", 
          "ultrafast timescales", 
          "experiments", 
          "photophysics", 
          "energy gap", 
          "observations", 
          "contribution", 
          "data", 
          "challenges", 
          "results", 
          "spectroscopy", 
          "requirements", 
          "spectral requirements", 
          "gap", 
          "dissipation", 
          "energy", 
          "heat", 
          "measurements"
        ], 
        "name": "Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs", 
        "pagination": "1295", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1125506064"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-020-15074-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32157079"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-020-15074-6", 
          "https://app.dimensions.ai/details/publication/pub.1125506064"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_875.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-020-15074-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-15074-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      21 PREDICATES      102 URIs      79 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-020-15074-6 schema:about N01f64dbff0a04585b4fe4146f46dd98b
    2 N144f63c1b15b4daa80195c0e0f31a3bb
    3 N71e318f0effe465ea3a24991d3ef2b2a
    4 Na7a2abb8b80c46098a0b07800d1a1543
    5 Nc2fbfc3ce6984868848a9899fd43c3f1
    6 Ncede8b63fe2d4cb8b553978493050a9d
    7 Nf33e1ad508f143a0b89cb69f582e80a9
    8 anzsrc-for:02
    9 anzsrc-for:0299
    10 schema:author Nb02614608fc14934b7afb417a980e388
    11 schema:citation sg:pub.10.1007/978-94-017-9032-1
    12 sg:pub.10.1007/bf02183041
    13 sg:pub.10.1007/s11120-009-9424-4
    14 sg:pub.10.1007/s11120-013-9815-4
    15 sg:pub.10.1007/s11120-018-0607-8
    16 sg:pub.10.1038/nature02373
    17 sg:pub.10.1038/nature03795
    18 sg:pub.10.1038/nature06262
    19 sg:pub.10.1038/nchem.1145
    20 sg:pub.10.1038/nchem.2818
    21 sg:pub.10.1038/nchembio.1755
    22 sg:pub.10.1038/nplants.2016.45
    23 sg:pub.10.1038/s41467-017-02239-z
    24 sg:pub.10.1038/s41598-017-13720-6
    25 sg:pub.10.1038/srep15661
    26 schema:datePublished 2020-03-10
    27 schema:datePublishedReg 2020-03-10
    28 schema:description Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N318e319da54b48f0b0930ab14511d638
    32 N4032ca5be12a4223bade8ee211b8e4b0
    33 sg:journal.1043282
    34 schema:keywords LHCII
    35 antenna complexes
    36 balance
    37 challenges
    38 changes
    39 chlorophyll
    40 complexes
    41 conformation
    42 conformational changes
    43 contribution
    44 data
    45 detergents
    46 dissipation
    47 dissipative pathways
    48 electronic spectroscopy
    49 energy
    50 energy gap
    51 energy transfer
    52 environment
    53 evidence
    54 excess energy
    55 experiments
    56 gap
    57 harvesting
    58 heat
    59 high light
    60 large energy gap
    61 light
    62 light harvesting
    63 local environment
    64 measurements
    65 mechanism
    66 mechanism of dissipation
    67 membrane
    68 membrane nanodiscs
    69 nanodiscs
    70 non-native conformations
    71 observations
    72 pathway
    73 photodamage
    74 photophysics
    75 photosynthetic antenna complexes
    76 plants
    77 protein structure
    78 requirements
    79 results
    80 sensitivity
    81 spectral requirements
    82 spectroscopy
    83 structure
    84 timescales
    85 transfer
    86 two-dimensional electronic spectroscopy
    87 ultrafast timescales
    88 vivo
    89 schema:name Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs
    90 schema:pagination 1295
    91 schema:productId N0b4344caf0e647ac99920149d4ca42a9
    92 N669fe06d7c5c407296bd34a097ec580b
    93 N87eff28a563f4c31b974e781af06800e
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125506064
    95 https://doi.org/10.1038/s41467-020-15074-6
    96 schema:sdDatePublished 2022-09-02T16:05
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N4325f6e23259479894d99b5bb9752951
    99 schema:url https://doi.org/10.1038/s41467-020-15074-6
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N01f64dbff0a04585b4fe4146f46dd98b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Light-Harvesting Protein Complexes
    105 rdf:type schema:DefinedTerm
    106 N0b4344caf0e647ac99920149d4ca42a9 schema:name doi
    107 schema:value 10.1038/s41467-020-15074-6
    108 rdf:type schema:PropertyValue
    109 N144f63c1b15b4daa80195c0e0f31a3bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Protein Conformation
    111 rdf:type schema:DefinedTerm
    112 N211f4422f6cd4df587f616240f81bc1a rdf:first sg:person.0670621660.42
    113 rdf:rest Ne06454d1bd9d4896901576958589a389
    114 N22b310241d2a4a0a8a3b40a67f80c238 rdf:first sg:person.01246446421.54
    115 rdf:rest rdf:nil
    116 N318e319da54b48f0b0930ab14511d638 schema:issueNumber 1
    117 rdf:type schema:PublicationIssue
    118 N4032ca5be12a4223bade8ee211b8e4b0 schema:volumeNumber 11
    119 rdf:type schema:PublicationVolume
    120 N4325f6e23259479894d99b5bb9752951 schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 N669fe06d7c5c407296bd34a097ec580b schema:name dimensions_id
    123 schema:value pub.1125506064
    124 rdf:type schema:PropertyValue
    125 N71e318f0effe465ea3a24991d3ef2b2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Nanostructures
    127 rdf:type schema:DefinedTerm
    128 N87eff28a563f4c31b974e781af06800e schema:name pubmed_id
    129 schema:value 32157079
    130 rdf:type schema:PropertyValue
    131 Na7a2abb8b80c46098a0b07800d1a1543 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Carotenoids
    133 rdf:type schema:DefinedTerm
    134 Nb02614608fc14934b7afb417a980e388 rdf:first sg:person.01201207326.02
    135 rdf:rest N211f4422f6cd4df587f616240f81bc1a
    136 Nc2fbfc3ce6984868848a9899fd43c3f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Energy Transfer
    138 rdf:type schema:DefinedTerm
    139 Ncede8b63fe2d4cb8b553978493050a9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Cell Membrane
    141 rdf:type schema:DefinedTerm
    142 Ne06454d1bd9d4896901576958589a389 rdf:first sg:person.016304764544.73
    143 rdf:rest Nf3bb1c9218b34e02ad4b8fe792a18a88
    144 Nf33e1ad508f143a0b89cb69f582e80a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Chlorophyll
    146 rdf:type schema:DefinedTerm
    147 Nf3bb1c9218b34e02ad4b8fe792a18a88 rdf:first sg:person.0605371157.35
    148 rdf:rest N22b310241d2a4a0a8a3b40a67f80c238
    149 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Physical Sciences
    151 rdf:type schema:DefinedTerm
    152 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Other Physical Sciences
    154 rdf:type schema:DefinedTerm
    155 sg:grant.5494479 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-15074-6
    156 rdf:type schema:MonetaryGrant
    157 sg:grant.7065043 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-15074-6
    158 rdf:type schema:MonetaryGrant
    159 sg:journal.1043282 schema:issn 2041-1723
    160 schema:name Nature Communications
    161 schema:publisher Springer Nature
    162 rdf:type schema:Periodical
    163 sg:person.01201207326.02 schema:affiliation grid-institutes:grid.116068.8
    164 schema:familyName Son
    165 schema:givenName Minjung
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201207326.02
    167 rdf:type schema:Person
    168 sg:person.01246446421.54 schema:affiliation grid-institutes:grid.116068.8
    169 schema:familyName Schlau-Cohen
    170 schema:givenName Gabriela S.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54
    172 rdf:type schema:Person
    173 sg:person.016304764544.73 schema:affiliation grid-institutes:grid.420152.0
    174 schema:familyName Gordon
    175 schema:givenName Samuel C.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304764544.73
    177 rdf:type schema:Person
    178 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.466495.c
    179 schema:familyName Bassi
    180 schema:givenName Roberto
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
    182 rdf:type schema:Person
    183 sg:person.0670621660.42 schema:affiliation grid-institutes:grid.5611.3
    184 schema:familyName Pinnola
    185 schema:givenName Alberta
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670621660.42
    187 rdf:type schema:Person
    188 sg:pub.10.1007/978-94-017-9032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039630870
    189 https://doi.org/10.1007/978-94-017-9032-1
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/bf02183041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027447788
    192 https://doi.org/10.1007/bf02183041
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s11120-009-9424-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029546390
    195 https://doi.org/10.1007/s11120-009-9424-4
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s11120-013-9815-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035042272
    198 https://doi.org/10.1007/s11120-013-9815-4
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s11120-018-0607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110203320
    201 https://doi.org/10.1007/s11120-018-0607-8
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature02373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042993471
    204 https://doi.org/10.1038/nature02373
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature03795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007392703
    207 https://doi.org/10.1038/nature03795
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nature06262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050377161
    210 https://doi.org/10.1038/nature06262
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nchem.1145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038389219
    213 https://doi.org/10.1038/nchem.1145
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nchem.2818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090740429
    216 https://doi.org/10.1038/nchem.2818
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nchembio.1755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014109674
    219 https://doi.org/10.1038/nchembio.1755
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nplants.2016.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051372358
    222 https://doi.org/10.1038/nplants.2016.45
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/s41467-017-02239-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1093156841
    225 https://doi.org/10.1038/s41467-017-02239-z
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/s41598-017-13720-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092277106
    228 https://doi.org/10.1038/s41598-017-13720-6
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/srep15661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000338105
    231 https://doi.org/10.1038/srep15661
    232 rdf:type schema:CreativeWork
    233 grid-institutes:grid.116068.8 schema:alternateName Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
    234 schema:name Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
    235 rdf:type schema:Organization
    236 grid-institutes:grid.420152.0 schema:alternateName Agenus Inc., 3 Forbes Road, 02421, Lexington, MA, USA
    237 schema:name Agenus Inc., 3 Forbes Road, 02421, Lexington, MA, USA
    238 Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
    239 rdf:type schema:Organization
    240 grid-institutes:grid.466495.c schema:alternateName Accademia Nazionale di Lincei, Via della Lungara 10, 00165, Rome, Italy
    241 schema:name Accademia Nazionale di Lincei, Via della Lungara 10, 00165, Rome, Italy
    242 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
    243 rdf:type schema:Organization
    244 grid-institutes:grid.5611.3 schema:alternateName Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
    245 schema:name Department of Biology and Biotechnology, University of Pavia, via A. Ferrata 9, 27100, Pavia, Italy
    246 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...