Establishing microbial composition measurement standards with reference frames View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-06-20

AUTHORS

James T. Morton, Clarisse Marotz, Alex Washburne, Justin Silverman, Livia S. Zaramela, Anna Edlund, Karsten Zengler, Rob Knight

ABSTRACT

Differential abundance analysis is controversial throughout microbiome research. Gold standard approaches require laborious measurements of total microbial load, or absolute number of microorganisms, to accurately determine taxonomic shifts. Therefore, most studies rely on relative abundance data. Here, we demonstrate common pitfalls in comparing relative abundance across samples and identify two solutions that reveal microbial changes without the need to estimate total microbial load. We define the notion of “reference frames”, which provide deep intuition about the compositional nature of microbiome data. In an oral time series experiment, reference frames alleviate false positives and produce consistent results on both raw and cell-count normalized data. Furthermore, reference frames identify consistent, differentially abundant microbes previously undetected in two independent published datasets from subjects with atopic dermatitis. These methods allow reassessment of published relative abundance data to reveal reproducible microbial changes from standard sequencing output without the need for new assays. More... »

PAGES

2719

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5

DOI

http://dx.doi.org/10.1038/s41467-019-10656-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1117296456

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31222023


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Load", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Datasets as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dermatitis, Atopic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Healthy Volunteers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saliva", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science & Engineering, University of California, San Diego, 92093, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA", 
            "Department of Computer Science & Engineering, University of California, San Diego, 92093, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morton", 
        "givenName": "James T.", 
        "id": "sg:person.07611006373.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611006373.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marotz", 
        "givenName": "Clarisse", 
        "id": "sg:person.012733432355.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733432355.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Microbiology and Immunology, Montana State University, 59717, Bozeman, MT, USA", 
          "id": "http://www.grid.ac/institutes/grid.41891.35", 
          "name": [
            "Department of Microbiology and Immunology, Montana State University, 59717, Bozeman, MT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Washburne", 
        "givenName": "Alex", 
        "id": "sg:person.012656123637.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656123637.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Genomic and Computational Biology, Duke University, 27708, Durham, USA", 
          "id": "http://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Program in Computational Biology and Bioinformatics, Duke University, 27708, Durham, USA", 
            "Medical Scientist Training Program, Duke University, 27708, Durham, USA", 
            "Center for Genomic and Computational Biology, Duke University, 27708, Durham, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silverman", 
        "givenName": "Justin", 
        "id": "sg:person.012060543237.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012060543237.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaramela", 
        "givenName": "Livia S.", 
        "id": "sg:person.01144414650.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144414650.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute, Genomic Medicine Group, 92037, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, Genomic Medicine Group, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Edlund", 
        "givenName": "Anna", 
        "id": "sg:person.01323423765.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323423765.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA", 
            "Department of Bioengineering, University of California, San Diego, 92093, La Jolla, CA, USA", 
            "Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zengler", 
        "givenName": "Karsten", 
        "id": "sg:person.01112011323.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112011323.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA", 
            "Department of Computer Science & Engineering, University of California, San Diego, 92093, La Jolla, CA, USA", 
            "Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knight", 
        "givenName": "Rob", 
        "id": "sg:person.016311745377.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.2658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139060", 
          "https://doi.org/10.1038/nmeth.2658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-018-0584-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109820176", 
          "https://doi.org/10.1186/s40168-018-0584-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7358-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022132261", 
          "https://doi.org/10.1007/978-94-015-7358-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-018-5160-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108058115", 
          "https://doi.org/10.1186/s12864-018-5160-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092687907", 
          "https://doi.org/10.1038/nature24460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2049-2618-2-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046874717", 
          "https://doi.org/10.1186/2049-2618-2-15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-018-0601-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110232184", 
          "https://doi.org/10.1186/s40168-018-0601-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41592-018-0141-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107129414", 
          "https://doi.org/10.1038/s41592-018-0141-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-018-0491-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104992927", 
          "https://doi.org/10.1186/s40168-018-0491-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2047-217x-1-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050567563", 
          "https://doi.org/10.1186/2047-217x-1-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2016.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036110439", 
          "https://doi.org/10.1038/ismej.2016.117"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06-20", 
    "datePublishedReg": "2019-06-20", 
    "description": "Differential abundance analysis is controversial throughout microbiome research. Gold standard approaches require laborious measurements of total microbial load, or absolute number of microorganisms, to accurately determine taxonomic shifts. Therefore, most studies rely on relative abundance data. Here, we demonstrate common pitfalls in comparing relative abundance across samples and identify two solutions that reveal microbial changes without the need to estimate total microbial load. We define the notion of \u201creference frames\u201d, which provide deep intuition about the compositional nature of microbiome data. In an oral time series experiment, reference frames alleviate false positives and produce consistent results on both raw and cell-count normalized data. Furthermore, reference frames identify consistent, differentially abundant microbes previously undetected in two independent published datasets from subjects with atopic dermatitis. These methods allow reassessment of published relative abundance data to reveal reproducible microbial changes from standard sequencing output without the need for new assays.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-019-10656-5", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5019008", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7909949", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3131567", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2439394", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "relative abundance data", 
      "abundance data", 
      "total microbial load", 
      "microbial changes", 
      "differential abundance analysis", 
      "abundant microbes", 
      "taxonomic shifts", 
      "sequencing output", 
      "relative abundance", 
      "microbiome research", 
      "time series experiments", 
      "microbial load", 
      "microbiome data", 
      "series experiments", 
      "abundance analysis", 
      "new assay", 
      "microbes", 
      "abundance", 
      "microorganisms", 
      "assays", 
      "frame", 
      "most studies", 
      "laborious measurements", 
      "changes", 
      "compositional nature", 
      "false positives", 
      "data", 
      "gold standard approach", 
      "shift", 
      "analysis", 
      "number", 
      "absolute number", 
      "deep intuition", 
      "consistent results", 
      "experiments", 
      "reassessment", 
      "dataset", 
      "study", 
      "common pitfalls", 
      "nature", 
      "results", 
      "positives", 
      "samples", 
      "approach", 
      "pitfalls", 
      "standard approach", 
      "research", 
      "need", 
      "atopic dermatitis", 
      "notion", 
      "method", 
      "output", 
      "dermatitis", 
      "load", 
      "measurements", 
      "solution", 
      "subjects", 
      "standards", 
      "intuition", 
      "measurement standards", 
      "reference frame"
    ], 
    "name": "Establishing microbial composition measurement standards with reference frames", 
    "pagination": "2719", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1117296456"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-10656-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31222023"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-10656-5", 
      "https://app.dimensions.ai/details/publication/pub.1117296456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_818.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-019-10656-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-10656-5'


 

This table displays all metadata directly associated to this object as RDF triples.

314 TRIPLES      21 PREDICATES      116 URIs      95 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-10656-5 schema:about N082d2d41a734408399e7476de056e324
2 N0ea672ec655e4fa298499de5235d4168
3 N3678dca0f4e94430b4a8b344056ff6f6
4 N5172f65627ab4d70b3df96c75706350c
5 N64847754f2ed406bbd5d0a17597f52e3
6 N678b178141bc449ab3a8fe49a4285d5e
7 N74a83a01095f4eccb6918bb265b0ff28
8 N7cedc27de3d045259d6ac5126f16d0ae
9 N932a916dfe7a4ad098916a7d424c508f
10 N9f66a9f9639f46bfaaf2e966c77728bf
11 Na0d92521b399421c910f6b13be9067c7
12 Nac16adae7c25429697b5236034716793
13 Nb0b92dc69d62447c8a3aeae390d2c4bd
14 Nb41bc61f88ea48b8b2bcc5376d6f710f
15 Nd5d2b1cf44ef4e4c81ea53ed7eb9b576
16 Nda6532588a8748108d942798b9b5875e
17 Neef2ed2e5dee40ae9fca844e82f9bb04
18 anzsrc-for:06
19 anzsrc-for:0605
20 schema:author N0ce911d0b7154fd0b812750425bf7723
21 schema:citation sg:pub.10.1007/978-94-015-7358-0
22 sg:pub.10.1038/ismej.2016.117
23 sg:pub.10.1038/nature24460
24 sg:pub.10.1038/nmeth.2658
25 sg:pub.10.1038/nmeth.f.303
26 sg:pub.10.1038/s41592-018-0141-9
27 sg:pub.10.1186/2047-217x-1-7
28 sg:pub.10.1186/2049-2618-2-15
29 sg:pub.10.1186/s12864-018-5160-5
30 sg:pub.10.1186/s13059-014-0550-8
31 sg:pub.10.1186/s40168-018-0491-7
32 sg:pub.10.1186/s40168-018-0584-3
33 sg:pub.10.1186/s40168-018-0601-6
34 schema:datePublished 2019-06-20
35 schema:datePublishedReg 2019-06-20
36 schema:description Differential abundance analysis is controversial throughout microbiome research. Gold standard approaches require laborious measurements of total microbial load, or absolute number of microorganisms, to accurately determine taxonomic shifts. Therefore, most studies rely on relative abundance data. Here, we demonstrate common pitfalls in comparing relative abundance across samples and identify two solutions that reveal microbial changes without the need to estimate total microbial load. We define the notion of “reference frames”, which provide deep intuition about the compositional nature of microbiome data. In an oral time series experiment, reference frames alleviate false positives and produce consistent results on both raw and cell-count normalized data. Furthermore, reference frames identify consistent, differentially abundant microbes previously undetected in two independent published datasets from subjects with atopic dermatitis. These methods allow reassessment of published relative abundance data to reveal reproducible microbial changes from standard sequencing output without the need for new assays.
37 schema:genre article
38 schema:isAccessibleForFree true
39 schema:isPartOf N9135bf8601f14f9e8e2451304dc604c5
40 Nd7b521eb00e848ba939796e5cb3ee810
41 sg:journal.1043282
42 schema:keywords absolute number
43 abundance
44 abundance analysis
45 abundance data
46 abundant microbes
47 analysis
48 approach
49 assays
50 atopic dermatitis
51 changes
52 common pitfalls
53 compositional nature
54 consistent results
55 data
56 dataset
57 deep intuition
58 dermatitis
59 differential abundance analysis
60 experiments
61 false positives
62 frame
63 gold standard approach
64 intuition
65 laborious measurements
66 load
67 measurement standards
68 measurements
69 method
70 microbes
71 microbial changes
72 microbial load
73 microbiome data
74 microbiome research
75 microorganisms
76 most studies
77 nature
78 need
79 new assay
80 notion
81 number
82 output
83 pitfalls
84 positives
85 reassessment
86 reference frame
87 relative abundance
88 relative abundance data
89 research
90 results
91 samples
92 sequencing output
93 series experiments
94 shift
95 solution
96 standard approach
97 standards
98 study
99 subjects
100 taxonomic shifts
101 time series experiments
102 total microbial load
103 schema:name Establishing microbial composition measurement standards with reference frames
104 schema:pagination 2719
105 schema:productId N4ee2dab6621b4225b41b11f8cc834917
106 Nc905377162884e22864c9ebdaba2a391
107 Nefd8e9333a5a41698105416c399c7bdf
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117296456
109 https://doi.org/10.1038/s41467-019-10656-5
110 schema:sdDatePublished 2022-08-04T17:07
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N091300839e2148ee98d72bb785830f69
113 schema:url https://doi.org/10.1038/s41467-019-10656-5
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N082d2d41a734408399e7476de056e324 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Saliva
119 rdf:type schema:DefinedTerm
120 N091300839e2148ee98d72bb785830f69 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N0ce911d0b7154fd0b812750425bf7723 rdf:first sg:person.07611006373.15
123 rdf:rest N2ae2381373394c0ba3a4ab9904fb5ed9
124 N0ea672ec655e4fa298499de5235d4168 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Feasibility Studies
126 rdf:type schema:DefinedTerm
127 N106a1077fd084b9fae43ca250038c2a1 rdf:first sg:person.012656123637.25
128 rdf:rest Nfb3ead6fc0e547168f71a05aa855a68b
129 N2ae2381373394c0ba3a4ab9904fb5ed9 rdf:first sg:person.012733432355.50
130 rdf:rest N106a1077fd084b9fae43ca250038c2a1
131 N3678dca0f4e94430b4a8b344056ff6f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Computer Simulation
133 rdf:type schema:DefinedTerm
134 N4ee2dab6621b4225b41b11f8cc834917 schema:name dimensions_id
135 schema:value pub.1117296456
136 rdf:type schema:PropertyValue
137 N5172f65627ab4d70b3df96c75706350c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name RNA, Ribosomal, 16S
139 rdf:type schema:DefinedTerm
140 N57a972353f7c45468b9c20740bd3a78a rdf:first sg:person.01144414650.58
141 rdf:rest Nb1e6d276434143e086304ad8754fa439
142 N64847754f2ed406bbd5d0a17597f52e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Bacterial Load
144 rdf:type schema:DefinedTerm
145 N678b178141bc449ab3a8fe49a4285d5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Soil Microbiology
147 rdf:type schema:DefinedTerm
148 N71e6c41c0259428caec5c6a5113ebc67 rdf:first sg:person.016311745377.96
149 rdf:rest rdf:nil
150 N74a83a01095f4eccb6918bb265b0ff28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Reference Standards
152 rdf:type schema:DefinedTerm
153 N7cedc27de3d045259d6ac5126f16d0ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Microbiota
155 rdf:type schema:DefinedTerm
156 N9135bf8601f14f9e8e2451304dc604c5 schema:volumeNumber 10
157 rdf:type schema:PublicationVolume
158 N932a916dfe7a4ad098916a7d424c508f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name High-Throughput Nucleotide Sequencing
160 rdf:type schema:DefinedTerm
161 N9f66a9f9639f46bfaaf2e966c77728bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Metagenome
163 rdf:type schema:DefinedTerm
164 Na0d92521b399421c910f6b13be9067c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Models, Biological
166 rdf:type schema:DefinedTerm
167 Nac16adae7c25429697b5236034716793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Datasets as Topic
169 rdf:type schema:DefinedTerm
170 Nb0b92dc69d62447c8a3aeae390d2c4bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Bacteria
172 rdf:type schema:DefinedTerm
173 Nb1e6d276434143e086304ad8754fa439 rdf:first sg:person.01323423765.55
174 rdf:rest Nd01abcff81484857af1345127d88577f
175 Nb41bc61f88ea48b8b2bcc5376d6f710f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Humans
177 rdf:type schema:DefinedTerm
178 Nc905377162884e22864c9ebdaba2a391 schema:name pubmed_id
179 schema:value 31222023
180 rdf:type schema:PropertyValue
181 Nd01abcff81484857af1345127d88577f rdf:first sg:person.01112011323.94
182 rdf:rest N71e6c41c0259428caec5c6a5113ebc67
183 Nd5d2b1cf44ef4e4c81ea53ed7eb9b576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Dermatitis, Atopic
185 rdf:type schema:DefinedTerm
186 Nd7b521eb00e848ba939796e5cb3ee810 schema:issueNumber 1
187 rdf:type schema:PublicationIssue
188 Nda6532588a8748108d942798b9b5875e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Data Analysis
190 rdf:type schema:DefinedTerm
191 Neef2ed2e5dee40ae9fca844e82f9bb04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Healthy Volunteers
193 rdf:type schema:DefinedTerm
194 Nefd8e9333a5a41698105416c399c7bdf schema:name doi
195 schema:value 10.1038/s41467-019-10656-5
196 rdf:type schema:PropertyValue
197 Nfb3ead6fc0e547168f71a05aa855a68b rdf:first sg:person.012060543237.43
198 rdf:rest N57a972353f7c45468b9c20740bd3a78a
199 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
200 schema:name Biological Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
203 schema:name Microbiology
204 rdf:type schema:DefinedTerm
205 sg:grant.2439394 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10656-5
206 rdf:type schema:MonetaryGrant
207 sg:grant.3131567 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10656-5
208 rdf:type schema:MonetaryGrant
209 sg:grant.5019008 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10656-5
210 rdf:type schema:MonetaryGrant
211 sg:grant.7909949 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-10656-5
212 rdf:type schema:MonetaryGrant
213 sg:journal.1043282 schema:issn 2041-1723
214 schema:name Nature Communications
215 schema:publisher Springer Nature
216 rdf:type schema:Periodical
217 sg:person.01112011323.94 schema:affiliation grid-institutes:grid.266100.3
218 schema:familyName Zengler
219 schema:givenName Karsten
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112011323.94
221 rdf:type schema:Person
222 sg:person.01144414650.58 schema:affiliation grid-institutes:grid.266100.3
223 schema:familyName Zaramela
224 schema:givenName Livia S.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144414650.58
226 rdf:type schema:Person
227 sg:person.012060543237.43 schema:affiliation grid-institutes:grid.26009.3d
228 schema:familyName Silverman
229 schema:givenName Justin
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012060543237.43
231 rdf:type schema:Person
232 sg:person.012656123637.25 schema:affiliation grid-institutes:grid.41891.35
233 schema:familyName Washburne
234 schema:givenName Alex
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656123637.25
236 rdf:type schema:Person
237 sg:person.012733432355.50 schema:affiliation grid-institutes:grid.266100.3
238 schema:familyName Marotz
239 schema:givenName Clarisse
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733432355.50
241 rdf:type schema:Person
242 sg:person.01323423765.55 schema:affiliation grid-institutes:grid.469946.0
243 schema:familyName Edlund
244 schema:givenName Anna
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323423765.55
246 rdf:type schema:Person
247 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.266100.3
248 schema:familyName Knight
249 schema:givenName Rob
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
251 rdf:type schema:Person
252 sg:person.07611006373.15 schema:affiliation grid-institutes:grid.266100.3
253 schema:familyName Morton
254 schema:givenName James T.
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611006373.15
256 rdf:type schema:Person
257 sg:pub.10.1007/978-94-015-7358-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022132261
258 https://doi.org/10.1007/978-94-015-7358-0
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/ismej.2016.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036110439
261 https://doi.org/10.1038/ismej.2016.117
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/nature24460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092687907
264 https://doi.org/10.1038/nature24460
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/nmeth.2658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139060
267 https://doi.org/10.1038/nmeth.2658
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
270 https://doi.org/10.1038/nmeth.f.303
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/s41592-018-0141-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107129414
273 https://doi.org/10.1038/s41592-018-0141-9
274 rdf:type schema:CreativeWork
275 sg:pub.10.1186/2047-217x-1-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050567563
276 https://doi.org/10.1186/2047-217x-1-7
277 rdf:type schema:CreativeWork
278 sg:pub.10.1186/2049-2618-2-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046874717
279 https://doi.org/10.1186/2049-2618-2-15
280 rdf:type schema:CreativeWork
281 sg:pub.10.1186/s12864-018-5160-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108058115
282 https://doi.org/10.1186/s12864-018-5160-5
283 rdf:type schema:CreativeWork
284 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
285 https://doi.org/10.1186/s13059-014-0550-8
286 rdf:type schema:CreativeWork
287 sg:pub.10.1186/s40168-018-0491-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104992927
288 https://doi.org/10.1186/s40168-018-0491-7
289 rdf:type schema:CreativeWork
290 sg:pub.10.1186/s40168-018-0584-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109820176
291 https://doi.org/10.1186/s40168-018-0584-3
292 rdf:type schema:CreativeWork
293 sg:pub.10.1186/s40168-018-0601-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110232184
294 https://doi.org/10.1186/s40168-018-0601-6
295 rdf:type schema:CreativeWork
296 grid-institutes:grid.26009.3d schema:alternateName Center for Genomic and Computational Biology, Duke University, 27708, Durham, USA
297 schema:name Center for Genomic and Computational Biology, Duke University, 27708, Durham, USA
298 Medical Scientist Training Program, Duke University, 27708, Durham, USA
299 Program in Computational Biology and Bioinformatics, Duke University, 27708, Durham, USA
300 rdf:type schema:Organization
301 grid-institutes:grid.266100.3 schema:alternateName Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA
302 Department of Computer Science & Engineering, University of California, San Diego, 92093, La Jolla, CA, USA
303 Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA
304 schema:name Center for Microbiome Innovation, University of California, San Diego, 92093, La Jolla, CA, USA
305 Department of Bioengineering, University of California, San Diego, 92093, La Jolla, CA, USA
306 Department of Computer Science & Engineering, University of California, San Diego, 92093, La Jolla, CA, USA
307 Department of Pediatrics, University of California, San Diego, 92093, La Jolla, CA, USA
308 rdf:type schema:Organization
309 grid-institutes:grid.41891.35 schema:alternateName Department of Microbiology and Immunology, Montana State University, 59717, Bozeman, MT, USA
310 schema:name Department of Microbiology and Immunology, Montana State University, 59717, Bozeman, MT, USA
311 rdf:type schema:Organization
312 grid-institutes:grid.469946.0 schema:alternateName J. Craig Venter Institute, Genomic Medicine Group, 92037, La Jolla, CA, USA
313 schema:name J. Craig Venter Institute, Genomic Medicine Group, 92037, La Jolla, CA, USA
314 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...