Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-07-17

AUTHORS

Himel Mallick, Eric A. Franzosa, Lauren J. Mclver, Soumya Banerjee, Alexandra Sirota-Madi, Aleksandar D. Kostic, Clary B. Clish, Hera Vlamakis, Ramnik J. Xavier, Curtis Huttenhower

ABSTRACT

Microbial community metabolomics, particularly in the human gut, are beginning to provide a new route to identify functions and ecology disrupted in disease. However, these data can be costly and difficult to obtain at scale, while amplicon or shotgun metagenomic sequencing data are readily available for populations of many thousands. Here, we describe a computational approach to predict potentially unobserved metabolites in new microbial communities, given a model trained on paired metabolomes and metagenomes from the environment of interest. Focusing on two independent human gut microbiome datasets, we demonstrate that our framework successfully recovers community metabolic trends for more than 50% of associated metabolites. Similar accuracy is maintained using amplicon profiles of coral-associated, murine gut, and human vaginal microbiomes. We also provide an expected performance score to guide application of the model in new samples. Our results thus demonstrate that this ‘predictive metabolomic’ approach can aid in experimental design and provide useful insights into the thousands of community profiles for which only metagenomes are currently available. More... »

PAGES

3136

References to SciGraph publications

  • 2013-06-05. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships in MICROBIOME
  • 2014-11-17. Fast and sensitive protein alignment using DIAMOND in NATURE METHODS
  • 2014-11-20. Prediction and quantification of bioactive microbiota metabolites in the mouse gut in NATURE COMMUNICATIONS
  • 2008-09-24. Metagenomics in NATURE
  • 2016-01-28. Confidence intervals for correlations when data are not normal in BEHAVIOR RESEARCH METHODS
  • 2015-03-25. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome in GENOME BIOLOGY
  • 2016-07-23. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases in JOURNAL OF GASTROENTEROLOGY
  • 2016-03-02. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease in SCIENTIFIC REPORTS
  • 2014-01-20. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection in NATURE COMMUNICATIONS
  • 2015-01-30. The networks of human gut microbe–metabolite associations are different between health and irritable bowel syndrome in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2015-09-14. Metabolome of human gut microbiome is predictive of host dysbiosis in GIGASCIENCE
  • 2014-02-16. Efficient multivariate linear mixed model algorithms for genome-wide association studies in NATURE METHODS
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2013-08-13. Commensal Clostridia: leading players in the maintenance of gut homeostasis in GUT PATHOGENS
  • 2013-08-25. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences in NATURE BIOTECHNOLOGY
  • 2012-06-10. Metagenomic microbial community profiling using unique clade-specific marker genes in NATURE METHODS
  • 2018-05-28. The fecal metabolome as a functional readout of the gut microbiome in NATURE GENETICS
  • 2018-01-12. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients in SCIENTIFIC REPORTS
  • 2012-03-28. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity in NATURE
  • 2015-04-08. Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease in GENOME BIOLOGY
  • 2018-10-30. Species-level functional profiling of metagenomes and metatranscriptomes in NATURE METHODS
  • 2018-12-10. Gut microbiome structure and metabolic activity in inflammatory bowel disease in NATURE MICROBIOLOGY
  • 2009-12-14. Effects of normalization on quantitative traits in association test in BMC BIOINFORMATICS
  • 2005-10-11. Metagenomics: DNA sequencing of environmental samples in NATURE REVIEWS GENETICS
  • 2011-06-14. Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset in MICROBIAL INFORMATICS AND EXPERIMENTATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-10927-1

    DOI

    http://dx.doi.org/10.1038/s41467-019-10927-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1118037821

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31316056


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Colitis, Ulcerative", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crohn Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
                "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mallick", 
            "givenName": "Himel", 
            "id": "sg:person.01356136132.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356136132.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
                "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Franzosa", 
            "givenName": "Eric A.", 
            "id": "sg:person.0772302366.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772302366.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
                "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mclver", 
            "givenName": "Lauren J.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
                "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Banerjee", 
            "givenName": "Soumya", 
            "id": "sg:person.01127530151.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127530151.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
                "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sirota-Madi", 
            "givenName": "Alexandra", 
            "id": "sg:person.01217510115.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217510115.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
                "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kostic", 
            "givenName": "Aleksandar D.", 
            "id": "sg:person.014720165377.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014720165377.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Clish", 
            "givenName": "Clary B.", 
            "id": "sg:person.0764632420.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vlamakis", 
            "givenName": "Hera", 
            "id": "sg:person.0773476547.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773476547.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, 02114, Boston, MA, USA", 
                "Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, 02114, Boston, MA, USA", 
                "Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xavier", 
            "givenName": "Ramnik J.", 
            "id": "sg:person.0717130066.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA", 
                "Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huttenhower", 
            "givenName": "Curtis", 
            "id": "sg:person.01214462502.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214462502.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.3176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023901695", 
              "https://doi.org/10.1038/nmeth.3176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep22525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026914250", 
              "https://doi.org/10.1038/srep22525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13428-016-0702-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004380746", 
              "https://doi.org/10.3758/s13428-016-0702-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2042-5783-1-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030642249", 
              "https://doi.org/10.1186/2042-5783-1-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014891061", 
              "https://doi.org/10.1038/ismej.2014.258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-1-17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008346347", 
              "https://doi.org/10.1186/2049-2618-1-17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/455481a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035421723", 
              "https://doi.org/10.1038/455481a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0610-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029050385", 
              "https://doi.org/10.1186/s13059-015-0610-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-18756-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100249050", 
              "https://doi.org/10.1038/s41598-017-18756-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010611135", 
              "https://doi.org/10.1038/nmeth.2066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0306-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110288612", 
              "https://doi.org/10.1038/s41564-018-0306-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005402331", 
              "https://doi.org/10.1186/1471-2105-10-415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13742-015-0084-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014543153", 
              "https://doi.org/10.1186/s13742-015-0084-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029220615", 
              "https://doi.org/10.1038/nmeth.2848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016475104", 
              "https://doi.org/10.1038/ncomms4114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017719492", 
              "https://doi.org/10.1038/nrg1709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00535-016-1242-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008879601", 
              "https://doi.org/10.1007/s00535-016-1242-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036060000", 
              "https://doi.org/10.1038/nature11003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0176-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107804224", 
              "https://doi.org/10.1038/s41592-018-0176-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037744816", 
              "https://doi.org/10.1038/ncomms6492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0637-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019300544", 
              "https://doi.org/10.1186/s13059-015-0637-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0135-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104216235", 
              "https://doi.org/10.1038/s41588-018-0135-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034019934", 
              "https://doi.org/10.1038/nbt.2676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1757-4749-5-23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048392247", 
              "https://doi.org/10.1186/1757-4749-5-23"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-07-17", 
        "datePublishedReg": "2019-07-17", 
        "description": "Microbial community metabolomics, particularly in the human gut, are beginning to provide a new route to identify functions and ecology disrupted in disease. However, these data can be costly and difficult to obtain at scale, while amplicon or shotgun metagenomic sequencing data are readily available for populations of many thousands. Here, we describe a computational approach to predict potentially unobserved metabolites in new microbial communities, given a model trained on paired metabolomes and metagenomes from the environment of interest. Focusing on two independent human gut microbiome datasets, we demonstrate that our framework successfully recovers community metabolic trends for more than 50% of associated metabolites. Similar accuracy is maintained using amplicon profiles of coral-associated, murine gut, and human vaginal microbiomes. We also provide an expected performance score to guide application of the model in new samples. Our results thus demonstrate that this \u2018predictive metabolomic\u2019 approach can aid in experimental design and provide useful insights into the thousands of community profiles for which only metagenomes are currently available.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-10927-1", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3121390", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2438997", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2438994", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7072454", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3806830", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529382", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2500444", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439002", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3851781", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "microbial communities", 
          "shotgun metagenomic sequencing data", 
          "new microbial communities", 
          "human vaginal microbiome", 
          "metagenomic sequencing data", 
          "gut microbiome datasets", 
          "metagenomic sequences", 
          "community profiles", 
          "sequencing data", 
          "murine gut", 
          "amplicon profiles", 
          "human gut", 
          "microbiome datasets", 
          "metagenomes", 
          "associated metabolites", 
          "amplicons", 
          "metabolic trends", 
          "metabolomic profiling", 
          "computational approach", 
          "vaginal microbiome", 
          "metabolomics", 
          "gut", 
          "ecology", 
          "environment of interest", 
          "metabolites", 
          "microbiome", 
          "profiling", 
          "metabolome", 
          "thousands", 
          "sequence", 
          "community", 
          "insights", 
          "experimental design", 
          "population", 
          "profile", 
          "function", 
          "useful insights", 
          "environment", 
          "disease", 
          "data", 
          "new samples", 
          "dataset", 
          "approach", 
          "new route", 
          "results", 
          "interest", 
          "model", 
          "samples", 
          "route", 
          "scale", 
          "trends", 
          "applications", 
          "similar accuracy", 
          "framework", 
          "design", 
          "accuracy", 
          "scores", 
          "performance scores"
        ], 
        "name": "Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences", 
        "pagination": "3136", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1118037821"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-10927-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31316056"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-10927-1", 
          "https://app.dimensions.ai/details/publication/pub.1118037821"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_802.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-10927-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10927-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10927-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10927-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10927-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    344 TRIPLES      21 PREDICATES      117 URIs      84 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-10927-1 schema:about N045e31abb987435eb1c6ea21b146f4aa
    2 N0b6b066cc70947c79a32f686b4a22a38
    3 N6158a017ee0b4df98a90681b396ea4bd
    4 N8053b9b0c5d340a9bf8cfee22f808ab9
    5 N8765a23a81104d68ba6e78d205926503
    6 N8b2cb738b9cc4084a2cd49892fd8e1ab
    7 Nbe52234f1767409095a1908f87529084
    8 Nf5744f4152e34f1aaa7dba5d7156e647
    9 Nf805e379708f423e812ceb42990f6279
    10 anzsrc-for:06
    11 anzsrc-for:0605
    12 schema:author N4b962b189be840178704b4a59d275496
    13 schema:citation sg:pub.10.1007/s00535-016-1242-9
    14 sg:pub.10.1038/455481a
    15 sg:pub.10.1038/ismej.2014.258
    16 sg:pub.10.1038/nature11003
    17 sg:pub.10.1038/nbt.2676
    18 sg:pub.10.1038/ncomms4114
    19 sg:pub.10.1038/ncomms6492
    20 sg:pub.10.1038/nmeth.1923
    21 sg:pub.10.1038/nmeth.2066
    22 sg:pub.10.1038/nmeth.2848
    23 sg:pub.10.1038/nmeth.3176
    24 sg:pub.10.1038/nrg1709
    25 sg:pub.10.1038/s41564-018-0306-4
    26 sg:pub.10.1038/s41588-018-0135-7
    27 sg:pub.10.1038/s41592-018-0176-y
    28 sg:pub.10.1038/s41598-017-18756-2
    29 sg:pub.10.1038/srep22525
    30 sg:pub.10.1186/1471-2105-10-415
    31 sg:pub.10.1186/1757-4749-5-23
    32 sg:pub.10.1186/2042-5783-1-4
    33 sg:pub.10.1186/2049-2618-1-17
    34 sg:pub.10.1186/s13059-015-0610-8
    35 sg:pub.10.1186/s13059-015-0637-x
    36 sg:pub.10.1186/s13742-015-0084-3
    37 sg:pub.10.3758/s13428-016-0702-8
    38 schema:datePublished 2019-07-17
    39 schema:datePublishedReg 2019-07-17
    40 schema:description Microbial community metabolomics, particularly in the human gut, are beginning to provide a new route to identify functions and ecology disrupted in disease. However, these data can be costly and difficult to obtain at scale, while amplicon or shotgun metagenomic sequencing data are readily available for populations of many thousands. Here, we describe a computational approach to predict potentially unobserved metabolites in new microbial communities, given a model trained on paired metabolomes and metagenomes from the environment of interest. Focusing on two independent human gut microbiome datasets, we demonstrate that our framework successfully recovers community metabolic trends for more than 50% of associated metabolites. Similar accuracy is maintained using amplicon profiles of coral-associated, murine gut, and human vaginal microbiomes. We also provide an expected performance score to guide application of the model in new samples. Our results thus demonstrate that this ‘predictive metabolomic’ approach can aid in experimental design and provide useful insights into the thousands of community profiles for which only metagenomes are currently available.
    41 schema:genre article
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N28b5859d0e4947d59ed3fc45eacdc755
    44 N7f07004f16d74d6b98ff0f57c524b789
    45 sg:journal.1043282
    46 schema:keywords accuracy
    47 amplicon profiles
    48 amplicons
    49 applications
    50 approach
    51 associated metabolites
    52 community
    53 community profiles
    54 computational approach
    55 data
    56 dataset
    57 design
    58 disease
    59 ecology
    60 environment
    61 environment of interest
    62 experimental design
    63 framework
    64 function
    65 gut
    66 gut microbiome datasets
    67 human gut
    68 human vaginal microbiome
    69 insights
    70 interest
    71 metabolic trends
    72 metabolites
    73 metabolome
    74 metabolomic profiling
    75 metabolomics
    76 metagenomes
    77 metagenomic sequences
    78 metagenomic sequencing data
    79 microbial communities
    80 microbiome
    81 microbiome datasets
    82 model
    83 murine gut
    84 new microbial communities
    85 new route
    86 new samples
    87 performance scores
    88 population
    89 profile
    90 profiling
    91 results
    92 route
    93 samples
    94 scale
    95 scores
    96 sequence
    97 sequencing data
    98 shotgun metagenomic sequencing data
    99 similar accuracy
    100 thousands
    101 trends
    102 useful insights
    103 vaginal microbiome
    104 schema:name Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences
    105 schema:pagination 3136
    106 schema:productId N320d4ef2907f47699b4fd3d43a589bee
    107 N7dfe4600eed24a0eba720a3d8cfb44fd
    108 N9dd447f5cb7043a3ad8aa0a7eb63327c
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118037821
    110 https://doi.org/10.1038/s41467-019-10927-1
    111 schema:sdDatePublished 2022-09-02T16:03
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher Na013cc2fa2044ae6ab8c0cf2f9e0a78b
    114 schema:url https://doi.org/10.1038/s41467-019-10927-1
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N045e31abb987435eb1c6ea21b146f4aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Microbiota
    120 rdf:type schema:DefinedTerm
    121 N0b6b066cc70947c79a32f686b4a22a38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Metabolomics
    123 rdf:type schema:DefinedTerm
    124 N160dc390bb5547ab806fc0b5eef73bc0 rdf:first sg:person.0773476547.34
    125 rdf:rest N19e5fcbc829b4b56aac79752d22da3bd
    126 N19e5fcbc829b4b56aac79752d22da3bd rdf:first sg:person.0717130066.82
    127 rdf:rest N582c4b75209d4530b5602c65f906f72a
    128 N1a90774971134cbab2e6fdf9f05681ae rdf:first sg:person.01217510115.36
    129 rdf:rest Nd92d5e726f2a4737946a3ad4c8488b85
    130 N28b5859d0e4947d59ed3fc45eacdc755 schema:volumeNumber 10
    131 rdf:type schema:PublicationVolume
    132 N320d4ef2907f47699b4fd3d43a589bee schema:name doi
    133 schema:value 10.1038/s41467-019-10927-1
    134 rdf:type schema:PropertyValue
    135 N4b962b189be840178704b4a59d275496 rdf:first sg:person.01356136132.18
    136 rdf:rest Neb4b85b25eb543bba5908fdf686ea2d2
    137 N582c4b75209d4530b5602c65f906f72a rdf:first sg:person.01214462502.85
    138 rdf:rest rdf:nil
    139 N6158a017ee0b4df98a90681b396ea4bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Metagenomics
    141 rdf:type schema:DefinedTerm
    142 N78a6d7eea07f44738143209ca8a2f97f rdf:first sg:person.0764632420.16
    143 rdf:rest N160dc390bb5547ab806fc0b5eef73bc0
    144 N7dfe4600eed24a0eba720a3d8cfb44fd schema:name pubmed_id
    145 schema:value 31316056
    146 rdf:type schema:PropertyValue
    147 N7f07004f16d74d6b98ff0f57c524b789 schema:issueNumber 1
    148 rdf:type schema:PublicationIssue
    149 N8053b9b0c5d340a9bf8cfee22f808ab9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Gastrointestinal Microbiome
    151 rdf:type schema:DefinedTerm
    152 N8765a23a81104d68ba6e78d205926503 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Algorithms
    154 rdf:type schema:DefinedTerm
    155 N8b129c1caeb443b596f4d828a5915312 rdf:first Nae820a8e075748538947498bbba703a5
    156 rdf:rest Nf4b13860467b449ead6ac59de391f493
    157 N8b2cb738b9cc4084a2cd49892fd8e1ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Colitis, Ulcerative
    159 rdf:type schema:DefinedTerm
    160 N9dd447f5cb7043a3ad8aa0a7eb63327c schema:name dimensions_id
    161 schema:value pub.1118037821
    162 rdf:type schema:PropertyValue
    163 Na013cc2fa2044ae6ab8c0cf2f9e0a78b schema:name Springer Nature - SN SciGraph project
    164 rdf:type schema:Organization
    165 Nae820a8e075748538947498bbba703a5 schema:affiliation grid-institutes:grid.38142.3c
    166 schema:familyName Mclver
    167 schema:givenName Lauren J.
    168 rdf:type schema:Person
    169 Nbe52234f1767409095a1908f87529084 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Crohn Disease
    171 rdf:type schema:DefinedTerm
    172 Nd92d5e726f2a4737946a3ad4c8488b85 rdf:first sg:person.014720165377.42
    173 rdf:rest N78a6d7eea07f44738143209ca8a2f97f
    174 Neb4b85b25eb543bba5908fdf686ea2d2 rdf:first sg:person.0772302366.11
    175 rdf:rest N8b129c1caeb443b596f4d828a5915312
    176 Nf4b13860467b449ead6ac59de391f493 rdf:first sg:person.01127530151.53
    177 rdf:rest N1a90774971134cbab2e6fdf9f05681ae
    178 Nf5744f4152e34f1aaa7dba5d7156e647 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Models, Genetic
    180 rdf:type schema:DefinedTerm
    181 Nf805e379708f423e812ceb42990f6279 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Humans
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Biological Sciences
    186 rdf:type schema:DefinedTerm
    187 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    188 schema:name Microbiology
    189 rdf:type schema:DefinedTerm
    190 sg:grant.2438994 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10927-1
    191 rdf:type schema:MonetaryGrant
    192 sg:grant.2438997 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10927-1
    193 rdf:type schema:MonetaryGrant
    194 sg:grant.2439002 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10927-1
    195 rdf:type schema:MonetaryGrant
    196 sg:grant.2500444 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10927-1
    197 rdf:type schema:MonetaryGrant
    198 sg:grant.2529382 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10927-1
    199 rdf:type schema:MonetaryGrant
    200 sg:grant.3121390 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10927-1
    201 rdf:type schema:MonetaryGrant
    202 sg:grant.3806830 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10927-1
    203 rdf:type schema:MonetaryGrant
    204 sg:grant.3851781 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10927-1
    205 rdf:type schema:MonetaryGrant
    206 sg:grant.7072454 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10927-1
    207 rdf:type schema:MonetaryGrant
    208 sg:journal.1043282 schema:issn 2041-1723
    209 schema:name Nature Communications
    210 schema:publisher Springer Nature
    211 rdf:type schema:Periodical
    212 sg:person.01127530151.53 schema:affiliation grid-institutes:grid.38142.3c
    213 schema:familyName Banerjee
    214 schema:givenName Soumya
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127530151.53
    216 rdf:type schema:Person
    217 sg:person.01214462502.85 schema:affiliation grid-institutes:grid.38142.3c
    218 schema:familyName Huttenhower
    219 schema:givenName Curtis
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214462502.85
    221 rdf:type schema:Person
    222 sg:person.01217510115.36 schema:affiliation grid-institutes:grid.38142.3c
    223 schema:familyName Sirota-Madi
    224 schema:givenName Alexandra
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217510115.36
    226 rdf:type schema:Person
    227 sg:person.01356136132.18 schema:affiliation grid-institutes:grid.38142.3c
    228 schema:familyName Mallick
    229 schema:givenName Himel
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356136132.18
    231 rdf:type schema:Person
    232 sg:person.014720165377.42 schema:affiliation grid-institutes:grid.38142.3c
    233 schema:familyName Kostic
    234 schema:givenName Aleksandar D.
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014720165377.42
    236 rdf:type schema:Person
    237 sg:person.0717130066.82 schema:affiliation grid-institutes:grid.116068.8
    238 schema:familyName Xavier
    239 schema:givenName Ramnik J.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82
    241 rdf:type schema:Person
    242 sg:person.0764632420.16 schema:affiliation grid-institutes:grid.66859.34
    243 schema:familyName Clish
    244 schema:givenName Clary B.
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16
    246 rdf:type schema:Person
    247 sg:person.0772302366.11 schema:affiliation grid-institutes:grid.38142.3c
    248 schema:familyName Franzosa
    249 schema:givenName Eric A.
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772302366.11
    251 rdf:type schema:Person
    252 sg:person.0773476547.34 schema:affiliation grid-institutes:grid.66859.34
    253 schema:familyName Vlamakis
    254 schema:givenName Hera
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773476547.34
    256 rdf:type schema:Person
    257 sg:pub.10.1007/s00535-016-1242-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008879601
    258 https://doi.org/10.1007/s00535-016-1242-9
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/455481a schema:sameAs https://app.dimensions.ai/details/publication/pub.1035421723
    261 https://doi.org/10.1038/455481a
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/ismej.2014.258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014891061
    264 https://doi.org/10.1038/ismej.2014.258
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nature11003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036060000
    267 https://doi.org/10.1038/nature11003
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nbt.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034019934
    270 https://doi.org/10.1038/nbt.2676
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/ncomms4114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016475104
    273 https://doi.org/10.1038/ncomms4114
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/ncomms6492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037744816
    276 https://doi.org/10.1038/ncomms6492
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    279 https://doi.org/10.1038/nmeth.1923
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nmeth.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611135
    282 https://doi.org/10.1038/nmeth.2066
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nmeth.2848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029220615
    285 https://doi.org/10.1038/nmeth.2848
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nmeth.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901695
    288 https://doi.org/10.1038/nmeth.3176
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/nrg1709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017719492
    291 https://doi.org/10.1038/nrg1709
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/s41564-018-0306-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110288612
    294 https://doi.org/10.1038/s41564-018-0306-4
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/s41588-018-0135-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104216235
    297 https://doi.org/10.1038/s41588-018-0135-7
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/s41592-018-0176-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107804224
    300 https://doi.org/10.1038/s41592-018-0176-y
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/s41598-017-18756-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100249050
    303 https://doi.org/10.1038/s41598-017-18756-2
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/srep22525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026914250
    306 https://doi.org/10.1038/srep22525
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1186/1471-2105-10-415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005402331
    309 https://doi.org/10.1186/1471-2105-10-415
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1186/1757-4749-5-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048392247
    312 https://doi.org/10.1186/1757-4749-5-23
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/2042-5783-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030642249
    315 https://doi.org/10.1186/2042-5783-1-4
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1186/2049-2618-1-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008346347
    318 https://doi.org/10.1186/2049-2618-1-17
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1186/s13059-015-0610-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029050385
    321 https://doi.org/10.1186/s13059-015-0610-8
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1186/s13059-015-0637-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019300544
    324 https://doi.org/10.1186/s13059-015-0637-x
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1186/s13742-015-0084-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014543153
    327 https://doi.org/10.1186/s13742-015-0084-3
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.3758/s13428-016-0702-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004380746
    330 https://doi.org/10.3758/s13428-016-0702-8
    331 rdf:type schema:CreativeWork
    332 grid-institutes:grid.116068.8 schema:alternateName Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
    333 schema:name Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA
    334 Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, 02114, Boston, MA, USA
    335 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
    336 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, 02114, Boston, MA, USA
    337 rdf:type schema:Organization
    338 grid-institutes:grid.38142.3c schema:alternateName Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA
    339 schema:name Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA
    340 Department of Biostatistics, Harvard T. H. Chan School of Public Health, 02115, Boston, MA, USA
    341 rdf:type schema:Organization
    342 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA
    343 schema:name Broad Institute of MIT and Harvard, 02142, Cambridge, MA, USA
    344 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...