Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-09

AUTHORS

Yuwei Liu, Mengzhu Xue, Shaowei Du, Wanwan Feng, Ke Zhang, Liwen Zhang, Haiyue Liu, Guoyi Jia, Lingshuang Wu, Xin Hu, Luonan Chen, Peng Wang

ABSTRACT

The competitive endogenous RNA (ceRNA) hypothesis suggests an intrinsic mechanism to regulate biological processes. However, whether the dynamic changes of ceRNAs can modulate miRNA activities remains controversial. Here, we examine the dynamics of ceRNAs during TGF-β-induced epithelial-to-mesenchymal transition (EMT). We observe that TGFBI, a transcript highly induced during EMT in A549 cells, acts as the ceRNA for miR-21 to modulate EMT. We further identify FN1 as the ceRNA for miR-200c in the canonical SNAIL-ZEB-miR200 circuit in MCF10A cells. Experimental assays and computational simulations demonstrate that the dynamically induced ceRNAs are directly coupled with the canonical double negative feedback loops and are critical to the induction of EMT. These results help to establish the relevance of ceRNA in cancer EMT and suggest that ceRNA is an intrinsic component of the EMT regulatory circuit and may represent a potential target to disrupt EMT during tumorigenesis. More... »

PAGES

1637

References to SciGraph publications

  • 2014-04-28. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer in MOLECULAR CANCER
  • 2014-08-15. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer in SCIENTIFIC REPORTS
  • 2010-08. Mammalian microRNAs predominantly act to decrease target mRNA levels in NATURE
  • 2013-01-24. Regulatory networks defining EMT during cancer initiation and progression in NATURE REVIEWS CANCER
  • 2009-08. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications in NATURE REVIEWS GENETICS
  • 2016-04-04. Endogenous microRNA sponges: evidence and controversy in NATURE REVIEWS GENETICS
  • 2008-04. Discovering microRNAs from deep sequencing data using miRDeep in NATURE BIOTECHNOLOGY
  • 2013-02-27. Natural RNA circles function as efficient microRNA sponges in NATURE
  • 2014-12-09. Competition between target sites of regulators shapes post-transcriptional gene regulation in NATURE REVIEWS GENETICS
  • 2008-03-30. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 in NATURE CELL BIOLOGY
  • 2011-04-18. Targets of miR-200c mediate suppression of cell motility and anoikis resistance in BREAST CANCER RESEARCH
  • 2005-04-03. Combinatorial microRNA target predictions in NATURE GENETICS
  • 2013-02-27. Circular RNAs are a large class of animal RNAs with regulatory potency in NATURE
  • 2013-10-31. Modeling precision treatment of breast cancer in GENOME BIOLOGY
  • 2014-01-15. The multilayered complexity of ceRNA crosstalk and competition in NATURE
  • 2018-11-07. Genetic dissection of the miR-200–Zeb1 axis reveals its importance in tumor differentiation and invasion in NATURE COMMUNICATIONS
  • 2010-06-07. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer in ONCOGENE
  • 2014-12-05. Downregulation of microRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4 in CANCER GENE THERAPY
  • 2014-02-21. Molecular mechanisms of epithelial–mesenchymal transition in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • Journal

    TITLE

    Nature Communications

    ISSUE

    1

    VOLUME

    10

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1

    DOI

    http://dx.doi.org/10.1038/s41467-019-09649-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113327763

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30967542


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "A549 Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epithelial-Mesenchymal Transition", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Extracellular Matrix Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fibronectins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transforming Growth Factor beta", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences, 200031, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China", 
                "University of Chinese Academy of Sciences, 200031, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yuwei", 
            "id": "sg:person.0705514255.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705514255.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.458506.a", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xue", 
            "givenName": "Mengzhu", 
            "id": "sg:person.01014334672.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014334672.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Life Sciences, Shanghai University, 200031, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China", 
                "School of Life Sciences, Shanghai University, 200031, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du", 
            "givenName": "Shaowei", 
            "id": "sg:person.01070056055.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070056055.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.419092.7", 
              "name": [
                "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Wanwan", 
            "id": "sg:person.07557631063.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557631063.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.419092.7", 
              "name": [
                "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ke", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 200031, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.419093.6", 
              "name": [
                "University of Chinese Academy of Sciences, 200031, Shanghai, China", 
                "Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China", 
                "Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 200031, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Liwen", 
            "id": "sg:person.01136171255.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136171255.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences, 200031, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China", 
                "University of Chinese Academy of Sciences, 200031, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Haiyue", 
            "id": "sg:person.01021742655.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021742655.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Life Sciences, Shanghai University, 200031, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China", 
                "School of Life Sciences, Shanghai University, 200031, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jia", 
            "givenName": "Guoyi", 
            "id": "sg:person.013401132304.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401132304.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.440637.2", 
              "name": [
                "School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Lingshuang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.452404.3", 
              "name": [
                "Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China", 
                "Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Xin", 
            "id": "sg:person.0731755156.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731755156.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Center for Brain Science and Brain-Inspired Intelligence, 201210, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China", 
                "School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China", 
                "Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China", 
                "Research Center for Brain Science and Brain-Inspired Intelligence, 201210, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Luonan", 
            "id": "sg:person.01174445201.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174445201.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.452404.3", 
              "name": [
                "Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China", 
                "University of Chinese Academy of Sciences, 200031, Shanghai, China", 
                "Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China", 
                "Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China", 
                "Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Peng", 
            "id": "sg:person.01244444411.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244444411.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng1536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037192337", 
              "https://doi.org/10.1038/ng1536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009165330", 
              "https://doi.org/10.1038/nature09267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038810312", 
              "https://doi.org/10.1038/nrg2628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep06088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013310277", 
              "https://doi.org/10.1038/srep06088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025529308", 
              "https://doi.org/10.1038/nature12986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050833467", 
              "https://doi.org/10.1038/nature11993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028690550", 
              "https://doi.org/10.1038/nrc3447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-07130-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107969591", 
              "https://doi.org/10.1038/s41467-018-07130-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004715472", 
              "https://doi.org/10.1038/nature11928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010579597", 
              "https://doi.org/10.1038/nrg.2016.20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007196031", 
              "https://doi.org/10.1038/nrg3853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-10-r110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034400822", 
              "https://doi.org/10.1186/gb-2013-14-10-r110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033017956", 
              "https://doi.org/10.1186/bcr2867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047429448", 
              "https://doi.org/10.1038/ncb1722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cgt.2014.66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052470706", 
              "https://doi.org/10.1038/cgt.2014.66"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2010.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020707098", 
              "https://doi.org/10.1038/onc.2010.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008181500", 
              "https://doi.org/10.1038/nbt1394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000491787", 
              "https://doi.org/10.1038/nrm3758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-4598-13-92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040866583", 
              "https://doi.org/10.1186/1476-4598-13-92"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-09", 
        "datePublishedReg": "2019-04-09", 
        "description": "The competitive endogenous RNA (ceRNA) hypothesis suggests an intrinsic mechanism to regulate biological processes. However, whether the dynamic changes of ceRNAs can modulate miRNA activities remains controversial. Here, we examine the dynamics of ceRNAs during TGF-\u03b2-induced epithelial-to-mesenchymal transition (EMT). We observe that TGFBI, a transcript highly induced during EMT in A549 cells, acts as the ceRNA for miR-21 to modulate EMT. We further identify FN1 as the ceRNA for miR-200c in the canonical SNAIL-ZEB-miR200 circuit in MCF10A cells. Experimental assays and computational simulations demonstrate that the dynamically induced ceRNAs are directly coupled with the canonical double negative feedback loops and are critical to the induction of EMT. These results help to establish the relevance of ceRNA in cancer EMT and suggest that ceRNA is an intrinsic component of the EMT regulatory circuit and may represent a potential target to disrupt EMT during tumorigenesis.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-09649-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8203374", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8196924", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7202370", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "induction of EMT", 
          "competitive endogenous RNA", 
          "mesenchymal transition", 
          "EMT", 
          "A549 cells", 
          "cancer EMT", 
          "potential target", 
          "ceRNA", 
          "MCF10A cells", 
          "endogenous RNA", 
          "regulatory circuits", 
          "double negative feedback loop", 
          "endogenous RNA (ceRNA) hypothesis", 
          "competitive endogenous RNA (ceRNA) hypothesis", 
          "intrinsic mechanisms", 
          "cells", 
          "intrinsic component", 
          "negative feedback loop", 
          "TGF", 
          "miRNA activity", 
          "TGFBI", 
          "miR-200c", 
          "miR-21", 
          "tumorigenesis", 
          "biological processes", 
          "dynamic changes", 
          "ceRNAs", 
          "induction", 
          "FN1", 
          "assays", 
          "experimental assays", 
          "feedback loop", 
          "target", 
          "activity", 
          "RNA", 
          "relevance", 
          "hypothesis", 
          "changes", 
          "transcripts", 
          "mechanism", 
          "components", 
          "results", 
          "circuit", 
          "loop", 
          "dynamics", 
          "process", 
          "computational simulations", 
          "transition", 
          "simulations", 
          "RNA (ceRNA) hypothesis", 
          "dynamics of ceRNAs", 
          "canonical SNAIL-ZEB", 
          "SNAIL-ZEB", 
          "miR200 circuit", 
          "canonical double negative feedback loops", 
          "relevance of ceRNA", 
          "EMT regulatory circuit", 
          "modulates EMT"
        ], 
        "name": "Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT", 
        "pagination": "1637", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113327763"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-09649-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30967542"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-09649-1", 
          "https://app.dimensions.ai/details/publication/pub.1113327763"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_811.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-09649-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09649-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    364 TRIPLES      22 PREDICATES      117 URIs      90 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-09649-1 schema:about N0e89cd9c0f944d8ebe7834144a552e25
    2 N13999fd37101428c88e18b35059b2ce9
    3 N156384f07f9b4a50b450dee33328980f
    4 N1588b9266a0748e496734cf540862559
    5 N1a8b088af6c5492190375a5e9dbbe406
    6 N2a51d8ca9d91477e94b2ac1686a05395
    7 N35eaac04968c445380b2bbcf7a5914fa
    8 N924bb7797f364b73afd0636783186e65
    9 Na3108186b2bb4e96a5b8896318cd7fb0
    10 Na3ab8061034c40e6a805715b0f9e70fc
    11 Ncd1c348c2d7c442eb82a3bf25591f20a
    12 Ne657e94571a44ca49e048f39610836f3
    13 Nf5b845e2820341ffbc83674a66629f6d
    14 Nfcdd11431ea5436ca5f64fbfddc5870a
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 schema:author Nea64942c8a964d80b792e66a0e96015c
    18 schema:citation sg:pub.10.1038/cgt.2014.66
    19 sg:pub.10.1038/nature09267
    20 sg:pub.10.1038/nature11928
    21 sg:pub.10.1038/nature11993
    22 sg:pub.10.1038/nature12986
    23 sg:pub.10.1038/nbt1394
    24 sg:pub.10.1038/ncb1722
    25 sg:pub.10.1038/ng1536
    26 sg:pub.10.1038/nrc3447
    27 sg:pub.10.1038/nrg.2016.20
    28 sg:pub.10.1038/nrg2628
    29 sg:pub.10.1038/nrg3853
    30 sg:pub.10.1038/nrm3758
    31 sg:pub.10.1038/onc.2010.215
    32 sg:pub.10.1038/s41467-018-07130-z
    33 sg:pub.10.1038/srep06088
    34 sg:pub.10.1186/1476-4598-13-92
    35 sg:pub.10.1186/bcr2867
    36 sg:pub.10.1186/gb-2013-14-10-r110
    37 schema:datePublished 2019-04-09
    38 schema:datePublishedReg 2019-04-09
    39 schema:description The competitive endogenous RNA (ceRNA) hypothesis suggests an intrinsic mechanism to regulate biological processes. However, whether the dynamic changes of ceRNAs can modulate miRNA activities remains controversial. Here, we examine the dynamics of ceRNAs during TGF-β-induced epithelial-to-mesenchymal transition (EMT). We observe that TGFBI, a transcript highly induced during EMT in A549 cells, acts as the ceRNA for miR-21 to modulate EMT. We further identify FN1 as the ceRNA for miR-200c in the canonical SNAIL-ZEB-miR200 circuit in MCF10A cells. Experimental assays and computational simulations demonstrate that the dynamically induced ceRNAs are directly coupled with the canonical double negative feedback loops and are critical to the induction of EMT. These results help to establish the relevance of ceRNA in cancer EMT and suggest that ceRNA is an intrinsic component of the EMT regulatory circuit and may represent a potential target to disrupt EMT during tumorigenesis.
    40 schema:genre article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N85bc5ed2eb524e1a862e99e52b23cb84
    44 Nb191ea1ef275448885419a90c56f6063
    45 sg:journal.1043282
    46 schema:keywords A549 cells
    47 EMT
    48 EMT regulatory circuit
    49 FN1
    50 MCF10A cells
    51 RNA
    52 RNA (ceRNA) hypothesis
    53 SNAIL-ZEB
    54 TGF
    55 TGFBI
    56 activity
    57 assays
    58 biological processes
    59 cancer EMT
    60 canonical SNAIL-ZEB
    61 canonical double negative feedback loops
    62 ceRNA
    63 ceRNAs
    64 cells
    65 changes
    66 circuit
    67 competitive endogenous RNA
    68 competitive endogenous RNA (ceRNA) hypothesis
    69 components
    70 computational simulations
    71 double negative feedback loop
    72 dynamic changes
    73 dynamics
    74 dynamics of ceRNAs
    75 endogenous RNA
    76 endogenous RNA (ceRNA) hypothesis
    77 experimental assays
    78 feedback loop
    79 hypothesis
    80 induction
    81 induction of EMT
    82 intrinsic component
    83 intrinsic mechanisms
    84 loop
    85 mechanism
    86 mesenchymal transition
    87 miR-200c
    88 miR-21
    89 miR200 circuit
    90 miRNA activity
    91 modulates EMT
    92 negative feedback loop
    93 potential target
    94 process
    95 regulatory circuits
    96 relevance
    97 relevance of ceRNA
    98 results
    99 simulations
    100 target
    101 transcripts
    102 transition
    103 tumorigenesis
    104 schema:name Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT
    105 schema:pagination 1637
    106 schema:productId N1044dbf9e946427c81defe3a7f8cdf93
    107 N922524e88abb4396a2d09d4af0fb6c61
    108 Nab521a7b770e41099496f508ee6f4550
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113327763
    110 https://doi.org/10.1038/s41467-019-09649-1
    111 schema:sdDatePublished 2021-11-01T18:35
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N6628ff6c19954b6180440111a8fb4207
    114 schema:url https://doi.org/10.1038/s41467-019-09649-1
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N0c9910d94abd43bd804443d7affd3a73 rdf:first sg:person.01244444411.18
    119 rdf:rest rdf:nil
    120 N0e89cd9c0f944d8ebe7834144a552e25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name RNA, Messenger
    122 rdf:type schema:DefinedTerm
    123 N1044dbf9e946427c81defe3a7f8cdf93 schema:name doi
    124 schema:value 10.1038/s41467-019-09649-1
    125 rdf:type schema:PropertyValue
    126 N13999fd37101428c88e18b35059b2ce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Humans
    128 rdf:type schema:DefinedTerm
    129 N156384f07f9b4a50b450dee33328980f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Neoplasms
    131 rdf:type schema:DefinedTerm
    132 N1588b9266a0748e496734cf540862559 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name A549 Cells
    134 rdf:type schema:DefinedTerm
    135 N17ee937c4eab4c10b3facf7a758101b9 rdf:first sg:person.01136171255.08
    136 rdf:rest N20a49706c72d4b3a90544f629e8f3753
    137 N194eec31b41942438c96363ddcea4afc rdf:first N4763991a165f4c969672d6547f25c180
    138 rdf:rest N17ee937c4eab4c10b3facf7a758101b9
    139 N1a8b088af6c5492190375a5e9dbbe406 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Epithelial-Mesenchymal Transition
    141 rdf:type schema:DefinedTerm
    142 N20a49706c72d4b3a90544f629e8f3753 rdf:first sg:person.01021742655.36
    143 rdf:rest Nc75e03b61f774ffda97cf5775b331103
    144 N2a51d8ca9d91477e94b2ac1686a05395 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Fibronectins
    146 rdf:type schema:DefinedTerm
    147 N2cc2b35ff1a14d3795ce23d5ff903d05 rdf:first sg:person.07557631063.23
    148 rdf:rest N194eec31b41942438c96363ddcea4afc
    149 N35eaac04968c445380b2bbcf7a5914fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Transforming Growth Factor beta
    151 rdf:type schema:DefinedTerm
    152 N4763991a165f4c969672d6547f25c180 schema:affiliation grid-institutes:grid.419092.7
    153 schema:familyName Zhang
    154 schema:givenName Ke
    155 rdf:type schema:Person
    156 N5ecba9a21f874b24998311b6d428ac77 rdf:first sg:person.01174445201.08
    157 rdf:rest N0c9910d94abd43bd804443d7affd3a73
    158 N656eecd93c144009aed34c2195c3290e rdf:first sg:person.01014334672.01
    159 rdf:rest Nfd9e59b1a5e84765ad0cffce688a77de
    160 N6628ff6c19954b6180440111a8fb4207 schema:name Springer Nature - SN SciGraph project
    161 rdf:type schema:Organization
    162 N7e677a2b10714285bd2d6bb2e6e46622 schema:affiliation grid-institutes:grid.440637.2
    163 schema:familyName Wu
    164 schema:givenName Lingshuang
    165 rdf:type schema:Person
    166 N85bc5ed2eb524e1a862e99e52b23cb84 schema:volumeNumber 10
    167 rdf:type schema:PublicationVolume
    168 N922524e88abb4396a2d09d4af0fb6c61 schema:name pubmed_id
    169 schema:value 30967542
    170 rdf:type schema:PropertyValue
    171 N924bb7797f364b73afd0636783186e65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Gene Regulatory Networks
    173 rdf:type schema:DefinedTerm
    174 N9e90853a71d04753ac1dbd22ebd25c96 rdf:first sg:person.0731755156.52
    175 rdf:rest N5ecba9a21f874b24998311b6d428ac77
    176 Na3108186b2bb4e96a5b8896318cd7fb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name MicroRNAs
    178 rdf:type schema:DefinedTerm
    179 Na3ab8061034c40e6a805715b0f9e70fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Carcinogenesis
    181 rdf:type schema:DefinedTerm
    182 Nab521a7b770e41099496f508ee6f4550 schema:name dimensions_id
    183 schema:value pub.1113327763
    184 rdf:type schema:PropertyValue
    185 Nb191ea1ef275448885419a90c56f6063 schema:issueNumber 1
    186 rdf:type schema:PublicationIssue
    187 Nc75e03b61f774ffda97cf5775b331103 rdf:first sg:person.013401132304.30
    188 rdf:rest Nf69ce132b8b740f8bd537b7b02803ad3
    189 Ncd1c348c2d7c442eb82a3bf25591f20a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Models, Biological
    191 rdf:type schema:DefinedTerm
    192 Ne657e94571a44ca49e048f39610836f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Extracellular Matrix Proteins
    194 rdf:type schema:DefinedTerm
    195 Nea64942c8a964d80b792e66a0e96015c rdf:first sg:person.0705514255.03
    196 rdf:rest N656eecd93c144009aed34c2195c3290e
    197 Nf5b845e2820341ffbc83674a66629f6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Gene Expression Regulation, Neoplastic
    199 rdf:type schema:DefinedTerm
    200 Nf69ce132b8b740f8bd537b7b02803ad3 rdf:first N7e677a2b10714285bd2d6bb2e6e46622
    201 rdf:rest N9e90853a71d04753ac1dbd22ebd25c96
    202 Nfcdd11431ea5436ca5f64fbfddc5870a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Computational Biology
    204 rdf:type schema:DefinedTerm
    205 Nfd9e59b1a5e84765ad0cffce688a77de rdf:first sg:person.01070056055.12
    206 rdf:rest N2cc2b35ff1a14d3795ce23d5ff903d05
    207 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Biological Sciences
    209 rdf:type schema:DefinedTerm
    210 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    211 schema:name Biochemistry and Cell Biology
    212 rdf:type schema:DefinedTerm
    213 sg:grant.7202370 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09649-1
    214 rdf:type schema:MonetaryGrant
    215 sg:grant.8196924 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09649-1
    216 rdf:type schema:MonetaryGrant
    217 sg:grant.8203374 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09649-1
    218 rdf:type schema:MonetaryGrant
    219 sg:journal.1043282 schema:issn 2041-1723
    220 schema:name Nature Communications
    221 schema:publisher Springer Nature
    222 rdf:type schema:Periodical
    223 sg:person.01014334672.01 schema:affiliation grid-institutes:grid.458506.a
    224 schema:familyName Xue
    225 schema:givenName Mengzhu
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014334672.01
    227 rdf:type schema:Person
    228 sg:person.01021742655.36 schema:affiliation grid-institutes:grid.410726.6
    229 schema:familyName Liu
    230 schema:givenName Haiyue
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021742655.36
    232 rdf:type schema:Person
    233 sg:person.01070056055.12 schema:affiliation grid-institutes:grid.39436.3b
    234 schema:familyName Du
    235 schema:givenName Shaowei
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070056055.12
    237 rdf:type schema:Person
    238 sg:person.01136171255.08 schema:affiliation grid-institutes:grid.419093.6
    239 schema:familyName Zhang
    240 schema:givenName Liwen
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136171255.08
    242 rdf:type schema:Person
    243 sg:person.01174445201.08 schema:affiliation grid-institutes:None
    244 schema:familyName Chen
    245 schema:givenName Luonan
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174445201.08
    247 rdf:type schema:Person
    248 sg:person.01244444411.18 schema:affiliation grid-institutes:grid.452404.3
    249 schema:familyName Wang
    250 schema:givenName Peng
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244444411.18
    252 rdf:type schema:Person
    253 sg:person.013401132304.30 schema:affiliation grid-institutes:grid.39436.3b
    254 schema:familyName Jia
    255 schema:givenName Guoyi
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401132304.30
    257 rdf:type schema:Person
    258 sg:person.0705514255.03 schema:affiliation grid-institutes:grid.410726.6
    259 schema:familyName Liu
    260 schema:givenName Yuwei
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705514255.03
    262 rdf:type schema:Person
    263 sg:person.0731755156.52 schema:affiliation grid-institutes:grid.452404.3
    264 schema:familyName Hu
    265 schema:givenName Xin
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731755156.52
    267 rdf:type schema:Person
    268 sg:person.07557631063.23 schema:affiliation grid-institutes:grid.419092.7
    269 schema:familyName Feng
    270 schema:givenName Wanwan
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557631063.23
    272 rdf:type schema:Person
    273 sg:pub.10.1038/cgt.2014.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052470706
    274 https://doi.org/10.1038/cgt.2014.66
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/nature09267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009165330
    277 https://doi.org/10.1038/nature09267
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nature11928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004715472
    280 https://doi.org/10.1038/nature11928
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nature11993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050833467
    283 https://doi.org/10.1038/nature11993
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nature12986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025529308
    286 https://doi.org/10.1038/nature12986
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nbt1394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008181500
    289 https://doi.org/10.1038/nbt1394
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/ncb1722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047429448
    292 https://doi.org/10.1038/ncb1722
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/ng1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037192337
    295 https://doi.org/10.1038/ng1536
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nrc3447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028690550
    298 https://doi.org/10.1038/nrc3447
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nrg.2016.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010579597
    301 https://doi.org/10.1038/nrg.2016.20
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nrg2628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038810312
    304 https://doi.org/10.1038/nrg2628
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nrg3853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007196031
    307 https://doi.org/10.1038/nrg3853
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/nrm3758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000491787
    310 https://doi.org/10.1038/nrm3758
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/onc.2010.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020707098
    313 https://doi.org/10.1038/onc.2010.215
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/s41467-018-07130-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107969591
    316 https://doi.org/10.1038/s41467-018-07130-z
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/srep06088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013310277
    319 https://doi.org/10.1038/srep06088
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1186/1476-4598-13-92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040866583
    322 https://doi.org/10.1186/1476-4598-13-92
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/bcr2867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033017956
    325 https://doi.org/10.1186/bcr2867
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1186/gb-2013-14-10-r110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034400822
    328 https://doi.org/10.1186/gb-2013-14-10-r110
    329 rdf:type schema:CreativeWork
    330 grid-institutes:None schema:alternateName Research Center for Brain Science and Brain-Inspired Intelligence, 201210, Shanghai, China
    331 schema:name Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
    332 Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
    333 Research Center for Brain Science and Brain-Inspired Intelligence, 201210, Shanghai, China
    334 School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
    335 rdf:type schema:Organization
    336 grid-institutes:grid.39436.3b schema:alternateName School of Life Sciences, Shanghai University, 200031, Shanghai, China
    337 schema:name Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China
    338 School of Life Sciences, Shanghai University, 200031, Shanghai, China
    339 rdf:type schema:Organization
    340 grid-institutes:grid.410726.6 schema:alternateName University of Chinese Academy of Sciences, 200031, Shanghai, China
    341 schema:name Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China
    342 University of Chinese Academy of Sciences, 200031, Shanghai, China
    343 rdf:type schema:Organization
    344 grid-institutes:grid.419092.7 schema:alternateName Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
    345 schema:name Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
    346 rdf:type schema:Organization
    347 grid-institutes:grid.419093.6 schema:alternateName Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 200031, Shanghai, China
    348 schema:name Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
    349 Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 200031, Shanghai, China
    350 University of Chinese Academy of Sciences, 200031, Shanghai, China
    351 rdf:type schema:Organization
    352 grid-institutes:grid.440637.2 schema:alternateName School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
    353 schema:name School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
    354 rdf:type schema:Organization
    355 grid-institutes:grid.452404.3 schema:alternateName Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
    356 schema:name Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
    357 Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
    358 Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China
    359 Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
    360 University of Chinese Academy of Sciences, 200031, Shanghai, China
    361 rdf:type schema:Organization
    362 grid-institutes:grid.458506.a schema:alternateName Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China
    363 schema:name Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 200031, Shanghai, China
    364 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...