Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-12

AUTHORS

Pengsong Li, Maoyu Wang, Xinxuan Duan, Lirong Zheng, Xiaopeng Cheng, Yuefei Zhang, Yun Kuang, Yaping Li, Qing Ma, Zhenxing Feng, Wen Liu, Xiaoming Sun

ABSTRACT

Single atom catalyst, which contains isolated metal atoms singly dispersed on supports, has great potential for achieving high activity and selectivity in hetero-catalysis and electrocatalysis. However, the activity and stability of single atoms and their interaction with support still remains a mystery. Here we show a stable single atomic ruthenium catalyst anchoring on the surface of cobalt iron layered double hydroxides, which possesses a strong electronic coupling between ruthenium and layered double hydroxides. With 0.45 wt.% ruthenium loading, the catalyst exhibits outstanding activity with overpotential 198 mV at the current density of 10 mA cm-2 and a small Tafel slope of 39 mV dec-1 for oxygen evolution reaction. By using operando X-ray absorption spectroscopy, it is disclosed that the isolated single atom ruthenium was kept under the oxidation states of 4+ even at high overpotential due to synergetic electron coupling, which endow exceptional electrocatalytic activity and stability simultaneously. More... »

PAGES

1711

References to SciGraph publications

  • 2015-10-21. Atomic cobalt on nitrogen-doped graphene for hydrogen generation in NATURE COMMUNICATIONS
  • 2002-06. Coulomb blockade and the Kondo effect in single-atom transistors in NATURE
  • 2011-07-22. Single-atom catalysis of CO oxidation using Pt1/FeOx in NATURE CHEMISTRY
  • 2001-11. Alternative energy technologies in NATURE
  • 2018-01-08. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation in NATURE CHEMISTRY
  • 2018-04-30. A universal principle for a rational design of single-atom electrocatalysts in NATURE CATALYSIS
  • 2016-06-16. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation in NATURE COMMUNICATIONS
  • 2017-07-27. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation in NATURE COMMUNICATIONS
  • 2018-01-29. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction in NATURE COMMUNICATIONS
  • 2017-01-05. Catalyst support effects on hydrogen spillover in NATURE
  • 2017-01-11. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting in NATURE REVIEWS CHEMISTRY
  • 2014-07-17. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis in NATURE COMMUNICATIONS
  • 2018-01-08. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities in NATURE CATALYSIS
  • 2012-08-15. Opportunities and challenges for a sustainable energy future in NATURE
  • 2011-06-12. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries in NATURE CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-09666-0

    DOI

    http://dx.doi.org/10.1038/s41467-019-09666-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113380247

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30979899


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, CT 06516 USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China", 
                "Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, CT 06516 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Pengsong", 
            "id": "sg:person.01151334121.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151334121.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA", 
              "id": "http://www.grid.ac/institutes/grid.4391.f", 
              "name": [
                "School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Maoyu", 
            "id": "sg:person.010501250677.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010501250677.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duan", 
            "givenName": "Xinxuan", 
            "id": "sg:person.015463300760.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015463300760.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS), Beijing, 100049 China", 
              "id": "http://www.grid.ac/institutes/grid.418741.f", 
              "name": [
                "Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS), Beijing, 100049 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Lirong", 
            "id": "sg:person.012010224613.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010224613.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100022 China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100022 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Xiaopeng", 
            "id": "sg:person.07720355625.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720355625.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100022 China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100022 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yuefei", 
            "id": "sg:person.011406516445.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406516445.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuang", 
            "givenName": "Yun", 
            "id": "sg:person.01057706231.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057706231.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yaping", 
            "id": "sg:person.0677406734.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677406734.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, IL 60208 USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, IL 60208 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Qing", 
            "id": "sg:person.01046154332.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046154332.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA", 
              "id": "http://www.grid.ac/institutes/grid.4391.f", 
              "name": [
                "School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Zhenxing", 
            "id": "sg:person.01344241665.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344241665.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Wen", 
            "id": "sg:person.013677613601.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677613601.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Xiaoming", 
            "id": "sg:person.014120721165.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120721165.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature11475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045741773", 
              "https://doi.org/10.1038/nature11475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41570-016-0003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027381619", 
              "https://doi.org/10.1038/s41570-016-0003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040009515", 
              "https://doi.org/10.1038/ncomms5477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms16100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090903396", 
              "https://doi.org/10.1038/ncomms16100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature20782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020182078", 
              "https://doi.org/10.1038/nature20782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053233740", 
              "https://doi.org/10.1038/ncomms9668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050550589", 
              "https://doi.org/10.1038/ncomms11981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41929-018-0063-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103685536", 
              "https://doi.org/10.1038/s41929-018-0063-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-02819-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100592804", 
              "https://doi.org/10.1038/s41467-018-02819-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35104599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006186815", 
              "https://doi.org/10.1038/35104599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045401156", 
              "https://doi.org/10.1038/nchem.1069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035388530", 
              "https://doi.org/10.1038/nchem.1095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100239794", 
              "https://doi.org/10.1038/nchem.2915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41929-017-0008-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099970162", 
              "https://doi.org/10.1038/s41929-017-0008-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037312998", 
              "https://doi.org/10.1038/nature00791"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-12", 
        "datePublishedReg": "2019-04-12", 
        "description": "Single atom catalyst, which contains isolated metal atoms singly dispersed on supports, has great potential for achieving high activity and selectivity in hetero-catalysis and electrocatalysis. However, the activity and stability of single atoms and their interaction with support still remains a mystery. Here we show a stable single atomic ruthenium catalyst anchoring on the surface of cobalt iron layered double hydroxides, which possesses a strong electronic coupling between ruthenium and layered double hydroxides. With 0.45 wt.% ruthenium loading, the catalyst exhibits outstanding activity with overpotential 198\u2009mV at the current density of 10\u2009mA\u2009cm-2 and a small Tafel slope of 39\u2009mV\u2009dec-1 for oxygen evolution reaction. By using operando X-ray absorption spectroscopy, it is disclosed that the isolated single atom ruthenium was kept under the oxidation states of 4+ even at high overpotential due to synergetic electron coupling, which endow exceptional electrocatalytic activity and stability simultaneously.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-09666-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "electronic coupling", 
          "ray absorption spectroscopy", 
          "isolated metal atom", 
          "strong electronic coupling", 
          "single atoms", 
          "electron coupling", 
          "absorption spectroscopy", 
          "metal atoms", 
          "atoms", 
          "coupling", 
          "operando X", 
          "current density", 
          "exceptional electrocatalytic activity", 
          "single-atom catalysts", 
          "single-atom ruthenium", 
          "oxidation state", 
          "atom catalysts", 
          "spectroscopy", 
          "oxygen evolution", 
          "cobalt iron", 
          "great potential", 
          "density", 
          "mV", 
          "surface", 
          "state", 
          "ruthenium", 
          "interaction", 
          "evolution", 
          "mystery", 
          "stability", 
          "potential", 
          "evolution reaction", 
          "outstanding activity", 
          "high overpotentials", 
          "Ma", 
          "slope", 
          "reaction", 
          "oxygen evolution reaction", 
          "double hydroxides", 
          "iron", 
          "electrocatalytic activity", 
          "hydroxide", 
          "selectivity", 
          "catalyst", 
          "electrocatalysis", 
          "Tafel slope", 
          "ruthenium loading", 
          "small Tafel slope", 
          "overpotential", 
          "high activity", 
          "wt", 
          "loading", 
          "activity", 
          "support", 
          "ruthenium catalysts", 
          "stable single atomic ruthenium catalyst", 
          "single atomic ruthenium catalyst", 
          "atomic ruthenium catalyst", 
          "isolated single atom ruthenium", 
          "atom ruthenium", 
          "synergetic electron coupling", 
          "single-atomic ruthenium"
        ], 
        "name": "Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides", 
        "pagination": "1711", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113380247"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-09666-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30979899"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-09666-0", 
          "https://app.dimensions.ai/details/publication/pub.1113380247"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_815.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-09666-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09666-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09666-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09666-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09666-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    276 TRIPLES      22 PREDICATES      103 URIs      80 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-09666-0 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Na283f557314e43d78dde2cdba3d0af84
    4 schema:citation sg:pub.10.1038/35104599
    5 sg:pub.10.1038/nature00791
    6 sg:pub.10.1038/nature11475
    7 sg:pub.10.1038/nature20782
    8 sg:pub.10.1038/nchem.1069
    9 sg:pub.10.1038/nchem.1095
    10 sg:pub.10.1038/nchem.2915
    11 sg:pub.10.1038/ncomms11981
    12 sg:pub.10.1038/ncomms16100
    13 sg:pub.10.1038/ncomms5477
    14 sg:pub.10.1038/ncomms9668
    15 sg:pub.10.1038/s41467-018-02819-7
    16 sg:pub.10.1038/s41570-016-0003
    17 sg:pub.10.1038/s41929-017-0008-y
    18 sg:pub.10.1038/s41929-018-0063-z
    19 schema:datePublished 2019-04-12
    20 schema:datePublishedReg 2019-04-12
    21 schema:description Single atom catalyst, which contains isolated metal atoms singly dispersed on supports, has great potential for achieving high activity and selectivity in hetero-catalysis and electrocatalysis. However, the activity and stability of single atoms and their interaction with support still remains a mystery. Here we show a stable single atomic ruthenium catalyst anchoring on the surface of cobalt iron layered double hydroxides, which possesses a strong electronic coupling between ruthenium and layered double hydroxides. With 0.45 wt.% ruthenium loading, the catalyst exhibits outstanding activity with overpotential 198 mV at the current density of 10 mA cm<sup>-2</sup> and a small Tafel slope of 39 mV dec<sup>-1</sup> for oxygen evolution reaction. By using operando X-ray absorption spectroscopy, it is disclosed that the isolated single atom ruthenium was kept under the oxidation states of 4+ even at high overpotential due to synergetic electron coupling, which endow exceptional electrocatalytic activity and stability simultaneously.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf Nc55b19792f654fad84db74258ecb6682
    26 Nfa6325a145384265849391d06da273a2
    27 sg:journal.1043282
    28 schema:keywords Ma
    29 Tafel slope
    30 absorption spectroscopy
    31 activity
    32 atom catalysts
    33 atom ruthenium
    34 atomic ruthenium catalyst
    35 atoms
    36 catalyst
    37 cobalt iron
    38 coupling
    39 current density
    40 density
    41 double hydroxides
    42 electrocatalysis
    43 electrocatalytic activity
    44 electron coupling
    45 electronic coupling
    46 evolution
    47 evolution reaction
    48 exceptional electrocatalytic activity
    49 great potential
    50 high activity
    51 high overpotentials
    52 hydroxide
    53 interaction
    54 iron
    55 isolated metal atom
    56 isolated single atom ruthenium
    57 loading
    58 mV
    59 metal atoms
    60 mystery
    61 operando X
    62 outstanding activity
    63 overpotential
    64 oxidation state
    65 oxygen evolution
    66 oxygen evolution reaction
    67 potential
    68 ray absorption spectroscopy
    69 reaction
    70 ruthenium
    71 ruthenium catalysts
    72 ruthenium loading
    73 selectivity
    74 single atomic ruthenium catalyst
    75 single atoms
    76 single-atom catalysts
    77 single-atom ruthenium
    78 single-atomic ruthenium
    79 slope
    80 small Tafel slope
    81 spectroscopy
    82 stability
    83 stable single atomic ruthenium catalyst
    84 state
    85 strong electronic coupling
    86 support
    87 surface
    88 synergetic electron coupling
    89 wt
    90 schema:name Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides
    91 schema:pagination 1711
    92 schema:productId N57fc5f276ef8479990a18b50c29e95c4
    93 N715c6d5d2b494b72856a187830bdeb95
    94 N8fb4d78efba74b4888065f0a57890a41
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113380247
    96 https://doi.org/10.1038/s41467-019-09666-0
    97 schema:sdDatePublished 2021-12-01T19:45
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N4f7a435947b54a1cb8fbbcf85a8dff0b
    100 schema:url https://doi.org/10.1038/s41467-019-09666-0
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N082e499f6e954728aa538008496985b2 rdf:first sg:person.01344241665.10
    105 rdf:rest Nffe7d18e1b4944c888065207a5c29086
    106 N3adcf603389a4d96b8df6159bfe0adb4 rdf:first sg:person.01046154332.11
    107 rdf:rest N082e499f6e954728aa538008496985b2
    108 N4f7a435947b54a1cb8fbbcf85a8dff0b schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N57fc5f276ef8479990a18b50c29e95c4 schema:name doi
    111 schema:value 10.1038/s41467-019-09666-0
    112 rdf:type schema:PropertyValue
    113 N6e772f81ecdd44559e9f00cc4510d047 rdf:first sg:person.012010224613.98
    114 rdf:rest Nfa3c6e0f13244ac18e01e3829a1b089e
    115 N706bf24b940b420ca23d760849b44e25 rdf:first sg:person.015463300760.27
    116 rdf:rest N6e772f81ecdd44559e9f00cc4510d047
    117 N715c6d5d2b494b72856a187830bdeb95 schema:name dimensions_id
    118 schema:value pub.1113380247
    119 rdf:type schema:PropertyValue
    120 N80a3df323a9645799b6cc5c77644600c rdf:first sg:person.014120721165.14
    121 rdf:rest rdf:nil
    122 N8fb4d78efba74b4888065f0a57890a41 schema:name pubmed_id
    123 schema:value 30979899
    124 rdf:type schema:PropertyValue
    125 Na0a044e279f04430b35e382832750e28 rdf:first sg:person.01057706231.74
    126 rdf:rest Na85fbb81c9af43338dcf1353235eeceb
    127 Na283f557314e43d78dde2cdba3d0af84 rdf:first sg:person.01151334121.11
    128 rdf:rest Nacc6477593d741d19b81703718c32d1a
    129 Na85fbb81c9af43338dcf1353235eeceb rdf:first sg:person.0677406734.83
    130 rdf:rest N3adcf603389a4d96b8df6159bfe0adb4
    131 Nacc6477593d741d19b81703718c32d1a rdf:first sg:person.010501250677.30
    132 rdf:rest N706bf24b940b420ca23d760849b44e25
    133 Nc55b19792f654fad84db74258ecb6682 schema:volumeNumber 10
    134 rdf:type schema:PublicationVolume
    135 Nc5f0abe2abd5424cbf979e8603a91197 rdf:first sg:person.011406516445.33
    136 rdf:rest Na0a044e279f04430b35e382832750e28
    137 Nfa3c6e0f13244ac18e01e3829a1b089e rdf:first sg:person.07720355625.85
    138 rdf:rest Nc5f0abe2abd5424cbf979e8603a91197
    139 Nfa6325a145384265849391d06da273a2 schema:issueNumber 1
    140 rdf:type schema:PublicationIssue
    141 Nffe7d18e1b4944c888065207a5c29086 rdf:first sg:person.013677613601.97
    142 rdf:rest N80a3df323a9645799b6cc5c77644600c
    143 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Chemical Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Physical Chemistry (incl. Structural)
    148 rdf:type schema:DefinedTerm
    149 sg:journal.1043282 schema:issn 2041-1723
    150 schema:name Nature Communications
    151 schema:publisher Springer Nature
    152 rdf:type schema:Periodical
    153 sg:person.01046154332.11 schema:affiliation grid-institutes:grid.16753.36
    154 schema:familyName Ma
    155 schema:givenName Qing
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046154332.11
    157 rdf:type schema:Person
    158 sg:person.010501250677.30 schema:affiliation grid-institutes:grid.4391.f
    159 schema:familyName Wang
    160 schema:givenName Maoyu
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010501250677.30
    162 rdf:type schema:Person
    163 sg:person.01057706231.74 schema:affiliation grid-institutes:grid.48166.3d
    164 schema:familyName Kuang
    165 schema:givenName Yun
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057706231.74
    167 rdf:type schema:Person
    168 sg:person.011406516445.33 schema:affiliation grid-institutes:grid.28703.3e
    169 schema:familyName Zhang
    170 schema:givenName Yuefei
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406516445.33
    172 rdf:type schema:Person
    173 sg:person.01151334121.11 schema:affiliation grid-institutes:grid.47100.32
    174 schema:familyName Li
    175 schema:givenName Pengsong
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151334121.11
    177 rdf:type schema:Person
    178 sg:person.012010224613.98 schema:affiliation grid-institutes:grid.418741.f
    179 schema:familyName Zheng
    180 schema:givenName Lirong
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010224613.98
    182 rdf:type schema:Person
    183 sg:person.01344241665.10 schema:affiliation grid-institutes:grid.4391.f
    184 schema:familyName Feng
    185 schema:givenName Zhenxing
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344241665.10
    187 rdf:type schema:Person
    188 sg:person.013677613601.97 schema:affiliation grid-institutes:grid.48166.3d
    189 schema:familyName Liu
    190 schema:givenName Wen
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677613601.97
    192 rdf:type schema:Person
    193 sg:person.014120721165.14 schema:affiliation grid-institutes:grid.48166.3d
    194 schema:familyName Sun
    195 schema:givenName Xiaoming
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120721165.14
    197 rdf:type schema:Person
    198 sg:person.015463300760.27 schema:affiliation grid-institutes:grid.48166.3d
    199 schema:familyName Duan
    200 schema:givenName Xinxuan
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015463300760.27
    202 rdf:type schema:Person
    203 sg:person.0677406734.83 schema:affiliation grid-institutes:grid.48166.3d
    204 schema:familyName Li
    205 schema:givenName Yaping
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677406734.83
    207 rdf:type schema:Person
    208 sg:person.07720355625.85 schema:affiliation grid-institutes:grid.28703.3e
    209 schema:familyName Cheng
    210 schema:givenName Xiaopeng
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720355625.85
    212 rdf:type schema:Person
    213 sg:pub.10.1038/35104599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006186815
    214 https://doi.org/10.1038/35104599
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nature00791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037312998
    217 https://doi.org/10.1038/nature00791
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nature11475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045741773
    220 https://doi.org/10.1038/nature11475
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nature20782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020182078
    223 https://doi.org/10.1038/nature20782
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nchem.1069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401156
    226 https://doi.org/10.1038/nchem.1069
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nchem.1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035388530
    229 https://doi.org/10.1038/nchem.1095
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nchem.2915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100239794
    232 https://doi.org/10.1038/nchem.2915
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/ncomms11981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050550589
    235 https://doi.org/10.1038/ncomms11981
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/ncomms16100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090903396
    238 https://doi.org/10.1038/ncomms16100
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/ncomms5477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040009515
    241 https://doi.org/10.1038/ncomms5477
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ncomms9668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053233740
    244 https://doi.org/10.1038/ncomms9668
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/s41467-018-02819-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100592804
    247 https://doi.org/10.1038/s41467-018-02819-7
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/s41570-016-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027381619
    250 https://doi.org/10.1038/s41570-016-0003
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/s41929-017-0008-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1099970162
    253 https://doi.org/10.1038/s41929-017-0008-y
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/s41929-018-0063-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103685536
    256 https://doi.org/10.1038/s41929-018-0063-z
    257 rdf:type schema:CreativeWork
    258 grid-institutes:grid.16753.36 schema:alternateName DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, IL 60208 USA
    259 schema:name DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, IL 60208 USA
    260 rdf:type schema:Organization
    261 grid-institutes:grid.28703.3e schema:alternateName Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100022 China
    262 schema:name Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100022 China
    263 rdf:type schema:Organization
    264 grid-institutes:grid.418741.f schema:alternateName Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS), Beijing, 100049 China
    265 schema:name Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS), Beijing, 100049 China
    266 rdf:type schema:Organization
    267 grid-institutes:grid.4391.f schema:alternateName School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA
    268 schema:name School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA
    269 rdf:type schema:Organization
    270 grid-institutes:grid.47100.32 schema:alternateName Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, CT 06516 USA
    271 schema:name Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, CT 06516 USA
    272 State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
    273 rdf:type schema:Organization
    274 grid-institutes:grid.48166.3d schema:alternateName State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
    275 schema:name State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
    276 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...