Stronger zonal convective clustering associated with a wider tropical rain belt View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-09-19

AUTHORS

Max Popp, Sandrine Bony

ABSTRACT

Deep convection can exhibit a large diversity of spatial organizations along the equator. The form of organization may affect the tropical large-scale motions of the atmosphere, but observational evidence is currently missing. Here we show using observations that when convection along the equator is more clustered in the zonal direction, the tropical rain belt widens in the meridional direction, and exhibits a double-peak structure. About half of the influence of the convective clustering on the width of the rain belt is associated with the annual cycle and the other half is associated with unforced climate variability. Idealized climate model experiments show that the zonal convective clustering alone can explain the observed behavior and that the behavior can be explained with an energetic framework. This demonstrates that the representation of equatorial convective clustering is important for modeling the tropical rainfall distribution accurately. More... »

PAGES

4261

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-12167-9

DOI

http://dx.doi.org/10.1038/s41467-019-12167-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121123462

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31537785


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique (LMD/IPSL), Sorbonne Universit\u00e9, Centre National de la Recherche Scientifique (CNRS), \u00c9cole Polytechnique, \u00c9cole Normale Sup\u00e9rieure, 4 Place Jussieu, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique (LMD/IPSL), Sorbonne Universit\u00e9, Centre National de la Recherche Scientifique (CNRS), \u00c9cole Polytechnique, \u00c9cole Normale Sup\u00e9rieure, 4 Place Jussieu, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popp", 
        "givenName": "Max", 
        "id": "sg:person.01311205633.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311205633.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique (LMD/IPSL), Sorbonne Universit\u00e9, Centre National de la Recherche Scientifique (CNRS), \u00c9cole Polytechnique, \u00c9cole Normale Sup\u00e9rieure, 4 Place Jussieu, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique (LMD/IPSL), Sorbonne Universit\u00e9, Centre National de la Recherche Scientifique (CNRS), \u00c9cole Polytechnique, \u00c9cole Normale Sup\u00e9rieure, 4 Place Jussieu, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "Sandrine", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00162-006-0033-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014784450", 
          "https://doi.org/10.1007/s00162-006-0033-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1411-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035096477", 
          "https://doi.org/10.1007/s00382-012-1411-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0158-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016287495", 
          "https://doi.org/10.1007/s00382-006-0158-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1344-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011190524", 
          "https://doi.org/10.1007/s00382-012-1344-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1636-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028914989", 
          "https://doi.org/10.1007/s00382-012-1636-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40641-018-0110-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106055638", 
          "https://doi.org/10.1007/s40641-018-0110-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00117978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013264681", 
          "https://doi.org/10.1007/bf00117978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031423891", 
          "https://doi.org/10.1038/ngeo2398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-017-9408-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083887659", 
          "https://doi.org/10.1007/s10712-017-9408-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-09-19", 
    "datePublishedReg": "2019-09-19", 
    "description": "Deep convection can exhibit a large diversity of spatial organizations along the equator. The form of organization may affect the tropical large-scale motions of the atmosphere, but observational evidence is currently missing. Here we show using observations that when convection along the equator is more clustered in the zonal direction, the tropical rain belt widens in the meridional direction, and exhibits a double-peak structure. About half of the influence of the convective clustering on the width of the rain belt is associated with the annual cycle and the other half is associated with unforced climate variability. Idealized climate model experiments show that the zonal convective clustering alone can explain the observed behavior and that the behavior can be explained with an energetic framework. This demonstrates that the representation of equatorial convective clustering is important for modeling the tropical rainfall distribution accurately.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-019-12167-9", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5493737", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "tropical rain belt", 
      "rain belt", 
      "convective clustering", 
      "unforced climate variability", 
      "climate model experiments", 
      "tropical rainfall distribution", 
      "deep convection", 
      "climate variability", 
      "rainfall distribution", 
      "annual cycle", 
      "zonal direction", 
      "energetic framework", 
      "meridional direction", 
      "belt", 
      "model experiments", 
      "observational evidence", 
      "large-scale motions", 
      "equator", 
      "convection", 
      "double-peak structure", 
      "large diversity", 
      "atmosphere", 
      "variability", 
      "spatial organization", 
      "direction", 
      "cycle", 
      "distribution", 
      "half", 
      "observed behavior", 
      "motion", 
      "influence", 
      "evidence", 
      "width", 
      "diversity", 
      "structure", 
      "experiments", 
      "representation", 
      "clustering", 
      "framework", 
      "behavior", 
      "form", 
      "organization", 
      "forms of organization", 
      "observations"
    ], 
    "name": "Stronger zonal convective clustering associated with a wider tropical rain belt", 
    "pagination": "4261", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121123462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-12167-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31537785"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-12167-9", 
      "https://app.dimensions.ai/details/publication/pub.1121123462"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_806.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-019-12167-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-12167-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-12167-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-12167-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-12167-9'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      78 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-12167-9 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N0dba9f856622452baa99efdc00905a7c
4 schema:citation sg:pub.10.1007/bf00117978
5 sg:pub.10.1007/s00162-006-0033-y
6 sg:pub.10.1007/s00382-006-0158-0
7 sg:pub.10.1007/s00382-012-1344-x
8 sg:pub.10.1007/s00382-012-1411-3
9 sg:pub.10.1007/s00382-012-1636-1
10 sg:pub.10.1007/s10712-017-9408-4
11 sg:pub.10.1007/s40641-018-0110-5
12 sg:pub.10.1038/ngeo2398
13 schema:datePublished 2019-09-19
14 schema:datePublishedReg 2019-09-19
15 schema:description Deep convection can exhibit a large diversity of spatial organizations along the equator. The form of organization may affect the tropical large-scale motions of the atmosphere, but observational evidence is currently missing. Here we show using observations that when convection along the equator is more clustered in the zonal direction, the tropical rain belt widens in the meridional direction, and exhibits a double-peak structure. About half of the influence of the convective clustering on the width of the rain belt is associated with the annual cycle and the other half is associated with unforced climate variability. Idealized climate model experiments show that the zonal convective clustering alone can explain the observed behavior and that the behavior can be explained with an energetic framework. This demonstrates that the representation of equatorial convective clustering is important for modeling the tropical rainfall distribution accurately.
16 schema:genre article
17 schema:isAccessibleForFree true
18 schema:isPartOf N913597f5ba05410eab957d2030f6778f
19 N98388b72a7e34131bd02d4393d92770c
20 sg:journal.1043282
21 schema:keywords annual cycle
22 atmosphere
23 behavior
24 belt
25 climate model experiments
26 climate variability
27 clustering
28 convection
29 convective clustering
30 cycle
31 deep convection
32 direction
33 distribution
34 diversity
35 double-peak structure
36 energetic framework
37 equator
38 evidence
39 experiments
40 form
41 forms of organization
42 framework
43 half
44 influence
45 large diversity
46 large-scale motions
47 meridional direction
48 model experiments
49 motion
50 observational evidence
51 observations
52 observed behavior
53 organization
54 rain belt
55 rainfall distribution
56 representation
57 spatial organization
58 structure
59 tropical rain belt
60 tropical rainfall distribution
61 unforced climate variability
62 variability
63 width
64 zonal direction
65 schema:name Stronger zonal convective clustering associated with a wider tropical rain belt
66 schema:pagination 4261
67 schema:productId N5f9597b19da246bdb486ad817173fb99
68 N88778828e2794b509cdb8c85c317e979
69 N8f5f6723411b432580af0f5e94f92a63
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121123462
71 https://doi.org/10.1038/s41467-019-12167-9
72 schema:sdDatePublished 2022-12-01T06:39
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nb7aa8574cbe54690b700b8aa1eb9ba42
75 schema:url https://doi.org/10.1038/s41467-019-12167-9
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N0dba9f856622452baa99efdc00905a7c rdf:first sg:person.01311205633.22
80 rdf:rest N2334d69d1e6449b794a14f95f32569cc
81 N2334d69d1e6449b794a14f95f32569cc rdf:first sg:person.013647160343.22
82 rdf:rest rdf:nil
83 N5f9597b19da246bdb486ad817173fb99 schema:name pubmed_id
84 schema:value 31537785
85 rdf:type schema:PropertyValue
86 N88778828e2794b509cdb8c85c317e979 schema:name dimensions_id
87 schema:value pub.1121123462
88 rdf:type schema:PropertyValue
89 N8f5f6723411b432580af0f5e94f92a63 schema:name doi
90 schema:value 10.1038/s41467-019-12167-9
91 rdf:type schema:PropertyValue
92 N913597f5ba05410eab957d2030f6778f schema:volumeNumber 10
93 rdf:type schema:PublicationVolume
94 N98388b72a7e34131bd02d4393d92770c schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 Nb7aa8574cbe54690b700b8aa1eb9ba42 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
99 schema:name Earth Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
102 schema:name Atmospheric Sciences
103 rdf:type schema:DefinedTerm
104 sg:grant.5493737 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-12167-9
105 rdf:type schema:MonetaryGrant
106 sg:journal.1043282 schema:issn 2041-1723
107 schema:name Nature Communications
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.01311205633.22 schema:affiliation grid-institutes:None
111 schema:familyName Popp
112 schema:givenName Max
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311205633.22
114 rdf:type schema:Person
115 sg:person.013647160343.22 schema:affiliation grid-institutes:None
116 schema:familyName Bony
117 schema:givenName Sandrine
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
119 rdf:type schema:Person
120 sg:pub.10.1007/bf00117978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013264681
121 https://doi.org/10.1007/bf00117978
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00162-006-0033-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014784450
124 https://doi.org/10.1007/s00162-006-0033-y
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00382-006-0158-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016287495
127 https://doi.org/10.1007/s00382-006-0158-0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00382-012-1344-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011190524
130 https://doi.org/10.1007/s00382-012-1344-x
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00382-012-1411-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035096477
133 https://doi.org/10.1007/s00382-012-1411-3
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00382-012-1636-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028914989
136 https://doi.org/10.1007/s00382-012-1636-1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10712-017-9408-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083887659
139 https://doi.org/10.1007/s10712-017-9408-4
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s40641-018-0110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106055638
142 https://doi.org/10.1007/s40641-018-0110-5
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ngeo2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031423891
145 https://doi.org/10.1038/ngeo2398
146 rdf:type schema:CreativeWork
147 grid-institutes:None schema:alternateName Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), École Polytechnique, École Normale Supérieure, 4 Place Jussieu, 75005, Paris, France
148 schema:name Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), École Polytechnique, École Normale Supérieure, 4 Place Jussieu, 75005, Paris, France
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...