Ontology type: schema:ScholarlyArticle Open Access: True
2019-06-20
AUTHORSJames T. Morton, Clarisse Marotz, Alex Washburne, Justin Silverman, Livia S. Zaramela, Anna Edlund, Karsten Zengler, Rob Knight
ABSTRACTDifferential abundance analysis is controversial throughout microbiome research. Gold standard approaches require laborious measurements of total microbial load, or absolute number of microorganisms, to accurately determine taxonomic shifts. Therefore, most studies rely on relative abundance data. Here, we demonstrate common pitfalls in comparing relative abundance across samples and identify two solutions that reveal microbial changes without the need to estimate total microbial load. We define the notion of “reference frames”, which provide deep intuition about the compositional nature of microbiome data. In an oral time series experiment, reference frames alleviate false positives and produce consistent results on both raw and cell-count normalized data. Furthermore, reference frames identify consistent, differentially abundant microbes previously undetected in two independent published datasets from subjects with atopic dermatitis. These methods allow reassessment of published relative abundance data to reveal reproducible microbial changes from standard sequencing output without the need for new assays. More... »
PAGES2719
http://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5
DOIhttp://dx.doi.org/10.1038/s41467-019-10656-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1117296456
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/31222023
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Microbiology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bacteria",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bacterial Load",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computer Simulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Data Analysis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Datasets as Topic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Dermatitis, Atopic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Feasibility Studies",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Healthy Volunteers",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "High-Throughput Nucleotide Sequencing",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Metagenome",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Microbiota",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Biological",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "RNA, Ribosomal, 16S",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Reference Standards",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Saliva",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Soil Microbiology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science & Engineering, University of California, San Diego, 92093, La Jolla, CA, USA",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA",
"Department of Computer Science & Engineering, University of California, San Diego, 92093, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Morton",
"givenName": "James T.",
"id": "sg:person.07611006373.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611006373.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Marotz",
"givenName": "Clarisse",
"id": "sg:person.012733432355.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733432355.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Microbiology and Immunology, Montana State University, 59717, Bozeman, MT, USA",
"id": "http://www.grid.ac/institutes/grid.41891.35",
"name": [
"Department of Microbiology and Immunology, Montana State University, 59717, Bozeman, MT, USA"
],
"type": "Organization"
},
"familyName": "Washburne",
"givenName": "Alex",
"id": "sg:person.012656123637.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656123637.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Genomic and Computational Biology, Duke University, 27708, Durham, USA",
"id": "http://www.grid.ac/institutes/grid.26009.3d",
"name": [
"Program in Computational Biology and Bioinformatics, Duke University, 27708, Durham, USA",
"Medical Scientist Training Program, Duke University, 27708, Durham, USA",
"Center for Genomic and Computational Biology, Duke University, 27708, Durham, USA"
],
"type": "Organization"
},
"familyName": "Silverman",
"givenName": "Justin",
"id": "sg:person.012060543237.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012060543237.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Zaramela",
"givenName": "Livia S.",
"id": "sg:person.01144414650.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144414650.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "J. Craig Venter Institute, Genomic Medicine Group, 92037, La Jolla, CA, USA",
"id": "http://www.grid.ac/institutes/grid.469946.0",
"name": [
"J. Craig Venter Institute, Genomic Medicine Group, 92037, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Edlund",
"givenName": "Anna",
"id": "sg:person.01323423765.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323423765.55"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA",
"Department of Bioengineering, University of California, San Diego, 92093, La Jolla, CA, USA",
"Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Zengler",
"givenName": "Karsten",
"id": "sg:person.01112011323.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112011323.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA",
"Department of Computer Science & Engineering, University of California, San Diego, 92093, La Jolla, CA, USA",
"Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA"
],
"type": "Organization"
},
"familyName": "Knight",
"givenName": "Rob",
"id": "sg:person.016311745377.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nmeth.2658",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002139060",
"https://doi.org/10.1038/nmeth.2658"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40168-018-0584-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109820176",
"https://doi.org/10.1186/s40168-018-0584-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-7358-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022132261",
"https://doi.org/10.1007/978-94-015-7358-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12864-018-5160-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1108058115",
"https://doi.org/10.1186/s12864-018-5160-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature24460",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092687907",
"https://doi.org/10.1038/nature24460"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/2049-2618-2-15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046874717",
"https://doi.org/10.1186/2049-2618-2-15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40168-018-0601-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110232184",
"https://doi.org/10.1186/s40168-018-0601-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-014-0550-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015222646",
"https://doi.org/10.1186/s13059-014-0550-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41592-018-0141-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107129414",
"https://doi.org/10.1038/s41592-018-0141-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40168-018-0491-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104992927",
"https://doi.org/10.1186/s40168-018-0491-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.f.303",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009032055",
"https://doi.org/10.1038/nmeth.f.303"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/2047-217x-1-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050567563",
"https://doi.org/10.1186/2047-217x-1-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ismej.2016.117",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036110439",
"https://doi.org/10.1038/ismej.2016.117"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-06-20",
"datePublishedReg": "2019-06-20",
"description": "Differential abundance analysis is controversial throughout microbiome research. Gold standard approaches require laborious measurements of total microbial load, or absolute number of microorganisms, to accurately determine taxonomic shifts. Therefore, most studies rely on relative abundance data. Here, we demonstrate common pitfalls in comparing relative abundance across samples and identify two solutions that reveal microbial changes without the need to estimate total microbial load. We define the notion of \u201creference frames\u201d, which provide deep intuition about the compositional nature of microbiome data. In an oral time series experiment, reference frames alleviate false positives and produce consistent results on both raw and cell-count normalized data. Furthermore, reference frames identify consistent, differentially abundant microbes previously undetected in two independent published datasets from subjects with atopic dermatitis. These methods allow reassessment of published relative abundance data to reveal reproducible microbial changes from standard sequencing output without the need for new assays.",
"genre": "article",
"id": "sg:pub.10.1038/s41467-019-10656-5",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.5019008",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.7909949",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3131567",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2439394",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1043282",
"issn": [
"2041-1723"
],
"name": "Nature Communications",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"keywords": [
"relative abundance data",
"abundance data",
"total microbial load",
"microbial changes",
"differential abundance analysis",
"abundant microbes",
"taxonomic shifts",
"sequencing output",
"relative abundance",
"microbiome research",
"time series experiments",
"microbial load",
"microbiome data",
"series experiments",
"abundance analysis",
"new assay",
"microbes",
"abundance",
"microorganisms",
"assays",
"frame",
"most studies",
"laborious measurements",
"changes",
"compositional nature",
"false positives",
"data",
"gold standard approach",
"shift",
"analysis",
"number",
"absolute number",
"deep intuition",
"consistent results",
"experiments",
"reassessment",
"dataset",
"study",
"common pitfalls",
"nature",
"results",
"positives",
"samples",
"approach",
"pitfalls",
"standard approach",
"research",
"need",
"atopic dermatitis",
"notion",
"method",
"output",
"dermatitis",
"load",
"measurements",
"solution",
"subjects",
"standards",
"intuition",
"measurement standards",
"reference frame"
],
"name": "Establishing microbial composition measurement standards with reference frames",
"pagination": "2719",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1117296456"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41467-019-10656-5"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"31222023"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41467-019-10656-5",
"https://app.dimensions.ai/details/publication/pub.1117296456"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:07",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_818.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41467-019-10656-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5'
This table displays all metadata directly associated to this object as RDF triples.
314 TRIPLES
21 PREDICATES
116 URIs
95 LITERALS
24 BLANK NODES