The hammam effect or how a warm ocean enhances large scale atmospheric predictability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Davide Faranda, M. Carmen Alvarez-Castro, Gabriele Messori, David Rodrigues, Pascal Yiou

ABSTRACT

The atmosphere's chaotic nature limits its short-term predictability. Furthermore, there is little knowledge on how the difficulty of forecasting weather may be affected by anthropogenic climate change. Here, we address this question by employing metrics issued from dynamical systems theory to describe the atmospheric circulation and infer the dynamical properties of the climate system. Specifically, we evaluate the changes in the sub-seasonal predictability of the large-scale atmospheric circulation over the North Atlantic for the historical period and under anthropogenic forcing, using centennial reanalyses and CMIP5 simulations. For the future period, most datasets point to an increase in the atmosphere's predictability. AMIP simulations with 4K warmer oceans and 4 × atmospheric CO2 concentrations highlight the prominent role of a warmer ocean in driving this increase. We term this the hammam effect. Such effect is linked to enhanced zonal atmospheric patterns, which are more predictable than meridional configurations. More... »

PAGES

1316

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-09305-8

DOI

http://dx.doi.org/10.1038/s41467-019-09305-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112901274

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30899008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "London Mathematical Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.494636.a", 
          "name": [
            "Laboratoire des Sciences du Climat et de l\u2019Environnement LSCE-IPSL, CEA Saclay l\u2019Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Universit\u00e9 Paris-Saclay, 91191, Gif-sur-Yvette, France", 
            "London Mathematical Laboratory, 8 Margravine Gardens, W68RH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faranda", 
        "givenName": "Davide", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Euro-Mediterranean Center for Climate Change", 
          "id": "https://www.grid.ac/institutes/grid.423878.2", 
          "name": [
            "Laboratoire des Sciences du Climat et de l\u2019Environnement LSCE-IPSL, CEA Saclay l\u2019Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Universit\u00e9 Paris-Saclay, 91191, Gif-sur-Yvette, France", 
            "Climate Simulation and Prediction Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici, 40127, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alvarez-Castro", 
        "givenName": "M. Carmen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Laboratoire des Sciences du Climat et de l\u2019Environnement LSCE-IPSL, CEA Saclay l\u2019Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Universit\u00e9 Paris-Saclay, 91191, Gif-sur-Yvette, France", 
            "Department of Earth Sciences, Uppsala University, 75236, Uppsala, Sweden", 
            "Department of Meteorology, Stockholm University and Bolin Centre for Climate Research, 10691, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Messori", 
        "givenName": "Gabriele", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Saclay", 
          "id": "https://www.grid.ac/institutes/grid.460789.4", 
          "name": [
            "Laboratoire des Sciences du Climat et de l\u2019Environnement LSCE-IPSL, CEA Saclay l\u2019Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Universit\u00e9 Paris-Saclay, 91191, Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodrigues", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Saclay", 
          "id": "https://www.grid.ac/institutes/grid.460789.4", 
          "name": [
            "Laboratoire des Sciences du Climat et de l\u2019Environnement LSCE-IPSL, CEA Saclay l\u2019Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Universit\u00e9 Paris-Saclay, 91191, Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yiou", 
        "givenName": "Pascal", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2012gl052440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000568282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002499070", 
          "https://doi.org/10.1038/nclimate1633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005941957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(89)90854-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006237352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(89)90854-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006237352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1987)044<0722:ewacpo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007587244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012455089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015768963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-13-00255.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018933719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027169748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10687-007-0034-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027715831", 
          "https://doi.org/10.1007/s10687-007-0034-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1994)051<0932:enmaoa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029247448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029368932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-012-0468-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033842957", 
          "https://doi.org/10.1007/s10955-012-0468-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037617723", 
          "https://doi.org/10.1038/ngeo2253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037677363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038506954", 
          "https://doi.org/10.1038/nclimate2969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jd008087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043843928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01010923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045378595", 
          "https://doi.org/10.1007/bf01010923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-009-0221-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046731322", 
          "https://doi.org/10.1007/s00440-009-0221-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-009-0221-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046731322", 
          "https://doi.org/10.1007/s00440-009-0221-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-009-0221-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046731322", 
          "https://doi.org/10.1007/s00440-009-0221-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-009-0221-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046731322", 
          "https://doi.org/10.1007/s00440-009-0221-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-10-05020.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047972614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-7-649-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049512838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1699-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051803464", 
          "https://doi.org/10.1007/s00382-013-1699-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.114504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.114504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.259692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1636492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062235213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.269.5224.676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062550625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2459.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063454045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep41278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074197759", 
          "https://doi.org/10.1038/srep41278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017gl072879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084006797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6544/aa72bd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085917602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.014502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090554848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.014502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090554848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091432156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092481532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/npg-24-713-2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093168452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2018/2494509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100432598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-17-0176.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103847383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106885102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118632321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106885102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107584516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107584516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/esd-2018-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109810756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/esd-2018-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109810756"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The atmosphere's chaotic nature limits its short-term predictability. Furthermore, there is little knowledge on how the difficulty of forecasting weather may be affected by anthropogenic climate change. Here, we address this question by employing metrics issued from dynamical systems theory to describe the atmospheric circulation and infer the dynamical properties of the climate system. Specifically, we evaluate the changes in the sub-seasonal predictability of the large-scale atmospheric circulation over the North Atlantic for the historical period and under anthropogenic forcing, using centennial reanalyses and CMIP5 simulations. For the future period, most datasets point to an increase in the atmosphere's predictability. AMIP simulations with 4K warmer oceans and 4\u00a0\u00d7 atmospheric CO2 concentrations highlight the prominent role of a warmer ocean in driving this increase. We term this the hammam effect. Such effect is linked to enhanced zonal atmospheric patterns, which are more predictable than meridional configurations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-019-09305-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7108071", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3792905", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "The hammam effect or how a warm ocean enhances large scale atmospheric predictability", 
    "pagination": "1316", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf44ad00436daccf2fbe28cf3459b2643d654be422d799de644a568644e289cb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30899008"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-09305-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112901274"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-09305-8", 
      "https://app.dimensions.ai/details/publication/pub.1112901274"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130801_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-019-09305-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09305-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09305-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09305-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09305-8'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-09305-8 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N61f572bbc673493296487fe6554023c6
4 schema:citation sg:pub.10.1007/bf01010923
5 sg:pub.10.1007/s00382-013-1699-7
6 sg:pub.10.1007/s00440-009-0221-y
7 sg:pub.10.1007/s10687-007-0034-2
8 sg:pub.10.1007/s10955-012-0468-z
9 sg:pub.10.1038/nclimate1633
10 sg:pub.10.1038/nclimate2969
11 sg:pub.10.1038/ngeo2253
12 sg:pub.10.1038/srep41278
13 https://app.dimensions.ai/details/publication/pub.1106885102
14 https://doi.org/10.1002/2017gl072879
15 https://doi.org/10.1002/9781118632321
16 https://doi.org/10.1002/qj.2411
17 https://doi.org/10.1002/qj.2528
18 https://doi.org/10.1002/qj.2629
19 https://doi.org/10.1002/qj.2808
20 https://doi.org/10.1002/qj.3155
21 https://doi.org/10.1002/qj.3194
22 https://doi.org/10.1002/qj.3410
23 https://doi.org/10.1002/qj.776
24 https://doi.org/10.1016/0375-9601(89)90854-2
25 https://doi.org/10.1029/2006jd008087
26 https://doi.org/10.1029/2012gl052440
27 https://doi.org/10.1088/1361-6544/aa72bd
28 https://doi.org/10.1103/physrevlett.114.114504
29 https://doi.org/10.1103/physrevlett.119.014502
30 https://doi.org/10.1109/21.259692
31 https://doi.org/10.1119/1.1636492
32 https://doi.org/10.1126/science.269.5224.676
33 https://doi.org/10.1155/2018/2494509
34 https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
35 https://doi.org/10.1175/1520-0469(1987)044<0722:ewacpo>2.0.co;2
36 https://doi.org/10.1175/1520-0469(1994)051<0932:enmaoa>2.0.co;2
37 https://doi.org/10.1175/2008jcli2459.1
38 https://doi.org/10.1175/bams-d-11-00094.1
39 https://doi.org/10.1175/bams-d-13-00255.1
40 https://doi.org/10.1175/jcli-d-17-0176.1
41 https://doi.org/10.1175/mwr-d-10-05020.1
42 https://doi.org/10.5194/esd-2018-80
43 https://doi.org/10.5194/gmd-7-649-2014
44 https://doi.org/10.5194/npg-24-713-2017
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description The atmosphere's chaotic nature limits its short-term predictability. Furthermore, there is little knowledge on how the difficulty of forecasting weather may be affected by anthropogenic climate change. Here, we address this question by employing metrics issued from dynamical systems theory to describe the atmospheric circulation and infer the dynamical properties of the climate system. Specifically, we evaluate the changes in the sub-seasonal predictability of the large-scale atmospheric circulation over the North Atlantic for the historical period and under anthropogenic forcing, using centennial reanalyses and CMIP5 simulations. For the future period, most datasets point to an increase in the atmosphere's predictability. AMIP simulations with 4K warmer oceans and 4 × atmospheric CO<sub>2</sub> concentrations highlight the prominent role of a warmer ocean in driving this increase. We term this the hammam effect. Such effect is linked to enhanced zonal atmospheric patterns, which are more predictable than meridional configurations.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N02f6464a081b4a348beb57d49a3bf527
52 Ndb03096d78e04b2c9953b80b3bf06b95
53 sg:journal.1043282
54 schema:name The hammam effect or how a warm ocean enhances large scale atmospheric predictability
55 schema:pagination 1316
56 schema:productId N132817dd865b41bfbb44abcb3d274905
57 N2cb67e3a69c241648baa8ef3baca7b4c
58 N61ffe8bab39e459fbdbc16c715bb9d21
59 N77b8915876b34f0da15025477adf8454
60 Na0b554f7a3504fef818f8050854505b5
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112901274
62 https://doi.org/10.1038/s41467-019-09305-8
63 schema:sdDatePublished 2019-04-11T13:52
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Ndd5b755cb5b64486ab2a2e2a176bc591
66 schema:url https://www.nature.com/articles/s41467-019-09305-8
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N029a86016d8c4a6fa3c160d3253ce716 schema:affiliation https://www.grid.ac/institutes/grid.423878.2
71 schema:familyName Alvarez-Castro
72 schema:givenName M. Carmen
73 rdf:type schema:Person
74 N02f6464a081b4a348beb57d49a3bf527 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N0d24289dde5343e581e801ba2bdf7bb3 rdf:first N6e83bcba606b4709b2bd69d304cf57a1
77 rdf:rest N1c5a1a14906b4684a9a08f23186c3812
78 N132817dd865b41bfbb44abcb3d274905 schema:name nlm_unique_id
79 schema:value 101528555
80 rdf:type schema:PropertyValue
81 N1c5a1a14906b4684a9a08f23186c3812 rdf:first N7cfd1fe469b344018583de4076857501
82 rdf:rest N7eb13e310f8045a48b5efe3067123972
83 N247a6ac011e84ec6b25ba998e48c9a17 rdf:first N029a86016d8c4a6fa3c160d3253ce716
84 rdf:rest N0d24289dde5343e581e801ba2bdf7bb3
85 N2cb67e3a69c241648baa8ef3baca7b4c schema:name pubmed_id
86 schema:value 30899008
87 rdf:type schema:PropertyValue
88 N40809c88db6d4e4ba1a598ea6878be49 schema:affiliation https://www.grid.ac/institutes/grid.494636.a
89 schema:familyName Faranda
90 schema:givenName Davide
91 rdf:type schema:Person
92 N61f572bbc673493296487fe6554023c6 rdf:first N40809c88db6d4e4ba1a598ea6878be49
93 rdf:rest N247a6ac011e84ec6b25ba998e48c9a17
94 N61ffe8bab39e459fbdbc16c715bb9d21 schema:name doi
95 schema:value 10.1038/s41467-019-09305-8
96 rdf:type schema:PropertyValue
97 N6e83bcba606b4709b2bd69d304cf57a1 schema:affiliation https://www.grid.ac/institutes/grid.10548.38
98 schema:familyName Messori
99 schema:givenName Gabriele
100 rdf:type schema:Person
101 N77b8915876b34f0da15025477adf8454 schema:name readcube_id
102 schema:value cf44ad00436daccf2fbe28cf3459b2643d654be422d799de644a568644e289cb
103 rdf:type schema:PropertyValue
104 N7cfd1fe469b344018583de4076857501 schema:affiliation https://www.grid.ac/institutes/grid.460789.4
105 schema:familyName Rodrigues
106 schema:givenName David
107 rdf:type schema:Person
108 N7eb13e310f8045a48b5efe3067123972 rdf:first N9f130691cbdc46e698ee47af578c92ee
109 rdf:rest rdf:nil
110 N9f130691cbdc46e698ee47af578c92ee schema:affiliation https://www.grid.ac/institutes/grid.460789.4
111 schema:familyName Yiou
112 schema:givenName Pascal
113 rdf:type schema:Person
114 Na0b554f7a3504fef818f8050854505b5 schema:name dimensions_id
115 schema:value pub.1112901274
116 rdf:type schema:PropertyValue
117 Ndb03096d78e04b2c9953b80b3bf06b95 schema:volumeNumber 10
118 rdf:type schema:PublicationVolume
119 Ndd5b755cb5b64486ab2a2e2a176bc591 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
122 schema:name Earth Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
125 schema:name Atmospheric Sciences
126 rdf:type schema:DefinedTerm
127 sg:grant.3792905 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09305-8
128 rdf:type schema:MonetaryGrant
129 sg:grant.7108071 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09305-8
130 rdf:type schema:MonetaryGrant
131 sg:journal.1043282 schema:issn 2041-1723
132 schema:name Nature Communications
133 rdf:type schema:Periodical
134 sg:pub.10.1007/bf01010923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045378595
135 https://doi.org/10.1007/bf01010923
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00382-013-1699-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051803464
138 https://doi.org/10.1007/s00382-013-1699-7
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00440-009-0221-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046731322
141 https://doi.org/10.1007/s00440-009-0221-y
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10687-007-0034-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027715831
144 https://doi.org/10.1007/s10687-007-0034-2
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s10955-012-0468-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033842957
147 https://doi.org/10.1007/s10955-012-0468-z
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nclimate1633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002499070
150 https://doi.org/10.1038/nclimate1633
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nclimate2969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038506954
153 https://doi.org/10.1038/nclimate2969
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/ngeo2253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037617723
156 https://doi.org/10.1038/ngeo2253
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/srep41278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074197759
159 https://doi.org/10.1038/srep41278
160 rdf:type schema:CreativeWork
161 https://app.dimensions.ai/details/publication/pub.1106885102 schema:CreativeWork
162 https://doi.org/10.1002/2017gl072879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084006797
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/9781118632321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106885102
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/qj.2411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015768963
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/qj.2528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029368932
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/qj.2629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027169748
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/qj.2808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005941957
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/qj.3155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091432156
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/qj.3194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092481532
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/qj.3410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107584516
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/qj.776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012455089
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/0375-9601(89)90854-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006237352
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1029/2006jd008087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043843928
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1029/2012gl052440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000568282
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1088/1361-6544/aa72bd schema:sameAs https://app.dimensions.ai/details/publication/pub.1085917602
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.114.114504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763463
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.119.014502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090554848
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/21.259692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121766
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1119/1.1636492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062235213
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.269.5224.676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062550625
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1155/2018/2494509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100432598
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037677363
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1175/1520-0469(1987)044<0722:ewacpo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007587244
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1175/1520-0469(1994)051<0932:enmaoa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029247448
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1175/2008jcli2459.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063454045
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1175/bams-d-13-00255.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018933719
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1175/jcli-d-17-0176.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103847383
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1175/mwr-d-10-05020.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047972614
217 rdf:type schema:CreativeWork
218 https://doi.org/10.5194/esd-2018-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109810756
219 rdf:type schema:CreativeWork
220 https://doi.org/10.5194/gmd-7-649-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049512838
221 rdf:type schema:CreativeWork
222 https://doi.org/10.5194/npg-24-713-2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093168452
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.10548.38 schema:alternateName Stockholm University
225 schema:name Department of Earth Sciences, Uppsala University, 75236, Uppsala, Sweden
226 Department of Meteorology, Stockholm University and Bolin Centre for Climate Research, 10691, Stockholm, Sweden
227 Laboratoire des Sciences du Climat et de l’Environnement LSCE-IPSL, CEA Saclay l’Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.423878.2 schema:alternateName Euro-Mediterranean Center for Climate Change
230 schema:name Climate Simulation and Prediction Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici, 40127, Bologna, Italy
231 Laboratoire des Sciences du Climat et de l’Environnement LSCE-IPSL, CEA Saclay l’Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.460789.4 schema:alternateName University of Paris-Saclay
234 schema:name Laboratoire des Sciences du Climat et de l’Environnement LSCE-IPSL, CEA Saclay l’Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.494636.a schema:alternateName London Mathematical Laboratory
237 schema:name Laboratoire des Sciences du Climat et de l’Environnement LSCE-IPSL, CEA Saclay l’Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
238 London Mathematical Laboratory, 8 Margravine Gardens, W68RH, London, UK
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...