Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Matthias Paur, Aday J Molina-Mendoza, Rudolf Bratschitsch, Kenji Watanabe, Takashi Taniguchi, Thomas Mueller

ABSTRACT

Light emission from higher-order correlated excitonic states has been recently reported in hBN-encapsulated monolayer WSe2 and WS2 upon optical excitation. These exciton complexes are found to be bound states of excitons residing in opposite valleys in momentum space, a promising feature that could be employed in valleytronics or other novel optoelectronic devices. However, electrically-driven light emission from such exciton species is still lacking. Here we report electroluminescence from bright and dark excitons, negatively charged trions and neutral and negatively charged biexcitons, generated by a pulsed gate voltage, in hexagonal boron nitride encapsulated monolayer WSe2 and WS2 with graphene as electrode. By tailoring the pulse parameters we are able to tune the emission intensity of the different exciton species in both materials. We find the electroluminescence from charged biexcitons and dark excitons to be as narrow as 2.8 meV. More... »

PAGES

1709

References to SciGraph publications

  • 2017-09. Magnetic brightening and control of dark excitons in monolayer WSe2 in NATURE NANOTECHNOLOGY
  • 2017-09. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons in NATURE NANOTECHNOLOGY
  • 2018-12. Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor in NATURE COMMUNICATIONS
  • 2018-12. Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields in NATURE COMMUNICATIONS
  • 2015-06. Optically active quantum dots in monolayer WSe2 in NATURE NANOTECHNOLOGY
  • 2017-05-22. Large-scale quantum-emitter arrays in atomically thin semiconductors in NATURE COMMUNICATIONS
  • 2016-09-26. Atomically thin quantum light-emitting diodes in NATURE COMMUNICATIONS
  • 2015-06. Single photon emitters in exfoliated WSe2 structures in NATURE NANOTECHNOLOGY
  • 2016-06-16. The hot pick-up technique for batch assembly of van der Waals heterostructures in NATURE COMMUNICATIONS
  • 2014-09. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures in NATURE NANOTECHNOLOGY
  • 2018-12. Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers in NATURE COMMUNICATIONS
  • 2017-06-28. Neutral and charged inter-valley biexcitons in monolayer MoSe2 in NATURE COMMUNICATIONS
  • 2018-12. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2 in NATURE COMMUNICATIONS
  • 2014-04. Solar-energy conversion and light emission in an atomic monolayer p-n diode in NATURE NANOTECHNOLOGY
  • 2018-12. Large-area and bright pulsed electroluminescence in monolayer semiconductors in NATURE COMMUNICATIONS
  • 2018-12. Charge-tuneable biexciton complexes in monolayer WSe2 in NATURE COMMUNICATIONS
  • 2016-04. Excitonic luminescence upconversion in a two-dimensional semiconductor in NATURE PHYSICS
  • 2015-06. Voltage-controlled quantum light from an atomically thin semiconductor in NATURE NANOTECHNOLOGY
  • 2015-06. Single quantum emitters in monolayer semiconductors in NATURE NANOTECHNOLOGY
  • 2014-04. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide in NATURE NANOTECHNOLOGY
  • 2014-04. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions in NATURE NANOTECHNOLOGY
  • 2015-11. Monolayer excitonic laser in NATURE PHOTONICS
  • 2012-08. Control of valley polarization in monolayer MoS2 by optical helicity in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-09781-y

    DOI

    http://dx.doi.org/10.1038/s41467-019-09781-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113380241

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30979893


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "TU Wien", 
              "id": "https://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Vienna University of Technology, Institute of Photonics, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paur", 
            "givenName": "Matthias", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "TU Wien", 
              "id": "https://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Vienna University of Technology, Institute of Photonics, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria. aday.molina-mendoza@tuwien.ac.at."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Molina-Mendoza", 
            "givenName": "Aday J", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of M\u00fcnster", 
              "id": "https://www.grid.ac/institutes/grid.5949.1", 
              "name": [
                "Institute of Physics and Center for Nanotechnology, University of M\u00fcnster, Wilhelm-Klemm-Strasse 10, 48149, M\u00fcnster, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bratschitsch", 
            "givenName": "Rudolf", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Kenji", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taniguchi", 
            "givenName": "Takashi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "TU Wien", 
              "id": "https://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Vienna University of Technology, Institute of Photonics, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria. thomas.mueller@tuwien.ac.at."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mueller", 
            "givenName": "Thomas", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphys3604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001903377", 
              "https://doi.org/10.1038/nphys3604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2053-1583/aa5521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003303304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.045318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005532769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.045318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005532769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006918243", 
              "https://doi.org/10.1038/nnano.2014.167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007885725", 
              "https://doi.org/10.1038/nnano.2014.25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008703953", 
              "https://doi.org/10.1038/nnano.2014.26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012754942", 
              "https://doi.org/10.1038/nnano.2015.75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014720018", 
              "https://doi.org/10.1038/ncomms12978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020296900", 
              "https://doi.org/10.1038/nphoton.2015.197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pssr.201510224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029205394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b01580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029596487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1251329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029818521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/optica.2.000347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029852100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030502764", 
              "https://doi.org/10.1038/nnano.2015.79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2053-1583/3/2/025038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030723182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030977659", 
              "https://doi.org/10.1038/nnano.2014.14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.026803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031983012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.026803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031983012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037969731", 
              "https://doi.org/10.1038/nnano.2015.60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038550073", 
              "https://doi.org/10.1038/nnano.2012.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.076802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041070857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.076802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041070857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045892225", 
              "https://doi.org/10.1038/ncomms11894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046549846", 
              "https://doi.org/10.1038/nnano.2015.67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn5059908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051706713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b03740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055121060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b04171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055121959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.4308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060561531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.4308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060561531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.257403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.257403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060813486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060813486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.21.004908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065202909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201606918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084911045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.7.021026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085444359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.7.021026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085444359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085462902", 
              "https://doi.org/10.1038/ncomms15093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2017.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086182729", 
              "https://doi.org/10.1038/nnano.2017.105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2017.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086182729", 
              "https://doi.org/10.1038/nnano.2017.105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2017.106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086232571", 
              "https://doi.org/10.1038/nnano.2017.106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2017.106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086232571", 
              "https://doi.org/10.1038/nnano.2017.106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090275464", 
              "https://doi.org/10.1038/ncomms15552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.047401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090966762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.047401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090966762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.96.155423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092144601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.96.155423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092144601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adom.201700767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092752171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03218-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101762265", 
              "https://doi.org/10.1038/s41467-018-03218-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03218-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101762265", 
              "https://doi.org/10.1038/s41467-018-03218-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.90.021001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103306737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.90.021001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103306737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7cs00880e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103597086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.121.057402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105983633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.121.057402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105983633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201802687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106155463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201802687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106155463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05558-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106858932", 
              "https://doi.org/10.1038/s41467-018-05558-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05632-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106858933", 
              "https://doi.org/10.1038/s41467-018-05632-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05643-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106858934", 
              "https://doi.org/10.1038/s41467-018-05643-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05863-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106858937", 
              "https://doi.org/10.1038/s41467-018-05863-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05917-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106858938", 
              "https://doi.org/10.1038/s41467-018-05917-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Light emission from higher-order correlated excitonic states has been recently reported in hBN-encapsulated monolayer WSe2 and WS2 upon optical excitation. These exciton complexes are found to be bound states of excitons residing in opposite valleys in momentum space, a promising feature that could be employed in valleytronics or other novel optoelectronic devices. However, electrically-driven light emission from such exciton species is still lacking. Here we report electroluminescence from bright and dark excitons, negatively charged trions and neutral and negatively charged biexcitons, generated by a pulsed gate voltage, in hexagonal boron nitride encapsulated monolayer WSe2 and WS2 with graphene as electrode. By tailoring the pulse parameters we are able to tune the emission intensity of the different exciton species in both materials. We find the electroluminescence from charged biexcitons and dark excitons to be as narrow as 2.8\u2009meV.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-019-09781-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors.", 
        "pagination": "1709", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-09781-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113380241"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30979893"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-09781-y", 
          "https://app.dimensions.ai/details/publication/pub.1113380241"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-16T06:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106810_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/s41467-019-09781-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09781-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09781-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09781-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09781-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    268 TRIPLES      21 PREDICATES      76 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-09781-y schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N92180bdaf59247e1878aa60fff64a65f
    4 schema:citation sg:pub.10.1038/ncomms11894
    5 sg:pub.10.1038/ncomms12978
    6 sg:pub.10.1038/ncomms15093
    7 sg:pub.10.1038/ncomms15552
    8 sg:pub.10.1038/nnano.2012.96
    9 sg:pub.10.1038/nnano.2014.14
    10 sg:pub.10.1038/nnano.2014.167
    11 sg:pub.10.1038/nnano.2014.25
    12 sg:pub.10.1038/nnano.2014.26
    13 sg:pub.10.1038/nnano.2015.60
    14 sg:pub.10.1038/nnano.2015.67
    15 sg:pub.10.1038/nnano.2015.75
    16 sg:pub.10.1038/nnano.2015.79
    17 sg:pub.10.1038/nnano.2017.105
    18 sg:pub.10.1038/nnano.2017.106
    19 sg:pub.10.1038/nphoton.2015.197
    20 sg:pub.10.1038/nphys3604
    21 sg:pub.10.1038/s41467-018-03218-8
    22 sg:pub.10.1038/s41467-018-05558-x
    23 sg:pub.10.1038/s41467-018-05632-4
    24 sg:pub.10.1038/s41467-018-05643-1
    25 sg:pub.10.1038/s41467-018-05863-5
    26 sg:pub.10.1038/s41467-018-05917-8
    27 https://doi.org/10.1002/adma.201606918
    28 https://doi.org/10.1002/adma.201802687
    29 https://doi.org/10.1002/adom.201700767
    30 https://doi.org/10.1002/pssr.201510224
    31 https://doi.org/10.1021/acs.nanolett.5b03740
    32 https://doi.org/10.1021/acs.nanolett.6b01580
    33 https://doi.org/10.1021/acs.nanolett.6b04171
    34 https://doi.org/10.1021/nn5059908
    35 https://doi.org/10.1039/c7cs00880e
    36 https://doi.org/10.1088/2053-1583/3/2/025038
    37 https://doi.org/10.1088/2053-1583/aa5521
    38 https://doi.org/10.1103/physrevb.45.4308
    39 https://doi.org/10.1103/physrevb.88.045318
    40 https://doi.org/10.1103/physrevb.96.155423
    41 https://doi.org/10.1103/physrevlett.113.026803
    42 https://doi.org/10.1103/physrevlett.113.076802
    43 https://doi.org/10.1103/physrevlett.115.257403
    44 https://doi.org/10.1103/physrevlett.119.047401
    45 https://doi.org/10.1103/physrevlett.121.057402
    46 https://doi.org/10.1103/physrevlett.76.672
    47 https://doi.org/10.1103/physrevx.7.021026
    48 https://doi.org/10.1103/revmodphys.90.021001
    49 https://doi.org/10.1126/science.1251329
    50 https://doi.org/10.1364/oe.21.004908
    51 https://doi.org/10.1364/optica.2.000347
    52 schema:datePublished 2019-12
    53 schema:datePublishedReg 2019-12-01
    54 schema:description Light emission from higher-order correlated excitonic states has been recently reported in hBN-encapsulated monolayer WSe<sub>2</sub> and WS<sub>2</sub> upon optical excitation. These exciton complexes are found to be bound states of excitons residing in opposite valleys in momentum space, a promising feature that could be employed in valleytronics or other novel optoelectronic devices. However, electrically-driven light emission from such exciton species is still lacking. Here we report electroluminescence from bright and dark excitons, negatively charged trions and neutral and negatively charged biexcitons, generated by a pulsed gate voltage, in hexagonal boron nitride encapsulated monolayer WSe<sub>2</sub> and WS<sub>2</sub> with graphene as electrode. By tailoring the pulse parameters we are able to tune the emission intensity of the different exciton species in both materials. We find the electroluminescence from charged biexcitons and dark excitons to be as narrow as 2.8 meV.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree true
    58 schema:isPartOf N4fe402712df043d1ac73a2acdd2a7145
    59 Na9a0563c13774619b515298954d9e23a
    60 sg:journal.1043282
    61 schema:name Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors.
    62 schema:pagination 1709
    63 schema:productId N5e6c43ea3d2047da8cf751c5d8883950
    64 Nab482ca75df5404fac11e759ff287f68
    65 Nbbd824e84e4045a998b81e229fcef405
    66 Nd185541c369a4d8a91b999896f717227
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113380241
    68 https://doi.org/10.1038/s41467-019-09781-y
    69 schema:sdDatePublished 2019-04-16T06:22
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N81cccb6eb9a2416ab214252109f1f73a
    72 schema:url http://www.nature.com/articles/s41467-019-09781-y
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N08e825f9df6241418fdeabf34d5baa63 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
    77 schema:familyName Paur
    78 schema:givenName Matthias
    79 rdf:type schema:Person
    80 N0bc22ef38a074d75acf5f14e059af18b rdf:first Nafab823aa28f428c975b9f7add680b08
    81 rdf:rest N19e116d79fb74e7f82218219e9864c4a
    82 N17e8567cea0c49e3be756ca9a960abbd rdf:first N2e1524a1a2d1446a8c2249ee51f7b681
    83 rdf:rest N0bc22ef38a074d75acf5f14e059af18b
    84 N19e116d79fb74e7f82218219e9864c4a rdf:first N58fa7fa130dd43c089e8b3493b41dbd3
    85 rdf:rest rdf:nil
    86 N2e1524a1a2d1446a8c2249ee51f7b681 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
    87 schema:familyName Watanabe
    88 schema:givenName Kenji
    89 rdf:type schema:Person
    90 N4fe402712df043d1ac73a2acdd2a7145 schema:volumeNumber 10
    91 rdf:type schema:PublicationVolume
    92 N58fa7fa130dd43c089e8b3493b41dbd3 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
    93 schema:familyName Mueller
    94 schema:givenName Thomas
    95 rdf:type schema:Person
    96 N5e6c43ea3d2047da8cf751c5d8883950 schema:name pubmed_id
    97 schema:value 30979893
    98 rdf:type schema:PropertyValue
    99 N81cccb6eb9a2416ab214252109f1f73a schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 N92180bdaf59247e1878aa60fff64a65f rdf:first N08e825f9df6241418fdeabf34d5baa63
    102 rdf:rest Ncc47675fc6dc4706957121071494fefc
    103 Na9a0563c13774619b515298954d9e23a schema:issueNumber 1
    104 rdf:type schema:PublicationIssue
    105 Nab482ca75df5404fac11e759ff287f68 schema:name doi
    106 schema:value 10.1038/s41467-019-09781-y
    107 rdf:type schema:PropertyValue
    108 Nafab823aa28f428c975b9f7add680b08 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
    109 schema:familyName Taniguchi
    110 schema:givenName Takashi
    111 rdf:type schema:Person
    112 Nbbd824e84e4045a998b81e229fcef405 schema:name nlm_unique_id
    113 schema:value 101528555
    114 rdf:type schema:PropertyValue
    115 Ncc47675fc6dc4706957121071494fefc rdf:first Nd9d2fdf1007740e28573b88cc697d082
    116 rdf:rest Nde4858aafaaa450dae59a6cac25612fa
    117 Nd02425d14b52414b836577841d0f8164 schema:affiliation https://www.grid.ac/institutes/grid.5949.1
    118 schema:familyName Bratschitsch
    119 schema:givenName Rudolf
    120 rdf:type schema:Person
    121 Nd185541c369a4d8a91b999896f717227 schema:name dimensions_id
    122 schema:value pub.1113380241
    123 rdf:type schema:PropertyValue
    124 Nd9d2fdf1007740e28573b88cc697d082 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
    125 schema:familyName Molina-Mendoza
    126 schema:givenName Aday J
    127 rdf:type schema:Person
    128 Nde4858aafaaa450dae59a6cac25612fa rdf:first Nd02425d14b52414b836577841d0f8164
    129 rdf:rest N17e8567cea0c49e3be756ca9a960abbd
    130 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Physical Sciences
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    135 rdf:type schema:DefinedTerm
    136 sg:journal.1043282 schema:issn 2041-1723
    137 schema:name Nature Communications
    138 rdf:type schema:Periodical
    139 sg:pub.10.1038/ncomms11894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045892225
    140 https://doi.org/10.1038/ncomms11894
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/ncomms12978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014720018
    143 https://doi.org/10.1038/ncomms12978
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/ncomms15093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085462902
    146 https://doi.org/10.1038/ncomms15093
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/ncomms15552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090275464
    149 https://doi.org/10.1038/ncomms15552
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
    152 https://doi.org/10.1038/nnano.2012.96
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/nnano.2014.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030977659
    155 https://doi.org/10.1038/nnano.2014.14
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nnano.2014.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006918243
    158 https://doi.org/10.1038/nnano.2014.167
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nnano.2014.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007885725
    161 https://doi.org/10.1038/nnano.2014.25
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/nnano.2014.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008703953
    164 https://doi.org/10.1038/nnano.2014.26
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nnano.2015.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037969731
    167 https://doi.org/10.1038/nnano.2015.60
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nnano.2015.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046549846
    170 https://doi.org/10.1038/nnano.2015.67
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nnano.2015.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012754942
    173 https://doi.org/10.1038/nnano.2015.75
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nnano.2015.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030502764
    176 https://doi.org/10.1038/nnano.2015.79
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nnano.2017.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086182729
    179 https://doi.org/10.1038/nnano.2017.105
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nnano.2017.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086232571
    182 https://doi.org/10.1038/nnano.2017.106
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nphoton.2015.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020296900
    185 https://doi.org/10.1038/nphoton.2015.197
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nphys3604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001903377
    188 https://doi.org/10.1038/nphys3604
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/s41467-018-03218-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101762265
    191 https://doi.org/10.1038/s41467-018-03218-8
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/s41467-018-05558-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1106858932
    194 https://doi.org/10.1038/s41467-018-05558-x
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/s41467-018-05632-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106858933
    197 https://doi.org/10.1038/s41467-018-05632-4
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/s41467-018-05643-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106858934
    200 https://doi.org/10.1038/s41467-018-05643-1
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/s41467-018-05863-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106858937
    203 https://doi.org/10.1038/s41467-018-05863-5
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/s41467-018-05917-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106858938
    206 https://doi.org/10.1038/s41467-018-05917-8
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1002/adma.201606918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084911045
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1002/adma.201802687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106155463
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1002/adom.201700767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092752171
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1002/pssr.201510224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029205394
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1021/acs.nanolett.5b03740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121060
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1021/acs.nanolett.6b01580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029596487
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1021/acs.nanolett.6b04171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121959
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1021/nn5059908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051706713
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1039/c7cs00880e schema:sameAs https://app.dimensions.ai/details/publication/pub.1103597086
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1088/2053-1583/3/2/025038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030723182
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1088/2053-1583/aa5521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003303304
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1103/physrevb.45.4308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561531
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1103/physrevb.88.045318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532769
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1103/physrevb.96.155423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092144601
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1103/physrevlett.113.026803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031983012
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1103/physrevlett.113.076802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041070857
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1103/physrevlett.115.257403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764679
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1103/physrevlett.119.047401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090966762
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1103/physrevlett.121.057402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105983633
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1103/physrevlett.76.672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813486
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1103/physrevx.7.021026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085444359
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1103/revmodphys.90.021001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103306737
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1126/science.1251329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029818521
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1364/oe.21.004908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065202909
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1364/optica.2.000347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029852100
    257 rdf:type schema:CreativeWork
    258 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
    259 schema:name National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
    260 rdf:type schema:Organization
    261 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
    262 schema:name Vienna University of Technology, Institute of Photonics, Gußhausstraße 27-29, 1040, Vienna, Austria.
    263 Vienna University of Technology, Institute of Photonics, Gußhausstraße 27-29, 1040, Vienna, Austria. aday.molina-mendoza@tuwien.ac.at.
    264 Vienna University of Technology, Institute of Photonics, Gußhausstraße 27-29, 1040, Vienna, Austria. thomas.mueller@tuwien.ac.at.
    265 rdf:type schema:Organization
    266 https://www.grid.ac/institutes/grid.5949.1 schema:alternateName University of Münster
    267 schema:name Institute of Physics and Center for Nanotechnology, University of Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany.
    268 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...