Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-09

AUTHORS

Yuwei Liu, Mengzhu Xue, Shaowei Du, Wanwan Feng, Ke Zhang, Liwen Zhang, Haiyue Liu, Guoyi Jia, Lingshuang Wu, Xin Hu, Luonan Chen, Peng Wang

ABSTRACT

The competitive endogenous RNA (ceRNA) hypothesis suggests an intrinsic mechanism to regulate biological processes. However, whether the dynamic changes of ceRNAs can modulate miRNA activities remains controversial. Here, we examine the dynamics of ceRNAs during TGF-β-induced epithelial-to-mesenchymal transition (EMT). We observe that TGFBI, a transcript highly induced during EMT in A549 cells, acts as the ceRNA for miR-21 to modulate EMT. We further identify FN1 as the ceRNA for miR-200c in the canonical SNAIL-ZEB-miR200 circuit in MCF10A cells. Experimental assays and computational simulations demonstrate that the dynamically induced ceRNAs are directly coupled with the canonical double negative feedback loops and are critical to the induction of EMT. These results help to establish the relevance of ceRNA in cancer EMT and suggest that ceRNA is an intrinsic component of the EMT regulatory circuit and may represent a potential target to disrupt EMT during tumorigenesis. More... »

PAGES

1637

References to SciGraph publications

  • 2014-04-28. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer in MOLECULAR CANCER
  • 2014-08-15. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer in SCIENTIFIC REPORTS
  • 2010-08. Mammalian microRNAs predominantly act to decrease target mRNA levels in NATURE
  • 2013-01-24. Regulatory networks defining EMT during cancer initiation and progression in NATURE REVIEWS CANCER
  • 2009-08. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications in NATURE REVIEWS GENETICS
  • 2016-04-04. Endogenous microRNA sponges: evidence and controversy in NATURE REVIEWS GENETICS
  • 2008-04. Discovering microRNAs from deep sequencing data using miRDeep in NATURE BIOTECHNOLOGY
  • 2008-03-30. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 in NATURE CELL BIOLOGY
  • 2013-02-27. Natural RNA circles function as efficient microRNA sponges in NATURE
  • 2014-12-09. Competition between target sites of regulators shapes post-transcriptional gene regulation in NATURE REVIEWS GENETICS
  • 2013-10-31. Modeling precision treatment of breast cancer in GENOME BIOLOGY
  • 2011-04-18. Targets of miR-200c mediate suppression of cell motility and anoikis resistance in BREAST CANCER RESEARCH
  • 2005-04-03. Combinatorial microRNA target predictions in NATURE GENETICS
  • 2013-02-27. Circular RNAs are a large class of animal RNAs with regulatory potency in NATURE
  • 2014-01-15. The multilayered complexity of ceRNA crosstalk and competition in NATURE
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2010-06-07. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer in ONCOGENE
  • 2018-11-07. Genetic dissection of the miR-200–Zeb1 axis reveals its importance in tumor differentiation and invasion in NATURE COMMUNICATIONS
  • 2014-02-21. Molecular mechanisms of epithelial–mesenchymal transition in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1

    DOI

    http://dx.doi.org/10.1038/s41467-019-09649-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113327763

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30967542


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "A549 Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epithelial-Mesenchymal Transition", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Extracellular Matrix Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fibronectins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transforming Growth Factor beta", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences, 200031 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China", 
                "University of Chinese Academy of Sciences, 200031 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yuwei", 
            "id": "sg:person.0705514255.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705514255.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.458506.a", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xue", 
            "givenName": "Mengzhu", 
            "id": "sg:person.01014334672.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014334672.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Life Sciences, Shanghai University, 200031 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China", 
                "School of Life Sciences, Shanghai University, 200031 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du", 
            "givenName": "Shaowei", 
            "id": "sg:person.01070056055.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070056055.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.419092.7", 
              "name": [
                "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Wanwan", 
            "id": "sg:person.07557631063.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557631063.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.419092.7", 
              "name": [
                "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ke", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 200031 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.419093.6", 
              "name": [
                "University of Chinese Academy of Sciences, 200031 Shanghai, China", 
                "Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China", 
                "Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 200031 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Liwen", 
            "id": "sg:person.01136171255.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136171255.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences, 200031 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China", 
                "University of Chinese Academy of Sciences, 200031 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Haiyue", 
            "id": "sg:person.01021742655.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021742655.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Life Sciences, Shanghai University, 200031 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China", 
                "School of Life Sciences, Shanghai University, 200031 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jia", 
            "givenName": "Guoyi", 
            "id": "sg:person.013401132304.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401132304.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.440637.2", 
              "name": [
                "School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Lingshuang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.452404.3", 
              "name": [
                "Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, 200032 Shanghai, China", 
                "Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Xin", 
            "id": "sg:person.0731755156.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731755156.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Center for Brain Science and Brain-Inspired Intelligence, 201210 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China", 
                "School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China", 
                "Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China", 
                "Research Center for Brain Science and Brain-Inspired Intelligence, 201210 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Luonan", 
            "id": "sg:person.01174445201.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174445201.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032 Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.452404.3", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China", 
                "University of Chinese Academy of Sciences, 200031 Shanghai, China", 
                "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China", 
                "Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, 200032 Shanghai, China", 
                "Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032 Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Peng", 
            "id": "sg:person.01244444411.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244444411.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrg2628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038810312", 
              "https://doi.org/10.1038/nrg2628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2010.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020707098", 
              "https://doi.org/10.1038/onc.2010.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep06088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013310277", 
              "https://doi.org/10.1038/srep06088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009165330", 
              "https://doi.org/10.1038/nature09267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000491787", 
              "https://doi.org/10.1038/nrm3758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-4598-13-92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040866583", 
              "https://doi.org/10.1186/1476-4598-13-92"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010579597", 
              "https://doi.org/10.1038/nrg.2016.20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-10-r110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034400822", 
              "https://doi.org/10.1186/gb-2013-14-10-r110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007196031", 
              "https://doi.org/10.1038/nrg3853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cgt.2014.66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052470706", 
              "https://doi.org/10.1038/cgt.2014.66"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037192337", 
              "https://doi.org/10.1038/ng1536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008181500", 
              "https://doi.org/10.1038/nbt1394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004715472", 
              "https://doi.org/10.1038/nature11928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028690550", 
              "https://doi.org/10.1038/nrc3447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050833467", 
              "https://doi.org/10.1038/nature11993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-07130-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107969591", 
              "https://doi.org/10.1038/s41467-018-07130-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033017956", 
              "https://doi.org/10.1186/bcr2867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025529308", 
              "https://doi.org/10.1038/nature12986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047429448", 
              "https://doi.org/10.1038/ncb1722"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-09", 
        "datePublishedReg": "2019-04-09", 
        "description": "The competitive endogenous RNA (ceRNA) hypothesis suggests an intrinsic mechanism to regulate biological processes. However, whether the dynamic changes of ceRNAs can modulate miRNA activities remains controversial. Here, we examine the dynamics of ceRNAs during TGF-\u03b2-induced epithelial-to-mesenchymal transition (EMT). We observe that TGFBI, a transcript highly induced during EMT in A549 cells, acts as the ceRNA for miR-21 to modulate EMT. We further identify FN1 as the ceRNA for miR-200c in the canonical SNAIL-ZEB-miR200 circuit in MCF10A cells. Experimental assays and computational simulations demonstrate that the dynamically induced ceRNAs are directly coupled with the canonical double negative feedback loops and are critical to the induction of EMT. These results help to establish the relevance of ceRNA in cancer EMT and suggest that ceRNA is an intrinsic component of the EMT regulatory circuit and may represent a potential target to disrupt EMT during tumorigenesis.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-09649-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7202370", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8203374", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8196924", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "induction of EMT", 
          "competitive endogenous RNA", 
          "mesenchymal transition", 
          "miR-21", 
          "A549 cells", 
          "EMT", 
          "cancer EMT", 
          "potential target", 
          "ceRNA", 
          "MCF10A cells", 
          "endogenous RNA", 
          "competitive endogenous RNA (ceRNA) hypothesis", 
          "negative feedback loop", 
          "cells", 
          "double-negative feedback loop", 
          "intrinsic mechanism", 
          "intrinsic component", 
          "TGF", 
          "TGFBI", 
          "tumorigenesis", 
          "ceRNAs", 
          "dynamic changes", 
          "regulatory circuits", 
          "induction", 
          "FN1", 
          "assays", 
          "endogenous RNA (ceRNA) hypothesis", 
          "experimental assays", 
          "RNA", 
          "target", 
          "feedback loop", 
          "activity", 
          "biological processes", 
          "relevance", 
          "transcripts", 
          "hypothesis", 
          "changes", 
          "mechanism", 
          "miRNA activity", 
          "components", 
          "results", 
          "circuit", 
          "loop", 
          "process", 
          "computational simulations", 
          "transition", 
          "dynamics", 
          "simulations", 
          "RNA (ceRNA) hypothesis", 
          "dynamics of ceRNAs", 
          "canonical SNAIL-ZEB", 
          "SNAIL-ZEB", 
          "miR200 circuit", 
          "canonical double negative feedback loops", 
          "relevance of ceRNA", 
          "EMT regulatory circuit", 
          "modulates EMT"
        ], 
        "name": "Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT", 
        "pagination": "1637", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113327763"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-09649-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30967542"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-09649-1", 
          "https://app.dimensions.ai/details/publication/pub.1113327763"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_807.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-09649-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    363 TRIPLES      22 PREDICATES      116 URIs      89 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-09649-1 schema:about N07c06a9b3af747b3a40ab3d2c224765e
    2 N07da6431fb4f4f959c95ba7e11526d2c
    3 N09fab9620a7241a2821c362459e35087
    4 N0d4c112511cf422daed132d2b35cf1dc
    5 N20c0c912e36f48d49618eed56e8824bf
    6 N24b564e0f80b4debaefbbc0648614e6f
    7 N3c71b097173348b08cdb848b1a5c7ba0
    8 N55e99693e57643c2a65333d3dce17c10
    9 Na531a65f466e4077a4ca8aaab1b37ccc
    10 Nbbef6f9e465c47458a9d494219708bf6
    11 Nc22cb04132b746e497c6d6abd6efcfca
    12 Nc5faf3c42de34a5ebdf8527184796f37
    13 Nc7f2af1595274798a90403b96645bd0c
    14 Nea45e1eceb8f47a3b9e5294a1cc82212
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 schema:author Nc807ce9141b9485ebc0637540aea8eca
    18 schema:citation sg:pub.10.1038/cgt.2014.66
    19 sg:pub.10.1038/nature09267
    20 sg:pub.10.1038/nature11928
    21 sg:pub.10.1038/nature11993
    22 sg:pub.10.1038/nature12986
    23 sg:pub.10.1038/nbt1394
    24 sg:pub.10.1038/ncb1722
    25 sg:pub.10.1038/ng1536
    26 sg:pub.10.1038/nrc3447
    27 sg:pub.10.1038/nrg.2016.20
    28 sg:pub.10.1038/nrg2628
    29 sg:pub.10.1038/nrg3853
    30 sg:pub.10.1038/nrm3758
    31 sg:pub.10.1038/onc.2010.215
    32 sg:pub.10.1038/s41467-018-07130-z
    33 sg:pub.10.1038/srep06088
    34 sg:pub.10.1186/1476-4598-13-92
    35 sg:pub.10.1186/bcr2867
    36 sg:pub.10.1186/gb-2013-14-10-r110
    37 schema:datePublished 2019-04-09
    38 schema:datePublishedReg 2019-04-09
    39 schema:description The competitive endogenous RNA (ceRNA) hypothesis suggests an intrinsic mechanism to regulate biological processes. However, whether the dynamic changes of ceRNAs can modulate miRNA activities remains controversial. Here, we examine the dynamics of ceRNAs during TGF-β-induced epithelial-to-mesenchymal transition (EMT). We observe that TGFBI, a transcript highly induced during EMT in A549 cells, acts as the ceRNA for miR-21 to modulate EMT. We further identify FN1 as the ceRNA for miR-200c in the canonical SNAIL-ZEB-miR200 circuit in MCF10A cells. Experimental assays and computational simulations demonstrate that the dynamically induced ceRNAs are directly coupled with the canonical double negative feedback loops and are critical to the induction of EMT. These results help to establish the relevance of ceRNA in cancer EMT and suggest that ceRNA is an intrinsic component of the EMT regulatory circuit and may represent a potential target to disrupt EMT during tumorigenesis.
    40 schema:genre article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N49cebc03c5c34e0c883d3144bb7cc872
    44 Naf54c96076df431fad61238528c1a9fc
    45 sg:journal.1043282
    46 schema:keywords A549 cells
    47 EMT
    48 EMT regulatory circuit
    49 FN1
    50 MCF10A cells
    51 RNA
    52 RNA (ceRNA) hypothesis
    53 SNAIL-ZEB
    54 TGF
    55 TGFBI
    56 activity
    57 assays
    58 biological processes
    59 cancer EMT
    60 canonical SNAIL-ZEB
    61 canonical double negative feedback loops
    62 ceRNA
    63 ceRNAs
    64 cells
    65 changes
    66 circuit
    67 competitive endogenous RNA
    68 competitive endogenous RNA (ceRNA) hypothesis
    69 components
    70 computational simulations
    71 double-negative feedback loop
    72 dynamic changes
    73 dynamics
    74 dynamics of ceRNAs
    75 endogenous RNA
    76 endogenous RNA (ceRNA) hypothesis
    77 experimental assays
    78 feedback loop
    79 hypothesis
    80 induction
    81 induction of EMT
    82 intrinsic component
    83 intrinsic mechanism
    84 loop
    85 mechanism
    86 mesenchymal transition
    87 miR-21
    88 miR200 circuit
    89 miRNA activity
    90 modulates EMT
    91 negative feedback loop
    92 potential target
    93 process
    94 regulatory circuits
    95 relevance
    96 relevance of ceRNA
    97 results
    98 simulations
    99 target
    100 transcripts
    101 transition
    102 tumorigenesis
    103 schema:name Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT
    104 schema:pagination 1637
    105 schema:productId N5c0d0bb524b844c09ac22f6791d97534
    106 Nabc8d700613d41929c90f508bbc16fb2
    107 Nbdf8d9a2e5bc42fb9974e88e8bfe9367
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113327763
    109 https://doi.org/10.1038/s41467-019-09649-1
    110 schema:sdDatePublished 2022-01-01T18:48
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N5e808a549688455bbff7d961272f6755
    113 schema:url https://doi.org/10.1038/s41467-019-09649-1
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N07c06a9b3af747b3a40ab3d2c224765e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name MicroRNAs
    119 rdf:type schema:DefinedTerm
    120 N07da6431fb4f4f959c95ba7e11526d2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Computational Biology
    122 rdf:type schema:DefinedTerm
    123 N0874ecddc31042ae801db9c69cb336b9 rdf:first sg:person.01014334672.01
    124 rdf:rest Neb52c563def14b30b7266b974de2c89c
    125 N09fab9620a7241a2821c362459e35087 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Fibronectins
    127 rdf:type schema:DefinedTerm
    128 N0c907523874a483f8032c0c7e5bd5149 rdf:first sg:person.01244444411.18
    129 rdf:rest rdf:nil
    130 N0d4c112511cf422daed132d2b35cf1dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Epithelial-Mesenchymal Transition
    132 rdf:type schema:DefinedTerm
    133 N1436c6a4ebe54ac6a2bb9e58cd995581 rdf:first sg:person.01174445201.08
    134 rdf:rest N0c907523874a483f8032c0c7e5bd5149
    135 N20c0c912e36f48d49618eed56e8824bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Gene Expression Regulation, Neoplastic
    137 rdf:type schema:DefinedTerm
    138 N24b564e0f80b4debaefbbc0648614e6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Transforming Growth Factor beta
    140 rdf:type schema:DefinedTerm
    141 N2f03fdfbcbd44a639f9b030171108518 rdf:first sg:person.0731755156.52
    142 rdf:rest N1436c6a4ebe54ac6a2bb9e58cd995581
    143 N3c71b097173348b08cdb848b1a5c7ba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name RNA, Messenger
    145 rdf:type schema:DefinedTerm
    146 N49cebc03c5c34e0c883d3144bb7cc872 schema:issueNumber 1
    147 rdf:type schema:PublicationIssue
    148 N501b458d9f754357ae0a9a30f381861d rdf:first sg:person.07557631063.23
    149 rdf:rest Nc549c01f15e643dfb164e1ea22b5c18f
    150 N55e99693e57643c2a65333d3dce17c10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Neoplasms
    152 rdf:type schema:DefinedTerm
    153 N593843106b8d4c6da8878cd58efa94ef rdf:first Ne86a56d2c05f492db34f62c583cd5c18
    154 rdf:rest N2f03fdfbcbd44a639f9b030171108518
    155 N5c0d0bb524b844c09ac22f6791d97534 schema:name pubmed_id
    156 schema:value 30967542
    157 rdf:type schema:PropertyValue
    158 N5e808a549688455bbff7d961272f6755 schema:name Springer Nature - SN SciGraph project
    159 rdf:type schema:Organization
    160 N6677467ad147477b8c3c1d03c59d97b1 schema:affiliation grid-institutes:grid.419092.7
    161 schema:familyName Zhang
    162 schema:givenName Ke
    163 rdf:type schema:Person
    164 N902dc844e5c347e5ab57eca09506d040 rdf:first sg:person.01136171255.08
    165 rdf:rest Nefd4cf437ade41689fadb9b3d7227d80
    166 N948e455a7fe648819cef21ddb615e2b3 rdf:first sg:person.013401132304.30
    167 rdf:rest N593843106b8d4c6da8878cd58efa94ef
    168 Na531a65f466e4077a4ca8aaab1b37ccc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Extracellular Matrix Proteins
    170 rdf:type schema:DefinedTerm
    171 Nabc8d700613d41929c90f508bbc16fb2 schema:name dimensions_id
    172 schema:value pub.1113327763
    173 rdf:type schema:PropertyValue
    174 Naf54c96076df431fad61238528c1a9fc schema:volumeNumber 10
    175 rdf:type schema:PublicationVolume
    176 Nbbef6f9e465c47458a9d494219708bf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Models, Biological
    178 rdf:type schema:DefinedTerm
    179 Nbdf8d9a2e5bc42fb9974e88e8bfe9367 schema:name doi
    180 schema:value 10.1038/s41467-019-09649-1
    181 rdf:type schema:PropertyValue
    182 Nc22cb04132b746e497c6d6abd6efcfca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Gene Regulatory Networks
    184 rdf:type schema:DefinedTerm
    185 Nc549c01f15e643dfb164e1ea22b5c18f rdf:first N6677467ad147477b8c3c1d03c59d97b1
    186 rdf:rest N902dc844e5c347e5ab57eca09506d040
    187 Nc5faf3c42de34a5ebdf8527184796f37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name A549 Cells
    189 rdf:type schema:DefinedTerm
    190 Nc7f2af1595274798a90403b96645bd0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Carcinogenesis
    192 rdf:type schema:DefinedTerm
    193 Nc807ce9141b9485ebc0637540aea8eca rdf:first sg:person.0705514255.03
    194 rdf:rest N0874ecddc31042ae801db9c69cb336b9
    195 Ne86a56d2c05f492db34f62c583cd5c18 schema:affiliation grid-institutes:grid.440637.2
    196 schema:familyName Wu
    197 schema:givenName Lingshuang
    198 rdf:type schema:Person
    199 Nea45e1eceb8f47a3b9e5294a1cc82212 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Humans
    201 rdf:type schema:DefinedTerm
    202 Neb52c563def14b30b7266b974de2c89c rdf:first sg:person.01070056055.12
    203 rdf:rest N501b458d9f754357ae0a9a30f381861d
    204 Nefd4cf437ade41689fadb9b3d7227d80 rdf:first sg:person.01021742655.36
    205 rdf:rest N948e455a7fe648819cef21ddb615e2b3
    206 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    207 schema:name Biological Sciences
    208 rdf:type schema:DefinedTerm
    209 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Biochemistry and Cell Biology
    211 rdf:type schema:DefinedTerm
    212 sg:grant.7202370 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09649-1
    213 rdf:type schema:MonetaryGrant
    214 sg:grant.8196924 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09649-1
    215 rdf:type schema:MonetaryGrant
    216 sg:grant.8203374 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09649-1
    217 rdf:type schema:MonetaryGrant
    218 sg:journal.1043282 schema:issn 2041-1723
    219 schema:name Nature Communications
    220 schema:publisher Springer Nature
    221 rdf:type schema:Periodical
    222 sg:person.01014334672.01 schema:affiliation grid-institutes:grid.458506.a
    223 schema:familyName Xue
    224 schema:givenName Mengzhu
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014334672.01
    226 rdf:type schema:Person
    227 sg:person.01021742655.36 schema:affiliation grid-institutes:grid.410726.6
    228 schema:familyName Liu
    229 schema:givenName Haiyue
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021742655.36
    231 rdf:type schema:Person
    232 sg:person.01070056055.12 schema:affiliation grid-institutes:grid.39436.3b
    233 schema:familyName Du
    234 schema:givenName Shaowei
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070056055.12
    236 rdf:type schema:Person
    237 sg:person.01136171255.08 schema:affiliation grid-institutes:grid.419093.6
    238 schema:familyName Zhang
    239 schema:givenName Liwen
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136171255.08
    241 rdf:type schema:Person
    242 sg:person.01174445201.08 schema:affiliation grid-institutes:None
    243 schema:familyName Chen
    244 schema:givenName Luonan
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174445201.08
    246 rdf:type schema:Person
    247 sg:person.01244444411.18 schema:affiliation grid-institutes:grid.452404.3
    248 schema:familyName Wang
    249 schema:givenName Peng
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244444411.18
    251 rdf:type schema:Person
    252 sg:person.013401132304.30 schema:affiliation grid-institutes:grid.39436.3b
    253 schema:familyName Jia
    254 schema:givenName Guoyi
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401132304.30
    256 rdf:type schema:Person
    257 sg:person.0705514255.03 schema:affiliation grid-institutes:grid.410726.6
    258 schema:familyName Liu
    259 schema:givenName Yuwei
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705514255.03
    261 rdf:type schema:Person
    262 sg:person.0731755156.52 schema:affiliation grid-institutes:grid.452404.3
    263 schema:familyName Hu
    264 schema:givenName Xin
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731755156.52
    266 rdf:type schema:Person
    267 sg:person.07557631063.23 schema:affiliation grid-institutes:grid.419092.7
    268 schema:familyName Feng
    269 schema:givenName Wanwan
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557631063.23
    271 rdf:type schema:Person
    272 sg:pub.10.1038/cgt.2014.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052470706
    273 https://doi.org/10.1038/cgt.2014.66
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nature09267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009165330
    276 https://doi.org/10.1038/nature09267
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nature11928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004715472
    279 https://doi.org/10.1038/nature11928
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nature11993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050833467
    282 https://doi.org/10.1038/nature11993
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nature12986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025529308
    285 https://doi.org/10.1038/nature12986
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nbt1394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008181500
    288 https://doi.org/10.1038/nbt1394
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/ncb1722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047429448
    291 https://doi.org/10.1038/ncb1722
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/ng1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037192337
    294 https://doi.org/10.1038/ng1536
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/nrc3447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028690550
    297 https://doi.org/10.1038/nrc3447
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/nrg.2016.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010579597
    300 https://doi.org/10.1038/nrg.2016.20
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/nrg2628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038810312
    303 https://doi.org/10.1038/nrg2628
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/nrg3853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007196031
    306 https://doi.org/10.1038/nrg3853
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/nrm3758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000491787
    309 https://doi.org/10.1038/nrm3758
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/onc.2010.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020707098
    312 https://doi.org/10.1038/onc.2010.215
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/s41467-018-07130-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107969591
    315 https://doi.org/10.1038/s41467-018-07130-z
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/srep06088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013310277
    318 https://doi.org/10.1038/srep06088
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1186/1476-4598-13-92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040866583
    321 https://doi.org/10.1186/1476-4598-13-92
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1186/bcr2867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033017956
    324 https://doi.org/10.1186/bcr2867
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1186/gb-2013-14-10-r110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034400822
    327 https://doi.org/10.1186/gb-2013-14-10-r110
    328 rdf:type schema:CreativeWork
    329 grid-institutes:None schema:alternateName Research Center for Brain Science and Brain-Inspired Intelligence, 201210 Shanghai, China
    330 schema:name Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
    331 Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
    332 Research Center for Brain Science and Brain-Inspired Intelligence, 201210 Shanghai, China
    333 School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
    334 rdf:type schema:Organization
    335 grid-institutes:grid.39436.3b schema:alternateName School of Life Sciences, Shanghai University, 200031 Shanghai, China
    336 schema:name Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China
    337 School of Life Sciences, Shanghai University, 200031 Shanghai, China
    338 rdf:type schema:Organization
    339 grid-institutes:grid.410726.6 schema:alternateName University of Chinese Academy of Sciences, 200031 Shanghai, China
    340 schema:name Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China
    341 University of Chinese Academy of Sciences, 200031 Shanghai, China
    342 rdf:type schema:Organization
    343 grid-institutes:grid.419092.7 schema:alternateName Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
    344 schema:name Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
    345 rdf:type schema:Organization
    346 grid-institutes:grid.419093.6 schema:alternateName Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 200031 Shanghai, China
    347 schema:name Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
    348 Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 200031 Shanghai, China
    349 University of Chinese Academy of Sciences, 200031 Shanghai, China
    350 rdf:type schema:Organization
    351 grid-institutes:grid.440637.2 schema:alternateName School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
    352 schema:name School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
    353 rdf:type schema:Organization
    354 grid-institutes:grid.452404.3 schema:alternateName Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032 Shanghai, China
    355 schema:name Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
    356 Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, 200032 Shanghai, China
    357 Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China
    358 Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032 Shanghai, China
    359 University of Chinese Academy of Sciences, 200031 Shanghai, China
    360 rdf:type schema:Organization
    361 grid-institutes:grid.458506.a schema:alternateName Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China
    362 schema:name Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031 Shanghai, China
    363 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...