Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Hengli Duan, Peng Guo, Chao Wang, Hao Tan, Wei Hu, Wensheng Yan, Chao Ma, Liang Cai, Li Song, Wenhua Zhang, Zhihu Sun, Linjun Wang, Wenbo Zhao, Yuewei Yin, Xiaoguang Li, Shiqiang Wei

ABSTRACT

Monolayer chalcogenide semiconductors with both luminescent and ferromagnetic properties are dreamed for simultaneous polarization and detection of the valley degree of freedom in valleytronics. However, a conventional chalcogenide monolayer lacks these coexisting properties due to their mutually exclusive origins. Herein we demonstrate that robust ferromagnetism and photoluminescence (PL) could be achieved in a (Co, Cr)-incorporated single monolayer MoS2, where the ferromagnetic interaction is activated by Co ions, and the nonradiative recombination channels of excitons is cut off by Cr ions. This strategy brings a 90-fold enhancement of saturation magnetization and 35-fold enhancement of PL intensity than the pristine MoS2 monolayer. The main reasons for the coexisting ferromagnetism and PL are the electronic interactions between the impurity bands of atop Cr adatoms and substitutional Co atoms, as well as the increased content of neutral exciton. Our findings could extend the applications of two-dimensional chalcogenides into spintronics, valleytronic and photoelectric devices. More... »

PAGES

1584

References to SciGraph publications

  • 2016-02. Superconductivity protected by spin–valley locking in ion-gated MoS2 in NATURE PHYSICS
  • 2017-10. Structural and quantum-state phase transitions in van der Waals layered materials in NATURE PHYSICS
  • 2016-07. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide in NATURE NANOTECHNOLOGY
  • 2016-07. Electronic and magnetic properties of Co doped MoS2 monolayer in SCIENTIFIC REPORTS
  • 2018-04. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates in NATURE NANOTECHNOLOGY
  • 2017-10. Structural phase transition in monolayer MoTe2 driven by electrostatic doping in NATURE
  • 2012-01. Valley-selective circular dichroism of monolayer molybdenum disulphide in NATURE COMMUNICATIONS
  • 2018-01. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy in NATURE
  • 2017-09. Valley magnetoelectricity in single-layer MoS2 in NATURE MATERIALS
  • 2014-05. Spin and pseudospins in layered transition metal dichalcogenides in NATURE PHYSICS
  • 2018-12. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping in NATURE COMMUNICATIONS
  • 2013-09. Mobility engineering and a metal–insulator transition in monolayer MoS2 in NATURE MATERIALS
  • 2013-03. Tightly bound trions in monolayer MoS2 in NATURE MATERIALS
  • 2016-12-16. Concepts of ferrovalley material and anomalous valley Hall effect in NATURE COMMUNICATIONS
  • 2005-02. Donor impurity band exchange in dilute ferromagnetic oxides in NATURE MATERIALS
  • 2015-02. Magnetic control of valley pseudospin in monolayer WSe2 in NATURE PHYSICS
  • 2012-08. Valley polarization in MoS2 monolayers by optical pumping in NATURE NANOTECHNOLOGY
  • 2015-02. Valley Zeeman effect in elementary optical excitations of monolayer WSe2 in NATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-09531-0

    DOI

    http://dx.doi.org/10.1038/s41467-019-09531-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113261495

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30952850


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Inorganic Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duan", 
            "givenName": "Hengli", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Peng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.9227.e", 
              "name": [
                "Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, 230031, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Chao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Hao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Wei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China. ywsh2000@ustc.edu.cn."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Wensheng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan University", 
              "id": "https://www.grid.ac/institutes/grid.67293.39", 
              "name": [
                "College of Materials Science and Engineering, Hunan University, 410082, Changsha, Hunan, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Chao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Liang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Li", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Wenhua", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China. zhsun@ustc.edu.cn."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Zhihu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, 230029, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Linjun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Hefei National Laboratary for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Wenbo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Hefei National Laboratary for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yin", 
            "givenName": "Yuewei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Hefei National Laboratary for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xiaoguang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China. sqwei@ustc.edu.cn."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wei", 
            "givenName": "Shiqiang", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/0957-4484/22/12/125706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001797096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mser.2008.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002591880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.136805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004648868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.136805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004648868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004672159", 
              "https://doi.org/10.1038/nphys3201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2007.07.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008354570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201304985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008636896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aad2114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008890107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009145791", 
              "https://doi.org/10.1038/nmat3505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jallcom.2007.04.267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009636206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4cp00247d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013641756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.161403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014668061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.161403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014668061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018699053", 
              "https://doi.org/10.1038/nphys2942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3dt50888a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021185664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matchemphys.2008.07.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021810852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2009.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022497006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201600970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022700906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023716123", 
              "https://doi.org/10.1038/nphys3203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027952436", 
              "https://doi.org/10.1038/nnano.2012.95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030108003", 
              "https://doi.org/10.1038/nmat1310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030108003", 
              "https://doi.org/10.1038/nmat1310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.205302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030578033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.205302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030578033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl503636c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030898370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b02315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031522541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.155429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034351902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.155429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034351902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmmm.2016.09.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035100561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1250140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036074202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4870532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039824011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl503251h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043385874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b9nr00368a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044539140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b9nr00368a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044539140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.20495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044734228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl403036h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045249604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep24153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046384712", 
              "https://doi.org/10.1038/srep24153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2016.49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047512525", 
              "https://doi.org/10.1038/nnano.2016.49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048604514", 
              "https://doi.org/10.1038/ncomms13612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049548334", 
              "https://doi.org/10.1038/ncomms1882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049602911", 
              "https://doi.org/10.1038/nphys3580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051133720", 
              "https://doi.org/10.1038/nmat3687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jallcom.2010.12.157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051190834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja411900w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055855860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja5120908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055857180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl8038184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl8038184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3470090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057957296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.58.7565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060590197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.58.7565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060590197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.125304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060644634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.125304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060644634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060762089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060762089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.157204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060830213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.157204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060830213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1258122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062470253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/mrs2003.214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067968352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201604540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083405430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090577727", 
              "https://doi.org/10.1038/nmat4931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090577727", 
              "https://doi.org/10.1038/nmat4931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090740367", 
              "https://doi.org/10.1038/nphys4188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090740367", 
              "https://doi.org/10.1038/nphys4188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aan6814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090995993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092152717", 
              "https://doi.org/10.1038/nature24043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092152717", 
              "https://doi.org/10.1038/nature24043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100157727", 
              "https://doi.org/10.1038/nature25155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100157727", 
              "https://doi.org/10.1038/nature25155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02631-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100275598", 
              "https://doi.org/10.1038/s41467-017-02631-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-018-0063-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101086668", 
              "https://doi.org/10.1038/s41565-018-0063-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-018-0063-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101086668", 
              "https://doi.org/10.1038/s41565-018-0063-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Monolayer chalcogenide semiconductors with both luminescent and ferromagnetic properties are dreamed for simultaneous polarization and detection of the valley degree of freedom in valleytronics. However, a conventional chalcogenide monolayer lacks these coexisting properties due to their mutually exclusive origins. Herein we demonstrate that robust ferromagnetism and photoluminescence (PL) could be achieved in a (Co, Cr)-incorporated single monolayer MoS2, where the ferromagnetic interaction is activated by Co ions, and the nonradiative recombination channels of excitons is cut off by Cr ions. This strategy brings a 90-fold enhancement of saturation magnetization and 35-fold enhancement of PL intensity than the pristine MoS2 monolayer. The main reasons for the coexisting ferromagnetism and PL are the electronic interactions between the impurity bands of atop Cr adatoms and substitutional Co atoms, as well as the increased content of neutral exciton. Our findings could extend the applications of two-dimensional chalcogenides into spintronics, valleytronic and photoelectric devices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-019-09531-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers.", 
        "pagination": "1584", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-09531-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113261495"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30952850"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-09531-0", 
          "https://app.dimensions.ai/details/publication/pub.1113261495"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-16T06:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106831_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/s41467-019-09531-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09531-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09531-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09531-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09531-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    347 TRIPLES      21 PREDICATES      83 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-09531-0 schema:about anzsrc-for:03
    2 anzsrc-for:0302
    3 schema:author N197b3475fd48442ba984499ab927c98d
    4 schema:citation sg:pub.10.1038/nature24043
    5 sg:pub.10.1038/nature25155
    6 sg:pub.10.1038/ncomms13612
    7 sg:pub.10.1038/ncomms1882
    8 sg:pub.10.1038/nmat1310
    9 sg:pub.10.1038/nmat3505
    10 sg:pub.10.1038/nmat3687
    11 sg:pub.10.1038/nmat4931
    12 sg:pub.10.1038/nnano.2012.95
    13 sg:pub.10.1038/nnano.2016.49
    14 sg:pub.10.1038/nphys2942
    15 sg:pub.10.1038/nphys3201
    16 sg:pub.10.1038/nphys3203
    17 sg:pub.10.1038/nphys3580
    18 sg:pub.10.1038/nphys4188
    19 sg:pub.10.1038/s41467-017-02631-9
    20 sg:pub.10.1038/s41565-018-0063-9
    21 sg:pub.10.1038/srep24153
    22 https://doi.org/10.1002/adma.201304985
    23 https://doi.org/10.1002/adma.201600970
    24 https://doi.org/10.1002/adma.201604540
    25 https://doi.org/10.1002/jcc.20495
    26 https://doi.org/10.1016/j.commatsci.2007.07.020
    27 https://doi.org/10.1016/j.cpc.2009.07.007
    28 https://doi.org/10.1016/j.jallcom.2007.04.267
    29 https://doi.org/10.1016/j.jallcom.2010.12.157
    30 https://doi.org/10.1016/j.jmmm.2016.09.027
    31 https://doi.org/10.1016/j.matchemphys.2008.07.031
    32 https://doi.org/10.1016/j.mser.2008.04.002
    33 https://doi.org/10.1021/acs.nanolett.5b02315
    34 https://doi.org/10.1021/ja411900w
    35 https://doi.org/10.1021/ja5120908
    36 https://doi.org/10.1021/nl403036h
    37 https://doi.org/10.1021/nl503251h
    38 https://doi.org/10.1021/nl503636c
    39 https://doi.org/10.1021/nl8038184
    40 https://doi.org/10.1039/b9nr00368a
    41 https://doi.org/10.1039/c3dt50888a
    42 https://doi.org/10.1039/c4cp00247d
    43 https://doi.org/10.1063/1.3470090
    44 https://doi.org/10.1063/1.4870532
    45 https://doi.org/10.1088/0957-4484/22/12/125706
    46 https://doi.org/10.1103/physrevb.58.7565
    47 https://doi.org/10.1103/physrevb.85.161403
    48 https://doi.org/10.1103/physrevb.85.205302
    49 https://doi.org/10.1103/physrevb.89.155429
    50 https://doi.org/10.1103/physrevb.90.125304
    51 https://doi.org/10.1103/physrevlett.105.136805
    52 https://doi.org/10.1103/physrevlett.111.126801
    53 https://doi.org/10.1103/physrevlett.94.157204
    54 https://doi.org/10.1126/science.1250140
    55 https://doi.org/10.1126/science.1258122
    56 https://doi.org/10.1126/science.aad2114
    57 https://doi.org/10.1126/science.aan6814
    58 https://doi.org/10.1557/mrs2003.214
    59 schema:datePublished 2019-12
    60 schema:datePublishedReg 2019-12-01
    61 schema:description Monolayer chalcogenide semiconductors with both luminescent and ferromagnetic properties are dreamed for simultaneous polarization and detection of the valley degree of freedom in valleytronics. However, a conventional chalcogenide monolayer lacks these coexisting properties due to their mutually exclusive origins. Herein we demonstrate that robust ferromagnetism and photoluminescence (PL) could be achieved in a (Co, Cr)-incorporated single monolayer MoS<sub>2</sub>, where the ferromagnetic interaction is activated by Co ions, and the nonradiative recombination channels of excitons is cut off by Cr ions. This strategy brings a 90-fold enhancement of saturation magnetization and 35-fold enhancement of PL intensity than the pristine MoS<sub>2</sub> monolayer. The main reasons for the coexisting ferromagnetism and PL are the electronic interactions between the impurity bands of atop Cr adatoms and substitutional Co atoms, as well as the increased content of neutral exciton. Our findings could extend the applications of two-dimensional chalcogenides into spintronics, valleytronic and photoelectric devices.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree true
    65 schema:isPartOf N7086b01f924a40fab9ce6146cf0647dc
    66 Ndbc77599c2b9441e9a326147c6de5cae
    67 sg:journal.1043282
    68 schema:name Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers.
    69 schema:pagination 1584
    70 schema:productId N0df62609783848d2a4330c481d8ef7ed
    71 N2f94f8a9821741c5b53561f6007b41d0
    72 N7b15f41a3a3245b3a1d29233fbc4e337
    73 Ncd33cf0c1fa34a649a6d3b5b528a4cc7
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113261495
    75 https://doi.org/10.1038/s41467-019-09531-0
    76 schema:sdDatePublished 2019-04-16T06:24
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N45dc02548201467aa8841ac8e27db014
    79 schema:url http://www.nature.com/articles/s41467-019-09531-0
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N011e0ffa6aed41848dc5a586abb3072b rdf:first Nbc055b4409124cd5a709567e59920b68
    84 rdf:rest N641d325f2cb14b158104a2d26710e25c
    85 N018e7452298b4558bfb513fba4974299 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    86 schema:familyName Duan
    87 schema:givenName Hengli
    88 rdf:type schema:Person
    89 N0df62609783848d2a4330c481d8ef7ed schema:name dimensions_id
    90 schema:value pub.1113261495
    91 rdf:type schema:PropertyValue
    92 N12b9e649870f4d00ab3f0ca80173c074 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    93 schema:familyName Cai
    94 schema:givenName Liang
    95 rdf:type schema:Person
    96 N15f5a4dab2c84016b23a266f21b22347 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    97 schema:familyName Guo
    98 schema:givenName Peng
    99 rdf:type schema:Person
    100 N197b3475fd48442ba984499ab927c98d rdf:first N018e7452298b4558bfb513fba4974299
    101 rdf:rest N46704ba70e1649109ec4cadf1e5fc054
    102 N2bd81a764b95440cbe78bb031e81d5f0 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    103 schema:familyName Song
    104 schema:givenName Li
    105 rdf:type schema:Person
    106 N2f94f8a9821741c5b53561f6007b41d0 schema:name pubmed_id
    107 schema:value 30952850
    108 rdf:type schema:PropertyValue
    109 N2f9f73f8f5b34ab1a881e5a197371b6c rdf:first N9d7d6183c70e480d851ebfaf9b99cb43
    110 rdf:rest N750fbcad4e614dfab6fca486903da3ad
    111 N45dc02548201467aa8841ac8e27db014 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 N46704ba70e1649109ec4cadf1e5fc054 rdf:first N15f5a4dab2c84016b23a266f21b22347
    114 rdf:rest Nb578184f20814a12b39eca8f381e5475
    115 N474dc793f6a84d7d8d9acc7714dc0e75 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    116 schema:familyName Yan
    117 schema:givenName Wensheng
    118 rdf:type schema:Person
    119 N4ecf6b7f71df44ebbd413688b4293d4c schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    120 schema:familyName Zhang
    121 schema:givenName Wenhua
    122 rdf:type schema:Person
    123 N4fe13d2dd85b4c01bba24733ba4829a0 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    124 schema:familyName Li
    125 schema:givenName Xiaoguang
    126 rdf:type schema:Person
    127 N5d59f73339e64c50bcce0de70ec95fe2 rdf:first N12b9e649870f4d00ab3f0ca80173c074
    128 rdf:rest Ne5efef8dd80949439b8d696946b83fa3
    129 N641d325f2cb14b158104a2d26710e25c rdf:first N4fe13d2dd85b4c01bba24733ba4829a0
    130 rdf:rest N91c38002ebee466c975896448559aafb
    131 N69fc98ca4f994c27b69366b9cdba17e8 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
    132 schema:familyName Ma
    133 schema:givenName Chao
    134 rdf:type schema:Person
    135 N7086b01f924a40fab9ce6146cf0647dc schema:issueNumber 1
    136 rdf:type schema:PublicationIssue
    137 N750fbcad4e614dfab6fca486903da3ad rdf:first Ncfb3a75d44bc41fb96b4c41454c31990
    138 rdf:rest N8e0f7faf32e2461a82a2f2b4ba3983e5
    139 N7b15f41a3a3245b3a1d29233fbc4e337 schema:name nlm_unique_id
    140 schema:value 101528555
    141 rdf:type schema:PropertyValue
    142 N807cdbf6030e4b7688a6c56afa87676a schema:affiliation https://www.grid.ac/institutes/grid.9227.e
    143 schema:familyName Wang
    144 schema:givenName Chao
    145 rdf:type schema:Person
    146 N8e0f7faf32e2461a82a2f2b4ba3983e5 rdf:first Nf8abf774754a403598ee2d391dde1425
    147 rdf:rest N011e0ffa6aed41848dc5a586abb3072b
    148 N916dff8a84d1493289aa421e5486e2d6 rdf:first N4ecf6b7f71df44ebbd413688b4293d4c
    149 rdf:rest N2f9f73f8f5b34ab1a881e5a197371b6c
    150 N91c38002ebee466c975896448559aafb rdf:first Nc252b5e442064a649e50caffa9e19bd0
    151 rdf:rest rdf:nil
    152 N92f00df4d657404a9a170ddae91f2979 rdf:first Ncc3c60b9850b49209960a4c3848699a8
    153 rdf:rest Ne93f759f2d36408badedd444a71795fa
    154 N9d7d6183c70e480d851ebfaf9b99cb43 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    155 schema:familyName Sun
    156 schema:givenName Zhihu
    157 rdf:type schema:Person
    158 Nacce295678074e63a9580fcf8f4ce2c4 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    159 schema:familyName Tan
    160 schema:givenName Hao
    161 rdf:type schema:Person
    162 Nb1e4ea54f9c54bad8ae19f45730e59cf rdf:first Nacce295678074e63a9580fcf8f4ce2c4
    163 rdf:rest N92f00df4d657404a9a170ddae91f2979
    164 Nb578184f20814a12b39eca8f381e5475 rdf:first N807cdbf6030e4b7688a6c56afa87676a
    165 rdf:rest Nb1e4ea54f9c54bad8ae19f45730e59cf
    166 Nbc055b4409124cd5a709567e59920b68 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    167 schema:familyName Yin
    168 schema:givenName Yuewei
    169 rdf:type schema:Person
    170 Nc252b5e442064a649e50caffa9e19bd0 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    171 schema:familyName Wei
    172 schema:givenName Shiqiang
    173 rdf:type schema:Person
    174 Ncc3c60b9850b49209960a4c3848699a8 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    175 schema:familyName Hu
    176 schema:givenName Wei
    177 rdf:type schema:Person
    178 Ncd33cf0c1fa34a649a6d3b5b528a4cc7 schema:name doi
    179 schema:value 10.1038/s41467-019-09531-0
    180 rdf:type schema:PropertyValue
    181 Ncfb3a75d44bc41fb96b4c41454c31990 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    182 schema:familyName Wang
    183 schema:givenName Linjun
    184 rdf:type schema:Person
    185 Ndacd7b5c5ca44c4e978f823c05c0d5be rdf:first N69fc98ca4f994c27b69366b9cdba17e8
    186 rdf:rest N5d59f73339e64c50bcce0de70ec95fe2
    187 Ndbc77599c2b9441e9a326147c6de5cae schema:volumeNumber 10
    188 rdf:type schema:PublicationVolume
    189 Ne5efef8dd80949439b8d696946b83fa3 rdf:first N2bd81a764b95440cbe78bb031e81d5f0
    190 rdf:rest N916dff8a84d1493289aa421e5486e2d6
    191 Ne93f759f2d36408badedd444a71795fa rdf:first N474dc793f6a84d7d8d9acc7714dc0e75
    192 rdf:rest Ndacd7b5c5ca44c4e978f823c05c0d5be
    193 Nf8abf774754a403598ee2d391dde1425 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    194 schema:familyName Zhao
    195 schema:givenName Wenbo
    196 rdf:type schema:Person
    197 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Chemical Sciences
    199 rdf:type schema:DefinedTerm
    200 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
    201 schema:name Inorganic Chemistry
    202 rdf:type schema:DefinedTerm
    203 sg:journal.1043282 schema:issn 2041-1723
    204 schema:name Nature Communications
    205 rdf:type schema:Periodical
    206 sg:pub.10.1038/nature24043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152717
    207 https://doi.org/10.1038/nature24043
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nature25155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100157727
    210 https://doi.org/10.1038/nature25155
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ncomms13612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048604514
    213 https://doi.org/10.1038/ncomms13612
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
    216 https://doi.org/10.1038/ncomms1882
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nmat1310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030108003
    219 https://doi.org/10.1038/nmat1310
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nmat3505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009145791
    222 https://doi.org/10.1038/nmat3505
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nmat3687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051133720
    225 https://doi.org/10.1038/nmat3687
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nmat4931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090577727
    228 https://doi.org/10.1038/nmat4931
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
    231 https://doi.org/10.1038/nnano.2012.95
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nnano.2016.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047512525
    234 https://doi.org/10.1038/nnano.2016.49
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nphys2942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018699053
    237 https://doi.org/10.1038/nphys2942
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nphys3201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004672159
    240 https://doi.org/10.1038/nphys3201
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nphys3203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023716123
    243 https://doi.org/10.1038/nphys3203
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nphys3580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049602911
    246 https://doi.org/10.1038/nphys3580
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nphys4188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090740367
    249 https://doi.org/10.1038/nphys4188
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/s41467-017-02631-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100275598
    252 https://doi.org/10.1038/s41467-017-02631-9
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/s41565-018-0063-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101086668
    255 https://doi.org/10.1038/s41565-018-0063-9
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/srep24153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046384712
    258 https://doi.org/10.1038/srep24153
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1002/adma.201304985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008636896
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1002/adma.201600970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022700906
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1002/adma.201604540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083405430
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1002/jcc.20495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044734228
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1016/j.commatsci.2007.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008354570
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1016/j.cpc.2009.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022497006
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1016/j.jallcom.2007.04.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009636206
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1016/j.jallcom.2010.12.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051190834
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1016/j.jmmm.2016.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035100561
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1016/j.matchemphys.2008.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021810852
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1016/j.mser.2008.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002591880
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1021/acs.nanolett.5b02315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031522541
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1021/ja411900w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055855860
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1021/ja5120908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055857180
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1021/nl403036h schema:sameAs https://app.dimensions.ai/details/publication/pub.1045249604
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1021/nl503251h schema:sameAs https://app.dimensions.ai/details/publication/pub.1043385874
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1021/nl503636c schema:sameAs https://app.dimensions.ai/details/publication/pub.1030898370
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1021/nl8038184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221776
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1039/b9nr00368a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044539140
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1039/c3dt50888a schema:sameAs https://app.dimensions.ai/details/publication/pub.1021185664
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1039/c4cp00247d schema:sameAs https://app.dimensions.ai/details/publication/pub.1013641756
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1063/1.3470090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057957296
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1063/1.4870532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039824011
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1088/0957-4484/22/12/125706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001797096
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1103/physrevb.58.7565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060590197
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1103/physrevb.85.161403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014668061
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1103/physrevb.85.205302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030578033
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1103/physrevb.89.155429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034351902
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1103/physrevb.90.125304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060644634
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1103/physrevlett.111.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762089
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1103/physrevlett.94.157204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830213
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1126/science.1250140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074202
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1126/science.1258122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470253
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1126/science.aad2114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008890107
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1126/science.aan6814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090995993
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1557/mrs2003.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067968352
    333 rdf:type schema:CreativeWork
    334 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
    335 schema:name Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, 230029, Hefei, Anhui, China.
    336 Hefei National Laboratary for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China.
    337 National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China.
    338 National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China. sqwei@ustc.edu.cn.
    339 National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China. ywsh2000@ustc.edu.cn.
    340 National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China. zhsun@ustc.edu.cn.
    341 rdf:type schema:Organization
    342 https://www.grid.ac/institutes/grid.67293.39 schema:alternateName Hunan University
    343 schema:name College of Materials Science and Engineering, Hunan University, 410082, Changsha, Hunan, China.
    344 rdf:type schema:Organization
    345 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
    346 schema:name Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, 230031, Hefei, Anhui, China.
    347 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...