Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-02-21

AUTHORS

Ruichun Luo, Wen Wu Xu, Yongzheng Zhang, Ziqian Wang, Xiaodong Wang, Yi Gao, Pan Liu, Mingwei Chen

ABSTRACT

The structures and properties of van der Waals (vdW) heterojunctions between semiconducting two-dimensional transition-metal dichalcogenides (2D TMDs) and conductive metals, such as gold, significantly influence the performances of 2D-TMD based electronic devices. Chemical vapor deposition is one of the most promising approaches for large-scale synthesis and fabrication of 2D TMD electronics with naturally formed TMD/metal vdW interfaces. However, the structure and chemistry of the vdW interfaces are less known. Here we report the interfacial reconstruction between TMD monolayers and gold substrates. The participation of sulfur leads to the reconstruction of Au {001} surface with the formation of a metastable Au4S4 interfacial phase which is stabilized by the top MoS2 and WS2 monolayers. Moreover, the enhanced vdW interaction between the reconstructed Au4S4 interfacial phase and TMD monolayers results in the transition from n-type TMD-Au Schottky contact to p-type one with reduced energy barrier height. More... »

PAGES

1011

References to SciGraph publications

  • 2017-09-07. Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling in NATURE COMMUNICATIONS
  • 2018-05-16. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions in NATURE
  • 1988-12. Chemically sensitive structure-imaging with a scanning transmission electron microscope in NATURE
  • 2015-10-09. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils in NATURE COMMUNICATIONS
  • 2019-05-29. Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution in NANO RESEARCH
  • 2015-11-20. Electrical contacts to two-dimensional semiconductors in NATURE MATERIALS
  • 2005-05-25. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals in THEORETICAL CHEMISTRY ACCOUNTS
  • 2019-05-22. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper in NATURE
  • 2012-05-22. The gold–sulfur interface at the nanoscale in NATURE CHEMISTRY
  • 2016-02-22. Chemical Vapor Deposition of Monolayer Mo1−xWxS2 Crystals with Tunable Band Gaps in SCIENTIFIC REPORTS
  • 1999-12. The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations in THEORETICAL CHEMISTRY ACCOUNTS
  • 2012-08-12. Atomic origins of the high catalytic activity of nanoporous gold in NATURE MATERIALS
  • 2012-11-06. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides in NATURE NANOTECHNOLOGY
  • 2015-02-19. Exploring atomic defects in molybdenum disulphide monolayers in NATURE COMMUNICATIONS
  • 2019-03-20. Van der Waals integration before and beyond two-dimensional materials in NATURE
  • 2001-03. Evolution of nanoporosity in dealloying in NATURE
  • 2019-03-27. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors in NATURE
  • 2017-10-20. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-020-14753-8

    DOI

    http://dx.doi.org/10.1038/s41467-020-14753-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1125034729

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32081885


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Inorganic Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Johns Hopkins University, 21218, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China", 
                "Department of Materials Science and Engineering, Johns Hopkins University, 21218, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luo", 
            "givenName": "Ruichun", 
            "id": "sg:person.011262272151.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262272151.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, School of Physical Science and Technology, Ningbo University, 315211, Ningbo, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.203507.3", 
              "name": [
                "Department of Physics, School of Physical Science and Technology, Ningbo University, 315211, Ningbo, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Wen Wu", 
            "id": "sg:person.0631633765.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631633765.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
              "id": "http://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yongzheng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
              "id": "http://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Department of Materials Science and Engineering, Johns Hopkins University, 21218, Baltimore, MD, USA", 
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Ziqian", 
            "id": "sg:person.01056051043.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056051043.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiaodong", 
            "id": "sg:person.016574464077.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574464077.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P. R. China", 
              "id": "http://www.grid.ac/institutes/grid.458506.a", 
              "name": [
                "Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Yi", 
            "id": "sg:person.01337765627.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337765627.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
              "id": "http://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China", 
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Pan", 
            "id": "sg:person.0700644400.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
              "id": "http://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Department of Materials Science and Engineering, Johns Hopkins University, 21218, Baltimore, MD, USA", 
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Mingwei", 
            "id": "sg:person.01111213505.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41586-018-0129-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103996438", 
              "https://doi.org/10.1038/s41586-018-0129-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036932679", 
              "https://doi.org/10.1038/nchem.1352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35068529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020633318", 
              "https://doi.org/10.1038/35068529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1052-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113005466", 
              "https://doi.org/10.1038/s41586-019-1052-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1226-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115084383", 
              "https://doi.org/10.1038/s41586-019-1226-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00214-005-0655-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010065322", 
              "https://doi.org/10.1007/s00214-005-0655-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00640-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091465445", 
              "https://doi.org/10.1038/s41467-017-00640-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002140050523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024495607", 
              "https://doi.org/10.1007/s002140050523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep21536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025333565", 
              "https://doi.org/10.1038/srep21536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-018-2212-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107536218", 
              "https://doi.org/10.1007/s12274-018-2212-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/336565a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000865773", 
              "https://doi.org/10.1038/336565a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022146120", 
              "https://doi.org/10.1038/ncomms7293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01085-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092252206", 
              "https://doi.org/10.1038/s41467-017-01085-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000825055", 
              "https://doi.org/10.1038/ncomms9569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028219354", 
              "https://doi.org/10.1038/nnano.2012.193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044918281", 
              "https://doi.org/10.1038/nmat3391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003479312", 
              "https://doi.org/10.1038/nmat4452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1013-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112878672", 
              "https://doi.org/10.1038/s41586-019-1013-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-02-21", 
        "datePublishedReg": "2020-02-21", 
        "description": "The structures and properties of van der Waals (vdW) heterojunctions between semiconducting two-dimensional transition-metal dichalcogenides (2D TMDs) and conductive metals, such as gold, significantly influence the performances of 2D-TMD based electronic devices. Chemical vapor deposition is one of the most promising approaches for large-scale synthesis and fabrication of 2D TMD electronics with naturally formed TMD/metal vdW interfaces. However, the structure and chemistry of the vdW interfaces are less known. Here we report the interfacial reconstruction between TMD monolayers and gold substrates. The participation of sulfur leads to the reconstruction of Au {001} surface with the formation of a metastable Au4S4 interfacial phase which is stabilized by the top MoS2 and WS2 monolayers. Moreover, the enhanced vdW interaction between the reconstructed Au4S4 interfacial phase and TMD monolayers results in the transition from n-type TMD-Au Schottky contact to p-type one with reduced energy barrier height.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-020-14753-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8130872", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8160066", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8899313", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9415460", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "transition metal dichalcogenides", 
          "vdW interface", 
          "large-scale synthesis", 
          "two-dimensional transition metal dichalcogenides", 
          "interfacial reconstruction", 
          "gold substrate", 
          "chemical vapor deposition", 
          "van der Waals heterojunctions", 
          "interfacial phase", 
          "TMD monolayers", 
          "participation of sulfur", 
          "vdW interactions", 
          "energy barrier height", 
          "vapor deposition", 
          "monolayers", 
          "reconstruction of Au", 
          "WS2 monolayer", 
          "p-type one", 
          "conductive metal", 
          "dichalcogenides", 
          "electronic devices", 
          "heterojunction", 
          "monolayer transition metal dichalcogenides", 
          "chemistry", 
          "barrier height", 
          "synthesis", 
          "MoS2", 
          "gold", 
          "sulfur", 
          "structure", 
          "promising approach", 
          "Schottky contacts", 
          "metals", 
          "Au", 
          "interface", 
          "fabrication", 
          "phase", 
          "substrate", 
          "surface", 
          "deposition", 
          "properties", 
          "electronics", 
          "formation", 
          "interaction", 
          "devices", 
          "transition", 
          "contact", 
          "performance", 
          "one", 
          "approach", 
          "reconstruction", 
          "height", 
          "participation"
        ], 
        "name": "Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions", 
        "pagination": "1011", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1125034729"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-020-14753-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32081885"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-020-14753-8", 
          "https://app.dimensions.ai/details/publication/pub.1125034729"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_848.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-020-14753-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-14753-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-14753-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-14753-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-020-14753-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    260 TRIPLES      21 PREDICATES      97 URIs      70 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-020-14753-8 schema:about anzsrc-for:03
    2 anzsrc-for:0302
    3 anzsrc-for:0306
    4 schema:author N5dd6e2dde70043199dc87097892c84bd
    5 schema:citation sg:pub.10.1007/s00214-005-0655-y
    6 sg:pub.10.1007/s002140050523
    7 sg:pub.10.1007/s12274-018-2212-8
    8 sg:pub.10.1038/336565a0
    9 sg:pub.10.1038/35068529
    10 sg:pub.10.1038/nchem.1352
    11 sg:pub.10.1038/ncomms7293
    12 sg:pub.10.1038/ncomms9569
    13 sg:pub.10.1038/nmat3391
    14 sg:pub.10.1038/nmat4452
    15 sg:pub.10.1038/nnano.2012.193
    16 sg:pub.10.1038/s41467-017-00640-2
    17 sg:pub.10.1038/s41467-017-01085-3
    18 sg:pub.10.1038/s41586-018-0129-8
    19 sg:pub.10.1038/s41586-019-1013-x
    20 sg:pub.10.1038/s41586-019-1052-3
    21 sg:pub.10.1038/s41586-019-1226-z
    22 sg:pub.10.1038/srep21536
    23 schema:datePublished 2020-02-21
    24 schema:datePublishedReg 2020-02-21
    25 schema:description The structures and properties of van der Waals (vdW) heterojunctions between semiconducting two-dimensional transition-metal dichalcogenides (2D TMDs) and conductive metals, such as gold, significantly influence the performances of 2D-TMD based electronic devices. Chemical vapor deposition is one of the most promising approaches for large-scale synthesis and fabrication of 2D TMD electronics with naturally formed TMD/metal vdW interfaces. However, the structure and chemistry of the vdW interfaces are less known. Here we report the interfacial reconstruction between TMD monolayers and gold substrates. The participation of sulfur leads to the reconstruction of Au {001} surface with the formation of a metastable Au4S4 interfacial phase which is stabilized by the top MoS2 and WS2 monolayers. Moreover, the enhanced vdW interaction between the reconstructed Au4S4 interfacial phase and TMD monolayers results in the transition from n-type TMD-Au Schottky contact to p-type one with reduced energy barrier height.
    26 schema:genre article
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N9de91669c72946038d84d25eb8a38d18
    29 Ne727e1c446f04853bf0559e028d671df
    30 sg:journal.1043282
    31 schema:keywords Au
    32 MoS2
    33 Schottky contacts
    34 TMD monolayers
    35 WS2 monolayer
    36 approach
    37 barrier height
    38 chemical vapor deposition
    39 chemistry
    40 conductive metal
    41 contact
    42 deposition
    43 devices
    44 dichalcogenides
    45 electronic devices
    46 electronics
    47 energy barrier height
    48 fabrication
    49 formation
    50 gold
    51 gold substrate
    52 height
    53 heterojunction
    54 interaction
    55 interface
    56 interfacial phase
    57 interfacial reconstruction
    58 large-scale synthesis
    59 metals
    60 monolayer transition metal dichalcogenides
    61 monolayers
    62 one
    63 p-type one
    64 participation
    65 participation of sulfur
    66 performance
    67 phase
    68 promising approach
    69 properties
    70 reconstruction
    71 reconstruction of Au
    72 structure
    73 substrate
    74 sulfur
    75 surface
    76 synthesis
    77 transition
    78 transition metal dichalcogenides
    79 two-dimensional transition metal dichalcogenides
    80 van der Waals heterojunctions
    81 vapor deposition
    82 vdW interactions
    83 vdW interface
    84 schema:name Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions
    85 schema:pagination 1011
    86 schema:productId N48114d721fd940219bedcae552a892c7
    87 N8fb34c7f255f4b8a802dc8b16a684e5f
    88 Nc1bbceb0fe9d4566be61c1faed55635a
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125034729
    90 https://doi.org/10.1038/s41467-020-14753-8
    91 schema:sdDatePublished 2022-10-01T06:47
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N2c1a960e427840e48bb1f573cc358488
    94 schema:url https://doi.org/10.1038/s41467-020-14753-8
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N27c72f647c5a4861a961544afe7627e7 rdf:first Nec8bb836d8a548c7a1e5f5f7e672be0a
    99 rdf:rest Na9e8f68cc3164eaeb972e8aa4940c3cc
    100 N2c1a960e427840e48bb1f573cc358488 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 N48114d721fd940219bedcae552a892c7 schema:name dimensions_id
    103 schema:value pub.1125034729
    104 rdf:type schema:PropertyValue
    105 N5ad55569560847dfbd38dbf61c60a648 rdf:first sg:person.01111213505.34
    106 rdf:rest rdf:nil
    107 N5dd6e2dde70043199dc87097892c84bd rdf:first sg:person.011262272151.30
    108 rdf:rest Naa9e823be6f74fa2b7dbc40ccb073d09
    109 N79277275ced04327b23bab9f144bc8ca rdf:first sg:person.016574464077.58
    110 rdf:rest Ned64481b03c24b3cb515a919709afbf7
    111 N8fb34c7f255f4b8a802dc8b16a684e5f schema:name doi
    112 schema:value 10.1038/s41467-020-14753-8
    113 rdf:type schema:PropertyValue
    114 N9de91669c72946038d84d25eb8a38d18 schema:volumeNumber 11
    115 rdf:type schema:PublicationVolume
    116 Na9e8f68cc3164eaeb972e8aa4940c3cc rdf:first sg:person.01056051043.81
    117 rdf:rest N79277275ced04327b23bab9f144bc8ca
    118 Naa9e823be6f74fa2b7dbc40ccb073d09 rdf:first sg:person.0631633765.00
    119 rdf:rest N27c72f647c5a4861a961544afe7627e7
    120 Nc1bbceb0fe9d4566be61c1faed55635a schema:name pubmed_id
    121 schema:value 32081885
    122 rdf:type schema:PropertyValue
    123 Ne727e1c446f04853bf0559e028d671df schema:issueNumber 1
    124 rdf:type schema:PublicationIssue
    125 Nec8bb836d8a548c7a1e5f5f7e672be0a schema:affiliation grid-institutes:grid.69566.3a
    126 schema:familyName Zhang
    127 schema:givenName Yongzheng
    128 rdf:type schema:Person
    129 Ned64481b03c24b3cb515a919709afbf7 rdf:first sg:person.01337765627.69
    130 rdf:rest Nf74f71f2b2e14ae8bb976e25fb9c9798
    131 Nf74f71f2b2e14ae8bb976e25fb9c9798 rdf:first sg:person.0700644400.67
    132 rdf:rest N5ad55569560847dfbd38dbf61c60a648
    133 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Chemical Sciences
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Inorganic Chemistry
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Physical Chemistry (incl. Structural)
    141 rdf:type schema:DefinedTerm
    142 sg:grant.8130872 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-14753-8
    143 rdf:type schema:MonetaryGrant
    144 sg:grant.8160066 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-14753-8
    145 rdf:type schema:MonetaryGrant
    146 sg:grant.8899313 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-14753-8
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.9415460 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-020-14753-8
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1043282 schema:issn 2041-1723
    151 schema:name Nature Communications
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.01056051043.81 schema:affiliation grid-institutes:grid.69566.3a
    155 schema:familyName Wang
    156 schema:givenName Ziqian
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056051043.81
    158 rdf:type schema:Person
    159 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.69566.3a
    160 schema:familyName Chen
    161 schema:givenName Mingwei
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
    163 rdf:type schema:Person
    164 sg:person.011262272151.30 schema:affiliation grid-institutes:grid.21107.35
    165 schema:familyName Luo
    166 schema:givenName Ruichun
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262272151.30
    168 rdf:type schema:Person
    169 sg:person.01337765627.69 schema:affiliation grid-institutes:grid.458506.a
    170 schema:familyName Gao
    171 schema:givenName Yi
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337765627.69
    173 rdf:type schema:Person
    174 sg:person.016574464077.58 schema:affiliation grid-institutes:grid.16821.3c
    175 schema:familyName Wang
    176 schema:givenName Xiaodong
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574464077.58
    178 rdf:type schema:Person
    179 sg:person.0631633765.00 schema:affiliation grid-institutes:grid.203507.3
    180 schema:familyName Xu
    181 schema:givenName Wen Wu
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631633765.00
    183 rdf:type schema:Person
    184 sg:person.0700644400.67 schema:affiliation grid-institutes:grid.69566.3a
    185 schema:familyName Liu
    186 schema:givenName Pan
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67
    188 rdf:type schema:Person
    189 sg:pub.10.1007/s00214-005-0655-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065322
    190 https://doi.org/10.1007/s00214-005-0655-y
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s002140050523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495607
    193 https://doi.org/10.1007/s002140050523
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s12274-018-2212-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107536218
    196 https://doi.org/10.1007/s12274-018-2212-8
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/336565a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000865773
    199 https://doi.org/10.1038/336565a0
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/35068529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633318
    202 https://doi.org/10.1038/35068529
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nchem.1352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036932679
    205 https://doi.org/10.1038/nchem.1352
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/ncomms7293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022146120
    208 https://doi.org/10.1038/ncomms7293
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/ncomms9569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000825055
    211 https://doi.org/10.1038/ncomms9569
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nmat3391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044918281
    214 https://doi.org/10.1038/nmat3391
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nmat4452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003479312
    217 https://doi.org/10.1038/nmat4452
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
    220 https://doi.org/10.1038/nnano.2012.193
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41467-017-00640-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091465445
    223 https://doi.org/10.1038/s41467-017-00640-2
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/s41467-017-01085-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092252206
    226 https://doi.org/10.1038/s41467-017-01085-3
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/s41586-018-0129-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103996438
    229 https://doi.org/10.1038/s41586-018-0129-8
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/s41586-019-1013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1112878672
    232 https://doi.org/10.1038/s41586-019-1013-x
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/s41586-019-1052-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113005466
    235 https://doi.org/10.1038/s41586-019-1052-3
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/s41586-019-1226-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1115084383
    238 https://doi.org/10.1038/s41586-019-1226-z
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/srep21536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333565
    241 https://doi.org/10.1038/srep21536
    242 rdf:type schema:CreativeWork
    243 grid-institutes:grid.16821.3c schema:alternateName Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
    244 schema:name Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
    245 rdf:type schema:Organization
    246 grid-institutes:grid.203507.3 schema:alternateName Department of Physics, School of Physical Science and Technology, Ningbo University, 315211, Ningbo, P. R. China
    247 schema:name Department of Physics, School of Physical Science and Technology, Ningbo University, 315211, Ningbo, P. R. China
    248 rdf:type schema:Organization
    249 grid-institutes:grid.21107.35 schema:alternateName Department of Materials Science and Engineering, Johns Hopkins University, 21218, Baltimore, MD, USA
    250 schema:name Department of Materials Science and Engineering, Johns Hopkins University, 21218, Baltimore, MD, USA
    251 Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
    252 rdf:type schema:Organization
    253 grid-institutes:grid.458506.a schema:alternateName Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
    254 schema:name Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
    255 rdf:type schema:Organization
    256 grid-institutes:grid.69566.3a schema:alternateName WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
    257 schema:name Department of Materials Science and Engineering, Johns Hopkins University, 21218, Baltimore, MD, USA
    258 Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
    259 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
    260 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...