Virus-borne mini-CRISPR arrays are involved in interviral conflicts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-11-15

AUTHORS

Sofia Medvedeva, Ying Liu, Eugene V. Koonin, Konstantin Severinov, David Prangishvili, Mart Krupovic

ABSTRACT

CRISPR-Cas immunity is at the forefront of antivirus defense in bacteria and archaea and specifically targets viruses carrying protospacers matching the spacers catalogued in the CRISPR arrays. Here, we perform deep sequencing of the CRISPRome-all spacers contained in a microbiome-associated with hyperthermophilic archaea of the order Sulfolobales recovered directly from an environmental sample and from enrichment cultures established in the laboratory. The 25 million CRISPR spacers sequenced from a single sampling site dwarf the diversity of spacers from all available Sulfolobales isolates and display complex temporal dynamics. Comparison of closely related virus strains shows that CRISPR targeting drives virus genome evolution. Furthermore, we show that some archaeal viruses carry mini-CRISPR arrays with 1-2 spacers and preceded by leader sequences but devoid of cas genes. Closely related viruses present in the same population carry spacers against each other. Targeting by these virus-borne spacers represents a distinct mechanism of heterotypic superinfection exclusion and appears to promote archaeal virus speciation. More... »

PAGES

5204

References to SciGraph publications

  • 2019-10-14. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire in NATURE REVIEWS GENETICS
  • 2019-06-05. CRISPR–Cas in mobile genetic elements: counter-defence and beyond in NATURE REVIEWS MICROBIOLOGY
  • 2017-06-05. A decade of discovery: CRISPR functions and applications in NATURE MICROBIOLOGY
  • 2019-06-12. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration in NATURE
  • 2013-08-27. Revenge of the phages: defeating bacterial defences in NATURE REVIEWS MICROBIOLOGY
  • 2017-11-10. The enigmatic archaeal virosphere in NATURE REVIEWS MICROBIOLOGY
  • 2018-11-26. Pervasive acquisition of CRISPR memory driven by inter-species mating of archaea can limit gene transfer and influence speciation in NATURE MICROBIOLOGY
  • 2018-08-22. Structural conservation in a membrane-enveloped filamentous virus infecting a hyperthermophilic acidophile in NATURE COMMUNICATIONS
  • 2018-06-04. Phage puppet masters of the marine microbial realm in NATURE MICROBIOLOGY
  • 2015-09-28. An updated evolutionary classification of CRISPR–Cas systems in NATURE REVIEWS MICROBIOLOGY
  • 2018-03-05. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity in NATURE MICROBIOLOGY
  • 2013-02-27. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity in NATURE
  • 2018-09-19. Ring nucleases deactivate Type III CRISPR ribonucleases by degrading cyclic oligoadenylate in NATURE
  • 2014-12-09. Evolution of adaptive immunity from transposable elements combined with innate immune systems in NATURE REVIEWS GENETICS
  • 2018-02-21. A virus or more in (nearly) every cell: ubiquitous networks of virus–host interactions in extreme environments in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-13205-2

    DOI

    http://dx.doi.org/10.1038/s41467-019-13205-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1122587450

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31729390


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaeal Viruses", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clustered Regularly Interspaced Short Palindromic Repeats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Viral", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sorbonne Universit\u00e9, Coll\u00e8ge doctoral, 75005 Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.462844.8", 
              "name": [
                "Institut Pasteur, Department of Microbiology, 75015 Paris, France", 
                "Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia", 
                "Sorbonne Universit\u00e9, Coll\u00e8ge doctoral, 75005 Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Medvedeva", 
            "givenName": "Sofia", 
            "id": "sg:person.0664773241.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664773241.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Pasteur, Department of Microbiology, 75015 Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Institut Pasteur, Department of Microbiology, 75015 Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Ying", 
            "id": "sg:person.014763120237.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763120237.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 USA", 
              "id": "http://www.grid.ac/institutes/grid.419234.9", 
              "name": [
                "National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koonin", 
            "givenName": "Eugene V.", 
            "id": "sg:person.01017015051.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Molecular Genetics, Moscow, 123182 Russia", 
              "id": "http://www.grid.ac/institutes/grid.418826.1", 
              "name": [
                "Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia", 
                "Waksman Institute, Rutgers University, Piscataway, NJ 08854 USA", 
                "Institute of Molecular Genetics, Moscow, 123182 Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Severinov", 
            "givenName": "Konstantin", 
            "id": "sg:person.0704106057.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704106057.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179 Georgia", 
              "id": "http://www.grid.ac/institutes/grid.26193.3f", 
              "name": [
                "Institut Pasteur, Department of Microbiology, 75015 Paris, France", 
                "Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179 Georgia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prangishvili", 
            "givenName": "David", 
            "id": "sg:person.01332500224.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332500224.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Pasteur, Department of Microbiology, 75015 Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Institut Pasteur, Department of Microbiology, 75015 Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krupovic", 
            "givenName": "Mart", 
            "id": "sg:person.01032701646.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032701646.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41576-019-0172-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121786618", 
              "https://doi.org/10.1038/s41576-019-0172-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0166-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104356861", 
              "https://doi.org/10.1038/s41564-018-0166-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039295633", 
              "https://doi.org/10.1038/nrg3859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1323-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117069669", 
              "https://doi.org/10.1038/s41586-019-1323-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010036058", 
              "https://doi.org/10.1038/nrmicro3569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05684-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106187430", 
              "https://doi.org/10.1038/s41467-018-05684-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0557-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107086348", 
              "https://doi.org/10.1038/s41586-018-0557-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0302-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110042732", 
              "https://doi.org/10.1038/s41564-018-0302-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2017.125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092616339", 
              "https://doi.org/10.1038/nrmicro.2017.125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0120-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101298950", 
              "https://doi.org/10.1038/s41564-018-0120-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41396-018-0071-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101059541", 
              "https://doi.org/10.1038/s41396-018-0071-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-019-0204-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116672194", 
              "https://doi.org/10.1038/s41579-019-0204-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040964489", 
              "https://doi.org/10.1038/nrmicro3096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2017.92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085862676", 
              "https://doi.org/10.1038/nmicrobiol.2017.92"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029861918", 
              "https://doi.org/10.1038/nature11927"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-11-15", 
        "datePublishedReg": "2019-11-15", 
        "description": "CRISPR-Cas immunity is at the forefront of antivirus defense in bacteria and archaea and specifically targets viruses carrying protospacers matching the spacers catalogued in the CRISPR arrays. Here, we perform deep sequencing of the CRISPRome-all spacers contained in a microbiome-associated with hyperthermophilic archaea of the order Sulfolobales recovered directly from an environmental sample and from enrichment cultures established in the laboratory. The 25 million CRISPR spacers sequenced from a single sampling site dwarf the diversity of spacers from all available Sulfolobales isolates and display complex temporal dynamics. Comparison of closely related virus strains shows that CRISPR targeting drives virus genome evolution. Furthermore, we show that some archaeal viruses carry mini-CRISPR arrays with 1-2 spacers and preceded by leader sequences but devoid of cas genes. Closely related viruses present in the same population carry spacers against each other. Targeting by these virus-borne spacers represents a distinct mechanism of heterotypic superinfection exclusion and appears to promote archaeal virus speciation.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-13205-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2521910", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5494658", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "virus genome evolution", 
          "CRISPR-Cas immunity", 
          "genome evolution", 
          "antivirus defense", 
          "single sampling site", 
          "archaeal viruses", 
          "order Sulfolobales", 
          "hyperthermophilic archaea", 
          "cas genes", 
          "leader sequence", 
          "diversity of spacers", 
          "deep sequencing", 
          "CRISPR spacers", 
          "CRISPR arrays", 
          "superinfection exclusion", 
          "strains shows", 
          "Sulfolobales", 
          "archaea", 
          "enrichment cultures", 
          "related viruses", 
          "distinct mechanisms", 
          "same population", 
          "sampling sites", 
          "environmental samples", 
          "temporal dynamics", 
          "spacer", 
          "CRISPR", 
          "genes", 
          "protospacers", 
          "virus", 
          "complex temporal dynamics", 
          "sequencing", 
          "diversity", 
          "speciation", 
          "bacteria", 
          "sequence", 
          "defense", 
          "evolution", 
          "sites", 
          "mechanism", 
          "array", 
          "population", 
          "immunity", 
          "culture", 
          "dynamics", 
          "exclusion", 
          "laboratory", 
          "comparison", 
          "show", 
          "forefront", 
          "samples", 
          "conflict", 
          "CRISPRome", 
          "available Sulfolobales", 
          "related virus strains shows", 
          "virus strains shows", 
          "drives virus genome evolution", 
          "mini-CRISPR arrays", 
          "virus-borne spacers", 
          "heterotypic superinfection exclusion", 
          "archaeal virus speciation", 
          "virus speciation", 
          "Virus-borne mini-CRISPR arrays", 
          "interviral conflicts"
        ], 
        "name": "Virus-borne mini-CRISPR arrays are involved in interviral conflicts", 
        "pagination": "5204", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1122587450"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-13205-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31729390"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-13205-2", 
          "https://app.dimensions.ai/details/publication/pub.1122587450"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_821.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-13205-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-13205-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-13205-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-13205-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-13205-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      22 PREDICATES      114 URIs      89 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-13205-2 schema:about N02d13c68678a4355bbba2dbd0f9cb642
    2 N1c5c65fa3d4f4e9baf8b5386ab24d460
    3 N34c206a2aea74a06bf53459eeb36cec9
    4 N49f2ff8ea4ba4fa2ba58eac1e50b3673
    5 Na6edcc85c70045c6a89220a2febfc42d
    6 Nddbfa02bb8b54b5caf8442374975d2f2
    7 Ne4f79c4504564538a3ab75460c15db70
    8 anzsrc-for:06
    9 anzsrc-for:0605
    10 anzsrc-for:11
    11 anzsrc-for:1108
    12 schema:author N20fb6d9f47d2415b80ff4e5bb80b7a72
    13 schema:citation sg:pub.10.1038/nature11927
    14 sg:pub.10.1038/nmicrobiol.2017.92
    15 sg:pub.10.1038/nrg3859
    16 sg:pub.10.1038/nrmicro.2017.125
    17 sg:pub.10.1038/nrmicro3096
    18 sg:pub.10.1038/nrmicro3569
    19 sg:pub.10.1038/s41396-018-0071-7
    20 sg:pub.10.1038/s41467-018-05684-6
    21 sg:pub.10.1038/s41564-018-0120-z
    22 sg:pub.10.1038/s41564-018-0166-y
    23 sg:pub.10.1038/s41564-018-0302-8
    24 sg:pub.10.1038/s41576-019-0172-9
    25 sg:pub.10.1038/s41579-019-0204-7
    26 sg:pub.10.1038/s41586-018-0557-5
    27 sg:pub.10.1038/s41586-019-1323-z
    28 schema:datePublished 2019-11-15
    29 schema:datePublishedReg 2019-11-15
    30 schema:description CRISPR-Cas immunity is at the forefront of antivirus defense in bacteria and archaea and specifically targets viruses carrying protospacers matching the spacers catalogued in the CRISPR arrays. Here, we perform deep sequencing of the CRISPRome-all spacers contained in a microbiome-associated with hyperthermophilic archaea of the order Sulfolobales recovered directly from an environmental sample and from enrichment cultures established in the laboratory. The 25 million CRISPR spacers sequenced from a single sampling site dwarf the diversity of spacers from all available Sulfolobales isolates and display complex temporal dynamics. Comparison of closely related virus strains shows that CRISPR targeting drives virus genome evolution. Furthermore, we show that some archaeal viruses carry mini-CRISPR arrays with 1-2 spacers and preceded by leader sequences but devoid of cas genes. Closely related viruses present in the same population carry spacers against each other. Targeting by these virus-borne spacers represents a distinct mechanism of heterotypic superinfection exclusion and appears to promote archaeal virus speciation.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N1d6d973045034d5987424a5c4d5ffc5d
    35 Nb96e65165ea246018c031dd7df809b59
    36 sg:journal.1043282
    37 schema:keywords CRISPR
    38 CRISPR arrays
    39 CRISPR spacers
    40 CRISPR-Cas immunity
    41 CRISPRome
    42 Sulfolobales
    43 Virus-borne mini-CRISPR arrays
    44 antivirus defense
    45 archaea
    46 archaeal virus speciation
    47 archaeal viruses
    48 array
    49 available Sulfolobales
    50 bacteria
    51 cas genes
    52 comparison
    53 complex temporal dynamics
    54 conflict
    55 culture
    56 deep sequencing
    57 defense
    58 distinct mechanisms
    59 diversity
    60 diversity of spacers
    61 drives virus genome evolution
    62 dynamics
    63 enrichment cultures
    64 environmental samples
    65 evolution
    66 exclusion
    67 forefront
    68 genes
    69 genome evolution
    70 heterotypic superinfection exclusion
    71 hyperthermophilic archaea
    72 immunity
    73 interviral conflicts
    74 laboratory
    75 leader sequence
    76 mechanism
    77 mini-CRISPR arrays
    78 order Sulfolobales
    79 population
    80 protospacers
    81 related virus strains shows
    82 related viruses
    83 same population
    84 samples
    85 sampling sites
    86 sequence
    87 sequencing
    88 show
    89 single sampling site
    90 sites
    91 spacer
    92 speciation
    93 strains shows
    94 superinfection exclusion
    95 temporal dynamics
    96 virus
    97 virus genome evolution
    98 virus speciation
    99 virus strains shows
    100 virus-borne spacers
    101 schema:name Virus-borne mini-CRISPR arrays are involved in interviral conflicts
    102 schema:pagination 5204
    103 schema:productId N6b52d4f7df444cd1bb447cfeb211c70e
    104 N8c00ef1378ea410f874844b43cb00a53
    105 Nf47cdf9b0043409a8f2773ebbbe6c8f1
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122587450
    107 https://doi.org/10.1038/s41467-019-13205-2
    108 schema:sdDatePublished 2022-01-01T18:50
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N54d67884a6c749d8a64aacac0880257d
    111 schema:url https://doi.org/10.1038/s41467-019-13205-2
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N02d13c68678a4355bbba2dbd0f9cb642 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Archaea
    117 rdf:type schema:DefinedTerm
    118 N199eb12fdeb24b4283fa53ad47adf84f rdf:first sg:person.01017015051.78
    119 rdf:rest N83a728af24b4487bb34372ffc71d4cac
    120 N1c5c65fa3d4f4e9baf8b5386ab24d460 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Archaeal Viruses
    122 rdf:type schema:DefinedTerm
    123 N1cc4e4b05afa463d86e4706456f50a6c rdf:first sg:person.01332500224.95
    124 rdf:rest N7c857bc15f384e0986a4d2ea9b4db090
    125 N1d6d973045034d5987424a5c4d5ffc5d schema:issueNumber 1
    126 rdf:type schema:PublicationIssue
    127 N20fb6d9f47d2415b80ff4e5bb80b7a72 rdf:first sg:person.0664773241.48
    128 rdf:rest N63af5873f3e646d3bb26f307783bd8f2
    129 N34c206a2aea74a06bf53459eeb36cec9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Phylogeny
    131 rdf:type schema:DefinedTerm
    132 N49f2ff8ea4ba4fa2ba58eac1e50b3673 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Clustered Regularly Interspaced Short Palindromic Repeats
    134 rdf:type schema:DefinedTerm
    135 N54d67884a6c749d8a64aacac0880257d schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 N63af5873f3e646d3bb26f307783bd8f2 rdf:first sg:person.014763120237.69
    138 rdf:rest N199eb12fdeb24b4283fa53ad47adf84f
    139 N6b52d4f7df444cd1bb447cfeb211c70e schema:name pubmed_id
    140 schema:value 31729390
    141 rdf:type schema:PropertyValue
    142 N7c857bc15f384e0986a4d2ea9b4db090 rdf:first sg:person.01032701646.39
    143 rdf:rest rdf:nil
    144 N83a728af24b4487bb34372ffc71d4cac rdf:first sg:person.0704106057.11
    145 rdf:rest N1cc4e4b05afa463d86e4706456f50a6c
    146 N8c00ef1378ea410f874844b43cb00a53 schema:name doi
    147 schema:value 10.1038/s41467-019-13205-2
    148 rdf:type schema:PropertyValue
    149 Na6edcc85c70045c6a89220a2febfc42d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Evolution, Molecular
    151 rdf:type schema:DefinedTerm
    152 Nb96e65165ea246018c031dd7df809b59 schema:volumeNumber 10
    153 rdf:type schema:PublicationVolume
    154 Nddbfa02bb8b54b5caf8442374975d2f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Genome, Viral
    156 rdf:type schema:DefinedTerm
    157 Ne4f79c4504564538a3ab75460c15db70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Base Sequence
    159 rdf:type schema:DefinedTerm
    160 Nf47cdf9b0043409a8f2773ebbbe6c8f1 schema:name dimensions_id
    161 schema:value pub.1122587450
    162 rdf:type schema:PropertyValue
    163 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Biological Sciences
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Microbiology
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Medical and Health Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Medical Microbiology
    174 rdf:type schema:DefinedTerm
    175 sg:grant.2521910 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-13205-2
    176 rdf:type schema:MonetaryGrant
    177 sg:grant.5494658 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-13205-2
    178 rdf:type schema:MonetaryGrant
    179 sg:journal.1043282 schema:issn 2041-1723
    180 schema:name Nature Communications
    181 schema:publisher Springer Nature
    182 rdf:type schema:Periodical
    183 sg:person.01017015051.78 schema:affiliation grid-institutes:grid.419234.9
    184 schema:familyName Koonin
    185 schema:givenName Eugene V.
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78
    187 rdf:type schema:Person
    188 sg:person.01032701646.39 schema:affiliation grid-institutes:grid.428999.7
    189 schema:familyName Krupovic
    190 schema:givenName Mart
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032701646.39
    192 rdf:type schema:Person
    193 sg:person.01332500224.95 schema:affiliation grid-institutes:grid.26193.3f
    194 schema:familyName Prangishvili
    195 schema:givenName David
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332500224.95
    197 rdf:type schema:Person
    198 sg:person.014763120237.69 schema:affiliation grid-institutes:grid.428999.7
    199 schema:familyName Liu
    200 schema:givenName Ying
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763120237.69
    202 rdf:type schema:Person
    203 sg:person.0664773241.48 schema:affiliation grid-institutes:grid.462844.8
    204 schema:familyName Medvedeva
    205 schema:givenName Sofia
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664773241.48
    207 rdf:type schema:Person
    208 sg:person.0704106057.11 schema:affiliation grid-institutes:grid.418826.1
    209 schema:familyName Severinov
    210 schema:givenName Konstantin
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704106057.11
    212 rdf:type schema:Person
    213 sg:pub.10.1038/nature11927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029861918
    214 https://doi.org/10.1038/nature11927
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nmicrobiol.2017.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085862676
    217 https://doi.org/10.1038/nmicrobiol.2017.92
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nrg3859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039295633
    220 https://doi.org/10.1038/nrg3859
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nrmicro.2017.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092616339
    223 https://doi.org/10.1038/nrmicro.2017.125
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nrmicro3096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040964489
    226 https://doi.org/10.1038/nrmicro3096
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nrmicro3569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010036058
    229 https://doi.org/10.1038/nrmicro3569
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/s41396-018-0071-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101059541
    232 https://doi.org/10.1038/s41396-018-0071-7
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/s41467-018-05684-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106187430
    235 https://doi.org/10.1038/s41467-018-05684-6
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/s41564-018-0120-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101298950
    238 https://doi.org/10.1038/s41564-018-0120-z
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/s41564-018-0166-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104356861
    241 https://doi.org/10.1038/s41564-018-0166-y
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/s41564-018-0302-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110042732
    244 https://doi.org/10.1038/s41564-018-0302-8
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/s41576-019-0172-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121786618
    247 https://doi.org/10.1038/s41576-019-0172-9
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/s41579-019-0204-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116672194
    250 https://doi.org/10.1038/s41579-019-0204-7
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/s41586-018-0557-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107086348
    253 https://doi.org/10.1038/s41586-018-0557-5
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/s41586-019-1323-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1117069669
    256 https://doi.org/10.1038/s41586-019-1323-z
    257 rdf:type schema:CreativeWork
    258 grid-institutes:grid.26193.3f schema:alternateName Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179 Georgia
    259 schema:name Institut Pasteur, Department of Microbiology, 75015 Paris, France
    260 Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179 Georgia
    261 rdf:type schema:Organization
    262 grid-institutes:grid.418826.1 schema:alternateName Institute of Molecular Genetics, Moscow, 123182 Russia
    263 schema:name Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
    264 Institute of Molecular Genetics, Moscow, 123182 Russia
    265 Waksman Institute, Rutgers University, Piscataway, NJ 08854 USA
    266 rdf:type schema:Organization
    267 grid-institutes:grid.419234.9 schema:alternateName National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 USA
    268 schema:name National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 USA
    269 rdf:type schema:Organization
    270 grid-institutes:grid.428999.7 schema:alternateName Institut Pasteur, Department of Microbiology, 75015 Paris, France
    271 schema:name Institut Pasteur, Department of Microbiology, 75015 Paris, France
    272 rdf:type schema:Organization
    273 grid-institutes:grid.462844.8 schema:alternateName Sorbonne Université, Collège doctoral, 75005 Paris, France
    274 schema:name Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
    275 Institut Pasteur, Department of Microbiology, 75015 Paris, France
    276 Sorbonne Université, Collège doctoral, 75005 Paris, France
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...