Gene networks that compensate for crosstalk with crosstalk View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-09-06

AUTHORS

Isaak E. Müller, Jacob R. Rubens, Tomi Jun, Daniel Graham, Ramnik Xavier, Timothy K. Lu

ABSTRACT

Crosstalk is a major challenge to engineering sophisticated synthetic gene networks. A common approach is to insulate signal-transduction pathways by minimizing molecular-level crosstalk between endogenous and synthetic genetic components, but this strategy can be difficult to apply in the context of complex, natural gene networks and unknown interactions. Here, we show that synthetic gene networks can be engineered to compensate for crosstalk by integrating pathway signals, rather than by pathway insulation. We demonstrate this principle using reactive oxygen species (ROS)-responsive gene circuits in Escherichia coli that exhibit concentration-dependent crosstalk with non-cognate ROS. We quantitatively map the degree of crosstalk and design gene circuits that introduce compensatory crosstalk at the gene network level. The resulting gene network exhibits reduced crosstalk in the sensing of the two different ROS. Our results suggest that simple network motifs that compensate for pathway crosstalk can be used by biological networks to accurately interpret environmental signals. More... »

PAGES

4028

References to SciGraph publications

  • 2010-01-20. Five hard truths for synthetic biology in NATURE
  • 2013-05-15. Synthetic analog computation in living cells in NATURE
  • 2013-02-05. Transferring a synthetic gene circuit from yeast to mammalian cells in NATURE COMMUNICATIONS
  • 2002-04-22. Network motifs in the transcriptional regulation network of Escherichia coli in NATURE GENETICS
  • 2012-07-22. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells in NATURE
  • 2014-03-09. Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals in NATURE METHODS
  • 2010-03-28. Self-sufficient control of urate homeostasis in mice by a synthetic circuit in NATURE BIOTECHNOLOGY
  • 2011-07-12. Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli in BMC SYSTEMS BIOLOGY
  • 2012-10-07. Genetic programs constructed from layered logic gates in single cells in NATURE
  • 2011-09-20. BglBrick vectors and datasheets: A synthetic biology platform for gene expression in JOURNAL OF BIOLOGICAL ENGINEERING
  • 2014-03-24. Coordination of microbial metabolism in NATURE REVIEWS MICROBIOLOGY
  • 2003-12. Optimization of specificity in a cellular protein interaction network by negative selection in NATURE
  • 2013-05-28. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium in NATURE REVIEWS MICROBIOLOGY
  • 2008-11-11. Signaling cross-talk between TGF-β/BMP and other pathways in CELL RESEARCH
  • 2016-06-03. Synthetic mixed-signal computation in living cells in NATURE COMMUNICATIONS
  • 2014-09-03. Stochasticity of metabolism and growth at the single-cell level in NATURE
  • 2002-08-19. Macrolide-based transgene control in mammalian cells and mice in NATURE BIOTECHNOLOGY
  • 2012-06-03. Programmable single-cell mammalian biocomputers in NATURE
  • 2014-01-02. An improved Escherichia colistrain to host gene regulatory networks involving both the AraC and LacI inducible transcription factors in JOURNAL OF BIOLOGICAL ENGINEERING
  • 2009-04-19. Diversity-based, model-guided construction of synthetic gene networks with predicted functions in NATURE BIOTECHNOLOGY
  • 2007-11-29. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism in NATURE
  • 2012-05-18. Foundations for the design and implementation of synthetic genetic circuits in NATURE REVIEWS GENETICS
  • 2006-05-21. Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-12021-y

    DOI

    http://dx.doi.org/10.1038/s41467-019-12021-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1120875889

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31492904


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrogen Peroxide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidants", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reactive Oxygen Species", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Repressor Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Microbiology Program, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
                "Microbiology Program, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fcller", 
            "givenName": "Isaak E.", 
            "id": "sg:person.014477772403.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014477772403.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microbiology Program, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
                "Microbiology Program, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rubens", 
            "givenName": "Jacob R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Hematology and Medical Oncology, Mount Sinai Hospital, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.416167.3", 
              "name": [
                "Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
                "Harvard-MIT Health Sciences and Technology Program, 02139, Cambridge, MA, USA", 
                "Division of Hematology and Medical Oncology, Mount Sinai Hospital, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jun", 
            "givenName": "Tomi", 
            "id": "sg:person.010511145171.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511145171.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, 02114, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Program in Medical and Population Genetics, Broad Institute, 02142, Cambridge, MA, USA", 
                "Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, 02114, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Graham", 
            "givenName": "Daniel", 
            "id": "sg:person.01123503121.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123503121.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational and Integrative Biology, Massachusetts General Hospital, 02114, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Program in Medical and Population Genetics, Broad Institute, 02142, Cambridge, MA, USA", 
                "Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, 02114, Boston, MA, USA", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, 02114, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xavier", 
            "givenName": "Ramnik", 
            "id": "sg:person.0717130066.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microbiology Program, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
                "Microbiology Program, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Timothy K.", 
            "id": "sg:person.0623425475.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623425475.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/cr.2008.302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009621342", 
              "https://doi.org/10.1038/cr.2008.302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000630986", 
              "https://doi.org/10.1038/ncomms2471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-1611-5-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019699926", 
              "https://doi.org/10.1186/1754-1611-5-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007262410", 
              "https://doi.org/10.1038/nature11259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003754734", 
              "https://doi.org/10.1038/nature11516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-1611-8-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002916292", 
              "https://doi.org/10.1186/1754-1611-8-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050585148", 
              "https://doi.org/10.1038/ncomms11658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-5-111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052424498", 
              "https://doi.org/10.1186/1752-0509-5-111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014266989", 
              "https://doi.org/10.1038/nmeth.2884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009194940", 
              "https://doi.org/10.1038/nature11149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039601295", 
              "https://doi.org/10.1038/nature02178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033363172", 
              "https://doi.org/10.1038/nbt1209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047453849", 
              "https://doi.org/10.1038/nature13582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027177446", 
              "https://doi.org/10.1038/nbt.1617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005434128", 
              "https://doi.org/10.1038/nature06347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010954918", 
              "https://doi.org/10.1038/ng881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038126376", 
              "https://doi.org/10.1038/nbt731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038741200", 
              "https://doi.org/10.1038/nrmicro3238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044756072", 
              "https://doi.org/10.1038/nature12148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040647858", 
              "https://doi.org/10.1038/nrg3227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034182917", 
              "https://doi.org/10.1038/nrmicro3032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/463288a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044941616", 
              "https://doi.org/10.1038/463288a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020751277", 
              "https://doi.org/10.1038/nbt.1536"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-09-06", 
        "datePublishedReg": "2019-09-06", 
        "description": "Crosstalk is a major challenge to engineering sophisticated synthetic gene networks. A common approach is to insulate signal-transduction pathways by minimizing molecular-level crosstalk between endogenous and synthetic genetic components, but this strategy can be difficult to apply in the context of complex, natural gene networks and unknown interactions. Here, we show that synthetic gene networks can be engineered to compensate for crosstalk by integrating pathway signals, rather than by pathway insulation. We demonstrate this principle using reactive oxygen species (ROS)-responsive gene circuits in Escherichia coli that exhibit concentration-dependent crosstalk with non-cognate ROS. We quantitatively map the degree of crosstalk and design gene circuits that introduce compensatory crosstalk at the gene network level. The resulting gene network exhibits reduced crosstalk in the sensing of the two different ROS. Our results suggest that simple network motifs that compensate for pathway crosstalk can be used by biological networks to accurately interpret environmental signals.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-12021-y", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3001000", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2355409", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2440545", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3490389", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "gene networks", 
          "synthetic gene networks", 
          "gene circuits", 
          "natural gene networks", 
          "gene network level", 
          "signal transduction pathways", 
          "simple network motifs", 
          "pathway insulation", 
          "environmental signals", 
          "pathway crosstalk", 
          "reactive oxygen species", 
          "compensatory crosstalk", 
          "different ROS", 
          "pathway signals", 
          "genetic component", 
          "Escherichia coli", 
          "biological networks", 
          "network motifs", 
          "oxygen species", 
          "unknown interactions", 
          "crosstalk", 
          "degree of crosstalk", 
          "ROS", 
          "species", 
          "motif", 
          "coli", 
          "pathway", 
          "major challenge", 
          "signals", 
          "interaction", 
          "network exhibit", 
          "network level", 
          "exhibit", 
          "components", 
          "levels", 
          "network", 
          "strategies", 
          "common approach", 
          "sensing", 
          "results", 
          "degree", 
          "approach", 
          "context", 
          "challenges", 
          "circuit", 
          "principles", 
          "insulation"
        ], 
        "name": "Gene networks that compensate for crosstalk with crosstalk", 
        "pagination": "4028", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1120875889"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-12021-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31492904"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-12021-y", 
          "https://app.dimensions.ai/details/publication/pub.1120875889"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_833.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-12021-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-12021-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-12021-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-12021-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-12021-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    293 TRIPLES      21 PREDICATES      105 URIs      74 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-12021-y schema:about N1a89b96e33d24e3ba13393c3660952f1
    2 N2906f67308c54ccba4d2c28d1d4e647a
    3 N361370bca8934128942a5c917587a399
    4 N51b25131c76943cbae3d7298e9cfe288
    5 N61bf44b93ff844619d6c04a31c92aed0
    6 N63f800b229554656b41d5c6d350998ad
    7 N72b9f33571784c4285d1004765360dff
    8 N9b1f6fa99784474699d8efba543ba314
    9 Na8a65b6b53a44eacaa0a86f56573fced
    10 Nb73bf6642a304acca7a4e134fe6cbc58
    11 anzsrc-for:06
    12 anzsrc-for:0604
    13 schema:author N7eed1a23099d4c2688f96aebf1191029
    14 schema:citation sg:pub.10.1038/463288a
    15 sg:pub.10.1038/cr.2008.302
    16 sg:pub.10.1038/nature02178
    17 sg:pub.10.1038/nature06347
    18 sg:pub.10.1038/nature11149
    19 sg:pub.10.1038/nature11259
    20 sg:pub.10.1038/nature11516
    21 sg:pub.10.1038/nature12148
    22 sg:pub.10.1038/nature13582
    23 sg:pub.10.1038/nbt.1536
    24 sg:pub.10.1038/nbt.1617
    25 sg:pub.10.1038/nbt1209
    26 sg:pub.10.1038/nbt731
    27 sg:pub.10.1038/ncomms11658
    28 sg:pub.10.1038/ncomms2471
    29 sg:pub.10.1038/ng881
    30 sg:pub.10.1038/nmeth.2884
    31 sg:pub.10.1038/nrg3227
    32 sg:pub.10.1038/nrmicro3032
    33 sg:pub.10.1038/nrmicro3238
    34 sg:pub.10.1186/1752-0509-5-111
    35 sg:pub.10.1186/1754-1611-5-12
    36 sg:pub.10.1186/1754-1611-8-2
    37 schema:datePublished 2019-09-06
    38 schema:datePublishedReg 2019-09-06
    39 schema:description Crosstalk is a major challenge to engineering sophisticated synthetic gene networks. A common approach is to insulate signal-transduction pathways by minimizing molecular-level crosstalk between endogenous and synthetic genetic components, but this strategy can be difficult to apply in the context of complex, natural gene networks and unknown interactions. Here, we show that synthetic gene networks can be engineered to compensate for crosstalk by integrating pathway signals, rather than by pathway insulation. We demonstrate this principle using reactive oxygen species (ROS)-responsive gene circuits in Escherichia coli that exhibit concentration-dependent crosstalk with non-cognate ROS. We quantitatively map the degree of crosstalk and design gene circuits that introduce compensatory crosstalk at the gene network level. The resulting gene network exhibits reduced crosstalk in the sensing of the two different ROS. Our results suggest that simple network motifs that compensate for pathway crosstalk can be used by biological networks to accurately interpret environmental signals.
    40 schema:genre article
    41 schema:isAccessibleForFree true
    42 schema:isPartOf Nb1b9abbada224c6c9f26e33a99e6bff2
    43 Ndcba04826b6a45f59b8ec44d97776f3f
    44 sg:journal.1043282
    45 schema:keywords Escherichia coli
    46 ROS
    47 approach
    48 biological networks
    49 challenges
    50 circuit
    51 coli
    52 common approach
    53 compensatory crosstalk
    54 components
    55 context
    56 crosstalk
    57 degree
    58 degree of crosstalk
    59 different ROS
    60 environmental signals
    61 exhibit
    62 gene circuits
    63 gene network level
    64 gene networks
    65 genetic component
    66 insulation
    67 interaction
    68 levels
    69 major challenge
    70 motif
    71 natural gene networks
    72 network
    73 network exhibit
    74 network level
    75 network motifs
    76 oxygen species
    77 pathway
    78 pathway crosstalk
    79 pathway insulation
    80 pathway signals
    81 principles
    82 reactive oxygen species
    83 results
    84 sensing
    85 signal transduction pathways
    86 signals
    87 simple network motifs
    88 species
    89 strategies
    90 synthetic gene networks
    91 unknown interactions
    92 schema:name Gene networks that compensate for crosstalk with crosstalk
    93 schema:pagination 4028
    94 schema:productId N68d06d9e14b146f791023cf5518ecfe0
    95 N6cb3f90999664e71894b0cec79c67151
    96 Ndbc249db04c5405b95b2e72a3c12fc44
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120875889
    98 https://doi.org/10.1038/s41467-019-12021-y
    99 schema:sdDatePublished 2022-09-02T16:04
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N44e756f71c2749e48486b43938a7a3b1
    102 schema:url https://doi.org/10.1038/s41467-019-12021-y
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N0a7660f887c84476a8fe2bd28a15af51 rdf:first sg:person.01123503121.96
    107 rdf:rest N249f13c7e31743dd9af3822987f096ad
    108 N1a89b96e33d24e3ba13393c3660952f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Signal Transduction
    110 rdf:type schema:DefinedTerm
    111 N249f13c7e31743dd9af3822987f096ad rdf:first sg:person.0717130066.82
    112 rdf:rest Nfe1b83471ae54362aa68e41415c9f9f9
    113 N2906f67308c54ccba4d2c28d1d4e647a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Models, Genetic
    115 rdf:type schema:DefinedTerm
    116 N361370bca8934128942a5c917587a399 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Escherichia coli Proteins
    118 rdf:type schema:DefinedTerm
    119 N41dc01c83ddc4be99a8b0025888f64f0 schema:affiliation grid-institutes:grid.116068.8
    120 schema:familyName Rubens
    121 schema:givenName Jacob R.
    122 rdf:type schema:Person
    123 N44e756f71c2749e48486b43938a7a3b1 schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 N51b25131c76943cbae3d7298e9cfe288 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Repressor Proteins
    127 rdf:type schema:DefinedTerm
    128 N5595c329432f49c1a5140039ec9a167a rdf:first N41dc01c83ddc4be99a8b0025888f64f0
    129 rdf:rest Ne5a05ca7536e44c6b0c797d2f34fa7fa
    130 N61bf44b93ff844619d6c04a31c92aed0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Hydrogen Peroxide
    132 rdf:type schema:DefinedTerm
    133 N63f800b229554656b41d5c6d350998ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Oxidants
    135 rdf:type schema:DefinedTerm
    136 N68d06d9e14b146f791023cf5518ecfe0 schema:name dimensions_id
    137 schema:value pub.1120875889
    138 rdf:type schema:PropertyValue
    139 N6cb3f90999664e71894b0cec79c67151 schema:name doi
    140 schema:value 10.1038/s41467-019-12021-y
    141 rdf:type schema:PropertyValue
    142 N72b9f33571784c4285d1004765360dff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Gene Regulatory Networks
    144 rdf:type schema:DefinedTerm
    145 N7eed1a23099d4c2688f96aebf1191029 rdf:first sg:person.014477772403.61
    146 rdf:rest N5595c329432f49c1a5140039ec9a167a
    147 N9b1f6fa99784474699d8efba543ba314 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Gene Expression Regulation, Bacterial
    149 rdf:type schema:DefinedTerm
    150 Na8a65b6b53a44eacaa0a86f56573fced schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Reactive Oxygen Species
    152 rdf:type schema:DefinedTerm
    153 Nb1b9abbada224c6c9f26e33a99e6bff2 schema:volumeNumber 10
    154 rdf:type schema:PublicationVolume
    155 Nb73bf6642a304acca7a4e134fe6cbc58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Escherichia coli
    157 rdf:type schema:DefinedTerm
    158 Ndbc249db04c5405b95b2e72a3c12fc44 schema:name pubmed_id
    159 schema:value 31492904
    160 rdf:type schema:PropertyValue
    161 Ndcba04826b6a45f59b8ec44d97776f3f schema:issueNumber 1
    162 rdf:type schema:PublicationIssue
    163 Ne5a05ca7536e44c6b0c797d2f34fa7fa rdf:first sg:person.010511145171.34
    164 rdf:rest N0a7660f887c84476a8fe2bd28a15af51
    165 Nfe1b83471ae54362aa68e41415c9f9f9 rdf:first sg:person.0623425475.77
    166 rdf:rest rdf:nil
    167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Biological Sciences
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Genetics
    172 rdf:type schema:DefinedTerm
    173 sg:grant.2355409 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-12021-y
    174 rdf:type schema:MonetaryGrant
    175 sg:grant.2440545 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-12021-y
    176 rdf:type schema:MonetaryGrant
    177 sg:grant.3001000 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-12021-y
    178 rdf:type schema:MonetaryGrant
    179 sg:grant.3490389 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-12021-y
    180 rdf:type schema:MonetaryGrant
    181 sg:journal.1043282 schema:issn 2041-1723
    182 schema:name Nature Communications
    183 schema:publisher Springer Nature
    184 rdf:type schema:Periodical
    185 sg:person.010511145171.34 schema:affiliation grid-institutes:grid.416167.3
    186 schema:familyName Jun
    187 schema:givenName Tomi
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511145171.34
    189 rdf:type schema:Person
    190 sg:person.01123503121.96 schema:affiliation grid-institutes:grid.32224.35
    191 schema:familyName Graham
    192 schema:givenName Daniel
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123503121.96
    194 rdf:type schema:Person
    195 sg:person.014477772403.61 schema:affiliation grid-institutes:grid.116068.8
    196 schema:familyName Müller
    197 schema:givenName Isaak E.
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014477772403.61
    199 rdf:type schema:Person
    200 sg:person.0623425475.77 schema:affiliation grid-institutes:grid.116068.8
    201 schema:familyName Lu
    202 schema:givenName Timothy K.
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623425475.77
    204 rdf:type schema:Person
    205 sg:person.0717130066.82 schema:affiliation grid-institutes:grid.32224.35
    206 schema:familyName Xavier
    207 schema:givenName Ramnik
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82
    209 rdf:type schema:Person
    210 sg:pub.10.1038/463288a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044941616
    211 https://doi.org/10.1038/463288a
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/cr.2008.302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009621342
    214 https://doi.org/10.1038/cr.2008.302
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nature02178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601295
    217 https://doi.org/10.1038/nature02178
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nature06347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005434128
    220 https://doi.org/10.1038/nature06347
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nature11149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009194940
    223 https://doi.org/10.1038/nature11149
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nature11259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007262410
    226 https://doi.org/10.1038/nature11259
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nature11516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003754734
    229 https://doi.org/10.1038/nature11516
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nature12148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044756072
    232 https://doi.org/10.1038/nature12148
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nature13582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047453849
    235 https://doi.org/10.1038/nature13582
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nbt.1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020751277
    238 https://doi.org/10.1038/nbt.1536
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nbt.1617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027177446
    241 https://doi.org/10.1038/nbt.1617
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nbt1209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033363172
    244 https://doi.org/10.1038/nbt1209
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nbt731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038126376
    247 https://doi.org/10.1038/nbt731
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/ncomms11658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050585148
    250 https://doi.org/10.1038/ncomms11658
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/ncomms2471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000630986
    253 https://doi.org/10.1038/ncomms2471
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
    256 https://doi.org/10.1038/ng881
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nmeth.2884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014266989
    259 https://doi.org/10.1038/nmeth.2884
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nrg3227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040647858
    262 https://doi.org/10.1038/nrg3227
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nrmicro3032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034182917
    265 https://doi.org/10.1038/nrmicro3032
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nrmicro3238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038741200
    268 https://doi.org/10.1038/nrmicro3238
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1186/1752-0509-5-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052424498
    271 https://doi.org/10.1186/1752-0509-5-111
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/1754-1611-5-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019699926
    274 https://doi.org/10.1186/1754-1611-5-12
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/1754-1611-8-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002916292
    277 https://doi.org/10.1186/1754-1611-8-2
    278 rdf:type schema:CreativeWork
    279 grid-institutes:grid.116068.8 schema:alternateName Microbiology Program, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
    280 schema:name Microbiology Program, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
    281 Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
    282 rdf:type schema:Organization
    283 grid-institutes:grid.32224.35 schema:alternateName Center for Computational and Integrative Biology, Massachusetts General Hospital, 02114, Boston, MA, USA
    284 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, 02114, Boston, MA, USA
    285 schema:name Center for Computational and Integrative Biology, Massachusetts General Hospital, 02114, Boston, MA, USA
    286 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, 02114, Boston, MA, USA
    287 Program in Medical and Population Genetics, Broad Institute, 02142, Cambridge, MA, USA
    288 rdf:type schema:Organization
    289 grid-institutes:grid.416167.3 schema:alternateName Division of Hematology and Medical Oncology, Mount Sinai Hospital, 10029, New York, NY, USA
    290 schema:name Division of Hematology and Medical Oncology, Mount Sinai Hospital, 10029, New York, NY, USA
    291 Harvard-MIT Health Sciences and Technology Program, 02139, Cambridge, MA, USA
    292 Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
    293 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...