Quantifying economic resilience from input-output susceptibility to improve predictions of economic growth and recovery. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Peter Klimek, Sebastian Poledna, Stefan Thurner

ABSTRACT

Modern macroeconomic theories were unable to foresee the last Great Recession and could neither predict its prolonged duration nor the recovery rate. They are based on supply-demand equilibria that do not exist during recessionary shocks. Here we focus on resilience as a nonequilibrium property of networked production systems and develop a linear response theory for input-output economics. By calibrating the framework to data from 56 industrial sectors in 43 countries between 2000 and 2014, we find that the susceptibility of individual industrial sectors to economic shocks varies greatly across countries, sectors, and time. We show that susceptibility-based growth predictions that take sector- and country-specific recovery into account, outperform-by far-standard econometric models. Our results are analytically rigorous, empirically testable, and flexible enough to address policy-relevant scenarios. We illustrate the latter by estimating the impact of recently imposed tariffs on US imports (steel and aluminum) on specific sectors across European countries. More... »

PAGES

1677

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-09357-w

DOI

http://dx.doi.org/10.1038/s41467-019-09357-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113379464

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30975987


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Complexity Science Hub Vienna", 
          "id": "https://www.grid.ac/institutes/grid.484678.1", 
          "name": [
            "Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.", 
            "Complexity Science Hub Vienna, Josefst\u00e4dter Strasse 39, 1080, Vienna, Austria."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klimek", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Institute for Applied Systems Analysis", 
          "id": "https://www.grid.ac/institutes/grid.75276.31", 
          "name": [
            "Complexity Science Hub Vienna, Josefst\u00e4dter Strasse 39, 1080, Vienna, Austria.", 
            "IIASA, Schlossplatz 1, 2361, Laxenburg, Austria."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poledna", 
        "givenName": "Sebastian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Santa Fe Institute", 
          "id": "https://www.grid.ac/institutes/grid.209665.e", 
          "name": [
            "Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria. stefan.thurner@muv.ac.at.", 
            "Complexity Science Hub Vienna, Josefst\u00e4dter Strasse 39, 1080, Vienna, Austria. stefan.thurner@muv.ac.at.", 
            "IIASA, Schlossplatz 1, 2361, Laxenburg, Austria. stefan.thurner@muv.ac.at.", 
            "Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 85701, USA. stefan.thurner@muv.ac.at."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thurner", 
        "givenName": "Stefan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1220362110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004301385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1765(97)00214-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006898116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2012-01696-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012092565", 
          "https://doi.org/10.1140/epjst/e2012-01696-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015738329", 
          "https://doi.org/10.1038/nphys3229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016675831", 
          "https://doi.org/10.1038/nature09659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jedc.2014.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017032500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/roie.12178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024262334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1406071111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038348342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/29/1/306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041634188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0808904106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042963542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/11/113043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049031843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/11/113043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049031843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/460685a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052009434", 
          "https://doi.org/10.1038/460685a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/460685a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052009434", 
          "https://doi.org/10.1038/460685a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052994170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1076-0342(2001)7:1(1)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057614536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1740082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057802875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2117821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057837997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/261128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058574609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/685961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058867242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cesifo/ifq017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059459237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cesifo/ifq017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059459237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jeg/lbr019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059783645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.37.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.37.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.062812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.062812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.12.570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063091773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1257/aer.97.3.586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064527581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1907353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069636815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1173644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077935331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198786160.003.0006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088988133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eneco.2017.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092234770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511626982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098728173"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Modern macroeconomic theories were unable to foresee the last Great Recession and could neither predict its prolonged duration nor the recovery rate. They are based on supply-demand equilibria that do not exist during recessionary shocks. Here we focus on resilience as a nonequilibrium property of networked production systems and develop a linear response theory for input-output economics. By calibrating the framework to data from 56 industrial sectors in 43 countries between 2000 and 2014, we find that the susceptibility of individual industrial sectors to economic shocks varies greatly across countries, sectors, and time. We show that susceptibility-based growth\u00a0predictions that take sector- and country-specific recovery into account, outperform-by far-standard econometric models. Our results are analytically rigorous, empirically testable, and flexible enough to address policy-relevant scenarios. We illustrate the latter by estimating the impact of recently imposed tariffs on US imports (steel and aluminum) on specific sectors across European countries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-019-09357-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Quantifying\u00a0economic resilience from input-output susceptibility to\u00a0improve predictions of economic growth and recovery.", 
    "pagination": "1677", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-09357-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113379464"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30975987"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-09357-w", 
      "https://app.dimensions.ai/details/publication/pub.1113379464"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106831_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41467-019-09357-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09357-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09357-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09357-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09357-w'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      57 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-09357-w schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N8d8d1fbcaf814eac95d9bb1bc7ce43d3
4 schema:citation sg:pub.10.1038/460685a
5 sg:pub.10.1038/nature09659
6 sg:pub.10.1038/nphys3229
7 sg:pub.10.1140/epjst/e2012-01696-9
8 https://doi.org/10.1016/j.eneco.2017.10.005
9 https://doi.org/10.1016/j.jedc.2014.08.020
10 https://doi.org/10.1016/j.physa.2006.04.029
11 https://doi.org/10.1016/s0165-1765(97)00214-0
12 https://doi.org/10.1017/cbo9780511626982
13 https://doi.org/10.1061/(asce)1076-0342(2001)7:1(1)
14 https://doi.org/10.1063/1.1740082
15 https://doi.org/10.1063/1.2117821
16 https://doi.org/10.1073/pnas.0808904106
17 https://doi.org/10.1073/pnas.1220362110
18 https://doi.org/10.1073/pnas.1406071111
19 https://doi.org/10.1086/261128
20 https://doi.org/10.1086/685961
21 https://doi.org/10.1088/0034-4885/29/1/306
22 https://doi.org/10.1088/1367-2630/12/11/113043
23 https://doi.org/10.1093/acprof:oso/9780198786160.003.0006
24 https://doi.org/10.1093/cesifo/ifq017
25 https://doi.org/10.1093/jeg/lbr019
26 https://doi.org/10.1103/physrev.37.405
27 https://doi.org/10.1103/physreve.90.062812
28 https://doi.org/10.1111/roie.12178
29 https://doi.org/10.1126/science.1173644
30 https://doi.org/10.1143/jpsj.12.570
31 https://doi.org/10.1257/aer.97.3.586
32 https://doi.org/10.2307/1907353
33 schema:datePublished 2019-12
34 schema:datePublishedReg 2019-12-01
35 schema:description Modern macroeconomic theories were unable to foresee the last Great Recession and could neither predict its prolonged duration nor the recovery rate. They are based on supply-demand equilibria that do not exist during recessionary shocks. Here we focus on resilience as a nonequilibrium property of networked production systems and develop a linear response theory for input-output economics. By calibrating the framework to data from 56 industrial sectors in 43 countries between 2000 and 2014, we find that the susceptibility of individual industrial sectors to economic shocks varies greatly across countries, sectors, and time. We show that susceptibility-based growth predictions that take sector- and country-specific recovery into account, outperform-by far-standard econometric models. Our results are analytically rigorous, empirically testable, and flexible enough to address policy-relevant scenarios. We illustrate the latter by estimating the impact of recently imposed tariffs on US imports (steel and aluminum) on specific sectors across European countries.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N1f6253216bf84016a443c3e01db1251f
40 N61c87b4d004a401d95b3828c83be37ca
41 sg:journal.1043282
42 schema:name Quantifying economic resilience from input-output susceptibility to improve predictions of economic growth and recovery.
43 schema:pagination 1677
44 schema:productId N10414407c6a7466f82404a56b2d1caba
45 N489402c32b2c4478bcfc25d8fa24ec43
46 Nbcc665dac9e14036a0465039b901fc64
47 Ncbcdb861613e47d2be92f1f101dabce4
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113379464
49 https://doi.org/10.1038/s41467-019-09357-w
50 schema:sdDatePublished 2019-04-16T06:24
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N815251448f924031a7e9d7243467bd55
53 schema:url http://www.nature.com/articles/s41467-019-09357-w
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N10414407c6a7466f82404a56b2d1caba schema:name doi
58 schema:value 10.1038/s41467-019-09357-w
59 rdf:type schema:PropertyValue
60 N1f6253216bf84016a443c3e01db1251f schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N489402c32b2c4478bcfc25d8fa24ec43 schema:name nlm_unique_id
63 schema:value 101528555
64 rdf:type schema:PropertyValue
65 N61c87b4d004a401d95b3828c83be37ca schema:volumeNumber 10
66 rdf:type schema:PublicationVolume
67 N678a94aada4349ab8828178b6349396d rdf:first Nd5d00f0f5ad345cfb818cf5ccc51099d
68 rdf:rest Nf82027087e444346ba7c969e5d3c8f56
69 N815251448f924031a7e9d7243467bd55 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N8722d35429dc49f18c84b0cdd6e15e93 schema:affiliation https://www.grid.ac/institutes/grid.209665.e
72 schema:familyName Thurner
73 schema:givenName Stefan
74 rdf:type schema:Person
75 N8d8d1fbcaf814eac95d9bb1bc7ce43d3 rdf:first Nfe72613c131e47fcb07b21c63f2aa358
76 rdf:rest N678a94aada4349ab8828178b6349396d
77 Nbcc665dac9e14036a0465039b901fc64 schema:name dimensions_id
78 schema:value pub.1113379464
79 rdf:type schema:PropertyValue
80 Ncbcdb861613e47d2be92f1f101dabce4 schema:name pubmed_id
81 schema:value 30975987
82 rdf:type schema:PropertyValue
83 Nd5d00f0f5ad345cfb818cf5ccc51099d schema:affiliation https://www.grid.ac/institutes/grid.75276.31
84 schema:familyName Poledna
85 schema:givenName Sebastian
86 rdf:type schema:Person
87 Nf82027087e444346ba7c969e5d3c8f56 rdf:first N8722d35429dc49f18c84b0cdd6e15e93
88 rdf:rest rdf:nil
89 Nfe72613c131e47fcb07b21c63f2aa358 schema:affiliation https://www.grid.ac/institutes/grid.484678.1
90 schema:familyName Klimek
91 schema:givenName Peter
92 rdf:type schema:Person
93 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
94 schema:name Economics
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
97 schema:name Applied Economics
98 rdf:type schema:DefinedTerm
99 sg:journal.1043282 schema:issn 2041-1723
100 schema:name Nature Communications
101 rdf:type schema:Periodical
102 sg:pub.10.1038/460685a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052009434
103 https://doi.org/10.1038/460685a
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nature09659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016675831
106 https://doi.org/10.1038/nature09659
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/nphys3229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015738329
109 https://doi.org/10.1038/nphys3229
110 rdf:type schema:CreativeWork
111 sg:pub.10.1140/epjst/e2012-01696-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012092565
112 https://doi.org/10.1140/epjst/e2012-01696-9
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.eneco.2017.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092234770
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jedc.2014.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017032500
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.physa.2006.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052994170
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0165-1765(97)00214-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006898116
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1017/cbo9780511626982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098728173
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1061/(asce)1076-0342(2001)7:1(1) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057614536
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.1740082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057802875
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.2117821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057837997
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1073/pnas.0808904106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042963542
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1073/pnas.1220362110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004301385
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1073/pnas.1406071111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038348342
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1086/261128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058574609
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1086/685961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058867242
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/0034-4885/29/1/306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041634188
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1088/1367-2630/12/11/113043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049031843
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1093/acprof:oso/9780198786160.003.0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088988133
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1093/cesifo/ifq017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059459237
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1093/jeg/lbr019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059783645
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrev.37.405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060446178
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreve.90.062812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060746944
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/roie.12178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024262334
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.1173644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077935331
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1143/jpsj.12.570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063091773
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1257/aer.97.3.586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064527581
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2307/1907353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069636815
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.209665.e schema:alternateName Santa Fe Institute
165 schema:name Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080, Vienna, Austria. stefan.thurner@muv.ac.at.
166 IIASA, Schlossplatz 1, 2361, Laxenburg, Austria. stefan.thurner@muv.ac.at.
167 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 85701, USA. stefan.thurner@muv.ac.at.
168 Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria. stefan.thurner@muv.ac.at.
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.484678.1 schema:alternateName Complexity Science Hub Vienna
171 schema:name Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080, Vienna, Austria.
172 Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.75276.31 schema:alternateName International Institute for Applied Systems Analysis
175 schema:name Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080, Vienna, Austria.
176 IIASA, Schlossplatz 1, 2361, Laxenburg, Austria.
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...