Clonal architectures predict clinical outcome in clear cell renal cell carcinoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yi Huang, Jiayin Wang, Peilin Jia, Xiangchun Li, Guangsheng Pei, Changxi Wang, Xiaodong Fang, Zhongming Zhao, Zhiming Cai, Xin Yi, Song Wu, Baifeng Zhang

ABSTRACT

The genetic landscape of clear cell renal cell carcinoma (ccRCC) had been investigated extensively but its evolution patterns remained unclear. Here we analyze the clonal architectures of 473 patients from three different populations. We find that the mutational signatures vary substantially across different populations and evolution stages. The evolution patterns of ccRCC have great inter-patient heterogeneities, with del(3p) being regarded as the common earliest event followed by three early departure points: VHL and PBRM1 mutations, del(14q) and other somatic copy number alterations (SCNAs) including amp(7), del(1p) and del(6q). We identify three prognostic subtypes of ccRCC with distinct clonal architectures and immune infiltrates: long-lived patients, enriched with VHL but depleted of BAP1 mutations, have high levels of Th17 and CD8+ T cells while short-lived patients with high burden of SCNAs have high levels of Tregs and Th2 cells, highlighting the importance of evaluating evolution patterns in the clinical management of ccRCC. More... »

PAGES

1245

References to SciGraph publications

  • 2013-03. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples in NATURE BIOTECHNOLOGY
  • 2016-01. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity in NATURE MEDICINE
  • 2009-11. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 in NATURE
  • 2012-01. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma in NATURE GENETICS
  • 2014-12. Variation in genomic landscape of clear cell renal cell carcinoma across Europe in NATURE COMMUNICATIONS
  • 2013-08. Integrated molecular analysis of clear-cell renal cell carcinoma in NATURE GENETICS
  • 2013-07. Comprehensive molecular characterization of clear cell renal cell carcinoma in NATURE
  • 2014-03. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing in NATURE GENETICS
  • 2015-10. Mutations driving CLL and their evolution in progression and relapse in NATURE
  • 2012-05. Absolute quantification of somatic DNA alterations in human cancer in NATURE BIOTECHNOLOGY
  • 2012-07. BAP1 loss defines a new class of renal cell carcinoma in NATURE GENETICS
  • 2010-01. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes in NATURE
  • 2015-12. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia in NATURE COMMUNICATIONS
  • 2016-12. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures in GENOME BIOLOGY
  • 2013-08. Signatures of mutational processes in human cancer in NATURE
  • 2016-06. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-09241-7

    DOI

    http://dx.doi.org/10.1038/s41467-019-09241-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112850197

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30886153


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CD8-Positive T-Lymphocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Renal Cell", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clone Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cohort Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Copy Number Variations", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Heterogeneity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kidney", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kidney Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nuclear Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Survival Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "T-Lymphocytes, Regulatory", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Th17 Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Th2 Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Von Hippel-Lindau Tumor Suppressor Protein", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Whole Genome Sequencing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Xi'an Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, China", 
                "Geneplus-Beijing, 102206, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Yi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xi'an Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jiayin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The University of Texas Health Science Center at Houston", 
              "id": "https://www.grid.ac/institutes/grid.267308.8", 
              "name": [
                "Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 77030, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jia", 
            "givenName": "Peilin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tianjin Medical University Cancer Institute and Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411918.4", 
              "name": [
                "Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xiangchun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The University of Texas Health Science Center at Houston", 
              "id": "https://www.grid.ac/institutes/grid.267308.8", 
              "name": [
                "Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 77030, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pei", 
            "givenName": "Guangsheng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Geneplus-Beijing, 102206, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Changxi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fang", 
            "givenName": "Xiaodong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The University of Texas Health Science Center at Houston", 
              "id": "https://www.grid.ac/institutes/grid.267308.8", 
              "name": [
                "Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 77030, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Zhongming", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen University", 
              "id": "https://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "The Third Affiliated Hospital of Shenzhen University, 518001, Shenzhen, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Zhiming", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Geneplus-Beijing, 102206, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yi", 
            "givenName": "Xin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen University", 
              "id": "https://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "The Third Affiliated Hospital of Shenzhen University, 518001, Shenzhen, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Song", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Geneplus-Beijing, 102206, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Baifeng", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt.2514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000477771", 
              "https://doi.org/10.1038/nbt.2514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001274259", 
              "https://doi.org/10.1038/ncomms6135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0308531101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001366510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002209653", 
              "https://doi.org/10.1038/nature08460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002209653", 
              "https://doi.org/10.1038/nature08460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2012.45.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003903632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2012.45.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003903632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2012.12.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008799776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1092-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008906709", 
              "https://doi.org/10.1186/s13059-016-1092-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1092-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008906709", 
              "https://doi.org/10.1186/s13059-016-1092-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1947601909359929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009973851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1947601909359929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009973851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010515132", 
              "https://doi.org/10.1038/nbt.2203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccr.2013.12.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011401642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.01.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012051399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(09)60229-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012262879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1182/blood-2013-08-518886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013232565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013914776", 
              "https://doi.org/10.1038/ng.3557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scitranslmed.aaa1408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015297504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.02869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021638601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022690077", 
              "https://doi.org/10.1038/ng.2891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022690077", 
              "https://doi.org/10.1038/ng.2891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gde.2013.11.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022798904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023979397", 
              "https://doi.org/10.1038/ng.2699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imlet.2012.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024473464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dnarep.2016.05.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025998866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1113205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031166230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.1014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031490994", 
              "https://doi.org/10.1038/ng.1014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032969139", 
              "https://doi.org/10.1038/nature08672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032969139", 
              "https://doi.org/10.1038/nature08672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eururo.2014.06.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033040797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037615856", 
              "https://doi.org/10.1038/nature15395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaf8399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041623781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042226470", 
              "https://doi.org/10.1038/ncomms7604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043591147", 
              "https://doi.org/10.1038/ng.2323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043591147", 
              "https://doi.org/10.1038/ng.2323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.28768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043647720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/jcs.116392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044868441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047704521", 
              "https://doi.org/10.1038/nm.3984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(12)70584-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048894778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(12)70584-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048894778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050004918", 
              "https://doi.org/10.1038/nature12477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050842404", 
              "https://doi.org/10.1038/nature12222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/carcin/bgv123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059454477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1224922", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062466872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1538-7445.am2016-3641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063268335"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "The genetic landscape of clear cell renal cell carcinoma (ccRCC) had been investigated extensively but its evolution patterns remained unclear. Here we analyze the clonal architectures of 473 patients from three different populations. We find that the mutational signatures vary substantially across different populations and evolution stages. The evolution patterns of ccRCC have great inter-patient heterogeneities, with del(3p) being regarded as the common earliest event followed by three early departure points: VHL and PBRM1 mutations, del(14q) and other somatic copy number alterations (SCNAs) including amp(7), del(1p) and del(6q). We identify three prognostic subtypes of ccRCC with distinct clonal architectures and immune infiltrates: long-lived patients, enriched with VHL but depleted of BAP1 mutations, have high levels of Th17 and CD8+ T cells while short-lived patients with high burden of SCNAs have high levels of Tregs and Th2 cells, highlighting the importance of evaluating evolution patterns in the clinical management of ccRCC.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-019-09241-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7028805", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Clonal architectures predict clinical outcome in clear cell renal cell carcinoma", 
        "pagination": "1245", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "14d53d4102270bea3013eeaa2c5966a63d8cc31fea7e13375af4883dc952ba54"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30886153"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-09241-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112850197"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-09241-7", 
          "https://app.dimensions.ai/details/publication/pub.1112850197"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117118_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-019-09241-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09241-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09241-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09241-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09241-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    367 TRIPLES      21 PREDICATES      88 URIs      42 LITERALS      30 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-09241-7 schema:about N01db649fde1f43e98181dec4fd9e8b8b
    2 N16be77efc14a452f8e47ad21d96c0812
    3 N248937fcc0194d27852d711a9959c965
    4 N27b80a58acb14e269824d73db772947e
    5 N29b3205ffad449729e9429867fef0db5
    6 N2fe81eb7608745b09cb567fa4e294fb4
    7 N3132dd5f7f5c40c79a7f7921709acf84
    8 N4436ff3379d347ab973ad7a6b3fe8652
    9 N5ddd8117d4d7405580b8a5ec33d83eae
    10 N686720135d5248038440f6498cfc9ac2
    11 N6d84b8ec08ea484b82d3f1e829820df8
    12 N6ed1138421b44fc4be00c8c40621238b
    13 N6fe607e5610e482b9d84a45ff187aeaa
    14 N935036443dac43bca0ae40a6afa48d08
    15 N9446a00151434520bde52d36b4b870df
    16 N9b76520b226f413fa090622350508e25
    17 Nb88788b0d3c74917ae59ecd0d6e89e12
    18 Nc20ae5016d2347a2a60426d9f3036431
    19 Ncad27786d5444604809c46a96565d8bd
    20 Nd43f49bf17ce47609c8a26a3e7d139d9
    21 Ne9ee43fda20c4b349d0e1c7c69fe12e2
    22 anzsrc-for:06
    23 anzsrc-for:0604
    24 schema:author N5dd76d9c27e140e2b8dd5e97e2c9cae0
    25 schema:citation sg:pub.10.1038/nature08460
    26 sg:pub.10.1038/nature08672
    27 sg:pub.10.1038/nature12222
    28 sg:pub.10.1038/nature12477
    29 sg:pub.10.1038/nature15395
    30 sg:pub.10.1038/nbt.2203
    31 sg:pub.10.1038/nbt.2514
    32 sg:pub.10.1038/ncomms6135
    33 sg:pub.10.1038/ncomms7604
    34 sg:pub.10.1038/ng.1014
    35 sg:pub.10.1038/ng.2323
    36 sg:pub.10.1038/ng.2699
    37 sg:pub.10.1038/ng.2891
    38 sg:pub.10.1038/ng.3557
    39 sg:pub.10.1038/nm.3984
    40 sg:pub.10.1186/s13059-016-1092-z
    41 https://doi.org/10.1002/ijc.28768
    42 https://doi.org/10.1016/j.ccr.2013.12.015
    43 https://doi.org/10.1016/j.cell.2013.01.019
    44 https://doi.org/10.1016/j.celrep.2012.12.008
    45 https://doi.org/10.1016/j.dnarep.2016.05.027
    46 https://doi.org/10.1016/j.eururo.2014.06.053
    47 https://doi.org/10.1016/j.gde.2013.11.014
    48 https://doi.org/10.1016/j.imlet.2012.11.002
    49 https://doi.org/10.1016/s0140-6736(09)60229-4
    50 https://doi.org/10.1016/s1470-2045(12)70584-3
    51 https://doi.org/10.1056/nejmoa1113205
    52 https://doi.org/10.1073/pnas.0308531101
    53 https://doi.org/10.1093/carcin/bgv123
    54 https://doi.org/10.1126/science.1224922
    55 https://doi.org/10.1126/science.aaf8399
    56 https://doi.org/10.1126/scitranslmed.aaa1408
    57 https://doi.org/10.1158/1538-7445.am2016-3641
    58 https://doi.org/10.1177/1947601909359929
    59 https://doi.org/10.1182/blood-2013-08-518886
    60 https://doi.org/10.1200/jco.2012.45.2003
    61 https://doi.org/10.1242/jcs.116392
    62 https://doi.org/10.7554/elife.02869
    63 schema:datePublished 2019-12
    64 schema:datePublishedReg 2019-12-01
    65 schema:description The genetic landscape of clear cell renal cell carcinoma (ccRCC) had been investigated extensively but its evolution patterns remained unclear. Here we analyze the clonal architectures of 473 patients from three different populations. We find that the mutational signatures vary substantially across different populations and evolution stages. The evolution patterns of ccRCC have great inter-patient heterogeneities, with del(3p) being regarded as the common earliest event followed by three early departure points: VHL and PBRM1 mutations, del(14q) and other somatic copy number alterations (SCNAs) including amp(7), del(1p) and del(6q). We identify three prognostic subtypes of ccRCC with distinct clonal architectures and immune infiltrates: long-lived patients, enriched with VHL but depleted of BAP1 mutations, have high levels of Th17 and CD8<sup>+</sup> T cells while short-lived patients with high burden of SCNAs have high levels of Tregs and Th2 cells, highlighting the importance of evaluating evolution patterns in the clinical management of ccRCC.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree true
    69 schema:isPartOf N6ccd2be0ef4a4958b0e513451f4fd5eb
    70 Nf39dcf21b9d04ceea2f17bd48b67aa27
    71 sg:journal.1043282
    72 schema:name Clonal architectures predict clinical outcome in clear cell renal cell carcinoma
    73 schema:pagination 1245
    74 schema:productId N41add79d915b412ba8189658d75b1f27
    75 N5e964b6df0c546eba49a9b5b1fb7021f
    76 Nb4e55b2f119d42af8bba66b95fbbb998
    77 Nbfaee8293ae243af8ae94a1a89f59688
    78 Nddaf4f07b1674614918d9536f48ef26d
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112850197
    80 https://doi.org/10.1038/s41467-019-09241-7
    81 schema:sdDatePublished 2019-04-11T14:20
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N1f19b73f3d484a67a650f7f540a9df89
    84 schema:url https://www.nature.com/articles/s41467-019-09241-7
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N01db649fde1f43e98181dec4fd9e8b8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Transcription Factors
    90 rdf:type schema:DefinedTerm
    91 N0447aea1c85e4974805b0a8dd904ffc4 rdf:first N13539425e2c5400d940b96b16b11b6f9
    92 rdf:rest Na08063c0e94f48299f01882419c49a78
    93 N0aeb2f1fb5b144e8932e9cd6994cfcc9 rdf:first Nd92cf839852c42ed9f17806d9fe037ca
    94 rdf:rest N5df682d83f604889ba3d097a0558df38
    95 N13539425e2c5400d940b96b16b11b6f9 schema:affiliation https://www.grid.ac/institutes/grid.411918.4
    96 schema:familyName Li
    97 schema:givenName Xiangchun
    98 rdf:type schema:Person
    99 N16be77efc14a452f8e47ad21d96c0812 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Th2 Cells
    101 rdf:type schema:DefinedTerm
    102 N1f19b73f3d484a67a650f7f540a9df89 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 N248937fcc0194d27852d711a9959c965 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Evolution, Molecular
    106 rdf:type schema:DefinedTerm
    107 N27b80a58acb14e269824d73db772947e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Whole Genome Sequencing
    109 rdf:type schema:DefinedTerm
    110 N29b3205ffad449729e9429867fef0db5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Humans
    112 rdf:type schema:DefinedTerm
    113 N2fe81eb7608745b09cb567fa4e294fb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name CD8-Positive T-Lymphocytes
    115 rdf:type schema:DefinedTerm
    116 N3132dd5f7f5c40c79a7f7921709acf84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Mutation
    118 rdf:type schema:DefinedTerm
    119 N41add79d915b412ba8189658d75b1f27 schema:name pubmed_id
    120 schema:value 30886153
    121 rdf:type schema:PropertyValue
    122 N4231d08bc65940cdb937eef48d7c6014 rdf:first Nfc0039a9ea434ad4879e1ddd634cee89
    123 rdf:rest N9e01c40dfa1a49949bee7c5a025de16b
    124 N4436ff3379d347ab973ad7a6b3fe8652 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Prognosis
    126 rdf:type schema:DefinedTerm
    127 N48a275574b3049a2a60ceb1b9273fa5f rdf:first N7f99c9f6ee6a4a59aacfcfb07549d7ce
    128 rdf:rest N0aeb2f1fb5b144e8932e9cd6994cfcc9
    129 N56593c52d2d541638cade7b8012274b0 schema:name Geneplus-Beijing, 102206, Beijing, China
    130 rdf:type schema:Organization
    131 N5dd76d9c27e140e2b8dd5e97e2c9cae0 rdf:first Nb90668efd4244ee68fd0527b572db47a
    132 rdf:rest Nd841258c2c1846e19740254625f25611
    133 N5ddd8117d4d7405580b8a5ec33d83eae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Genetic Heterogeneity
    135 rdf:type schema:DefinedTerm
    136 N5df682d83f604889ba3d097a0558df38 rdf:first Ncf4c64df9b0a4e379e649f83accb99b0
    137 rdf:rest rdf:nil
    138 N5e964b6df0c546eba49a9b5b1fb7021f schema:name dimensions_id
    139 schema:value pub.1112850197
    140 rdf:type schema:PropertyValue
    141 N686720135d5248038440f6498cfc9ac2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Kidney
    143 rdf:type schema:DefinedTerm
    144 N6ccd2be0ef4a4958b0e513451f4fd5eb schema:volumeNumber 10
    145 rdf:type schema:PublicationVolume
    146 N6d84b8ec08ea484b82d3f1e829820df8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Survival Analysis
    148 rdf:type schema:DefinedTerm
    149 N6ed1138421b44fc4be00c8c40621238b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Gene Expression Regulation, Neoplastic
    151 rdf:type schema:DefinedTerm
    152 N6fe607e5610e482b9d84a45ff187aeaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Cohort Studies
    154 rdf:type schema:DefinedTerm
    155 N7b0c7888cab14e74a286047436ed0c4a schema:affiliation https://www.grid.ac/institutes/grid.43169.39
    156 schema:familyName Wang
    157 schema:givenName Jiayin
    158 rdf:type schema:Person
    159 N7d0223c486624573b4410f6b183642e8 schema:name The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, Guangdong, China
    160 rdf:type schema:Organization
    161 N7d1b774d53ed4bb797c5b95d5ca86d48 rdf:first Nd08978bf5418438fa62714cbbbc0faa6
    162 rdf:rest Nac50a9dea5e24165a7364e60c1829db5
    163 N7f99c9f6ee6a4a59aacfcfb07549d7ce schema:affiliation Nfb9b567205d443b2a6e2d95ae2340ee4
    164 schema:familyName Yi
    165 schema:givenName Xin
    166 rdf:type schema:Person
    167 N85edd915d85a4df08274600d759bd231 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
    168 schema:familyName Pei
    169 schema:givenName Guangsheng
    170 rdf:type schema:Person
    171 N87f898e00c6a48429b938b9f2b75d833 schema:name Geneplus-Beijing, 102206, Beijing, China
    172 rdf:type schema:Organization
    173 N935036443dac43bca0ae40a6afa48d08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Clone Cells
    175 rdf:type schema:DefinedTerm
    176 N9446a00151434520bde52d36b4b870df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Von Hippel-Lindau Tumor Suppressor Protein
    178 rdf:type schema:DefinedTerm
    179 N9b76520b226f413fa090622350508e25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Nuclear Proteins
    181 rdf:type schema:DefinedTerm
    182 N9e01c40dfa1a49949bee7c5a025de16b rdf:first Ne841dfdb3c4a413a98b1576e8d9f03c5
    183 rdf:rest N7d1b774d53ed4bb797c5b95d5ca86d48
    184 Na08063c0e94f48299f01882419c49a78 rdf:first N85edd915d85a4df08274600d759bd231
    185 rdf:rest N4231d08bc65940cdb937eef48d7c6014
    186 Nac4043f0235e4541ba3675ea2d6687e6 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
    187 schema:familyName Jia
    188 schema:givenName Peilin
    189 rdf:type schema:Person
    190 Nac50a9dea5e24165a7364e60c1829db5 rdf:first Neeec8e9ddadf4b23bd37fa7fce88ed1c
    191 rdf:rest N48a275574b3049a2a60ceb1b9273fa5f
    192 Nb4e55b2f119d42af8bba66b95fbbb998 schema:name readcube_id
    193 schema:value 14d53d4102270bea3013eeaa2c5966a63d8cc31fea7e13375af4883dc952ba54
    194 rdf:type schema:PropertyValue
    195 Nb88788b0d3c74917ae59ecd0d6e89e12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name T-Lymphocytes, Regulatory
    197 rdf:type schema:DefinedTerm
    198 Nb90668efd4244ee68fd0527b572db47a schema:affiliation https://www.grid.ac/institutes/grid.43169.39
    199 schema:familyName Huang
    200 schema:givenName Yi
    201 rdf:type schema:Person
    202 Nbfaee8293ae243af8ae94a1a89f59688 schema:name nlm_unique_id
    203 schema:value 101528555
    204 rdf:type schema:PropertyValue
    205 Nc20ae5016d2347a2a60426d9f3036431 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name DNA Copy Number Variations
    207 rdf:type schema:DefinedTerm
    208 Ncad27786d5444604809c46a96565d8bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Kidney Neoplasms
    210 rdf:type schema:DefinedTerm
    211 Ncf4c64df9b0a4e379e649f83accb99b0 schema:affiliation N87f898e00c6a48429b938b9f2b75d833
    212 schema:familyName Zhang
    213 schema:givenName Baifeng
    214 rdf:type schema:Person
    215 Nd08978bf5418438fa62714cbbbc0faa6 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
    216 schema:familyName Zhao
    217 schema:givenName Zhongming
    218 rdf:type schema:Person
    219 Nd43f49bf17ce47609c8a26a3e7d139d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Carcinoma, Renal Cell
    221 rdf:type schema:DefinedTerm
    222 Nd841258c2c1846e19740254625f25611 rdf:first N7b0c7888cab14e74a286047436ed0c4a
    223 rdf:rest Ne6af0246588341fabafa6504fa37a766
    224 Nd92cf839852c42ed9f17806d9fe037ca schema:affiliation https://www.grid.ac/institutes/grid.263488.3
    225 schema:familyName Wu
    226 schema:givenName Song
    227 rdf:type schema:Person
    228 Nddaf4f07b1674614918d9536f48ef26d schema:name doi
    229 schema:value 10.1038/s41467-019-09241-7
    230 rdf:type schema:PropertyValue
    231 Ne6af0246588341fabafa6504fa37a766 rdf:first Nac4043f0235e4541ba3675ea2d6687e6
    232 rdf:rest N0447aea1c85e4974805b0a8dd904ffc4
    233 Ne841dfdb3c4a413a98b1576e8d9f03c5 schema:affiliation N7d0223c486624573b4410f6b183642e8
    234 schema:familyName Fang
    235 schema:givenName Xiaodong
    236 rdf:type schema:Person
    237 Ne9ee43fda20c4b349d0e1c7c69fe12e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    238 schema:name Th17 Cells
    239 rdf:type schema:DefinedTerm
    240 Neeec8e9ddadf4b23bd37fa7fce88ed1c schema:affiliation https://www.grid.ac/institutes/grid.263488.3
    241 schema:familyName Cai
    242 schema:givenName Zhiming
    243 rdf:type schema:Person
    244 Nf39dcf21b9d04ceea2f17bd48b67aa27 schema:issueNumber 1
    245 rdf:type schema:PublicationIssue
    246 Nfb9b567205d443b2a6e2d95ae2340ee4 schema:name Geneplus-Beijing, 102206, Beijing, China
    247 rdf:type schema:Organization
    248 Nfc0039a9ea434ad4879e1ddd634cee89 schema:affiliation N56593c52d2d541638cade7b8012274b0
    249 schema:familyName Wang
    250 schema:givenName Changxi
    251 rdf:type schema:Person
    252 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    253 schema:name Biological Sciences
    254 rdf:type schema:DefinedTerm
    255 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    256 schema:name Genetics
    257 rdf:type schema:DefinedTerm
    258 sg:grant.7028805 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09241-7
    259 rdf:type schema:MonetaryGrant
    260 sg:journal.1043282 schema:issn 2041-1723
    261 schema:name Nature Communications
    262 rdf:type schema:Periodical
    263 sg:pub.10.1038/nature08460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002209653
    264 https://doi.org/10.1038/nature08460
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nature08672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032969139
    267 https://doi.org/10.1038/nature08672
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nature12222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050842404
    270 https://doi.org/10.1038/nature12222
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nature12477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050004918
    273 https://doi.org/10.1038/nature12477
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nature15395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037615856
    276 https://doi.org/10.1038/nature15395
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nbt.2203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010515132
    279 https://doi.org/10.1038/nbt.2203
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nbt.2514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000477771
    282 https://doi.org/10.1038/nbt.2514
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/ncomms6135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001274259
    285 https://doi.org/10.1038/ncomms6135
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/ncomms7604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042226470
    288 https://doi.org/10.1038/ncomms7604
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/ng.1014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031490994
    291 https://doi.org/10.1038/ng.1014
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/ng.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043591147
    294 https://doi.org/10.1038/ng.2323
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/ng.2699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023979397
    297 https://doi.org/10.1038/ng.2699
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/ng.2891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690077
    300 https://doi.org/10.1038/ng.2891
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/ng.3557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013914776
    303 https://doi.org/10.1038/ng.3557
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/nm.3984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704521
    306 https://doi.org/10.1038/nm.3984
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1186/s13059-016-1092-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906709
    309 https://doi.org/10.1186/s13059-016-1092-z
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1002/ijc.28768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043647720
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1016/j.ccr.2013.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011401642
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1016/j.cell.2013.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012051399
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1016/j.celrep.2012.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008799776
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1016/j.dnarep.2016.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025998866
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1016/j.eururo.2014.06.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033040797
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1016/j.gde.2013.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022798904
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1016/j.imlet.2012.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024473464
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1016/s0140-6736(09)60229-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012262879
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1016/s1470-2045(12)70584-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048894778
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1056/nejmoa1113205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031166230
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1073/pnas.0308531101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001366510
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1093/carcin/bgv123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059454477
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1126/science.1224922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466872
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1126/science.aaf8399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041623781
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1126/scitranslmed.aaa1408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015297504
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1158/1538-7445.am2016-3641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063268335
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1177/1947601909359929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009973851
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1182/blood-2013-08-518886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013232565
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1200/jco.2012.45.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003903632
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1242/jcs.116392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044868441
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.7554/elife.02869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021638601
    354 rdf:type schema:CreativeWork
    355 https://www.grid.ac/institutes/grid.263488.3 schema:alternateName Shenzhen University
    356 schema:name The Third Affiliated Hospital of Shenzhen University, 518001, Shenzhen, Guangdong, China
    357 rdf:type schema:Organization
    358 https://www.grid.ac/institutes/grid.267308.8 schema:alternateName The University of Texas Health Science Center at Houston
    359 schema:name Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 77030, Houston, TX, USA
    360 rdf:type schema:Organization
    361 https://www.grid.ac/institutes/grid.411918.4 schema:alternateName Tianjin Medical University Cancer Institute and Hospital
    362 schema:name Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
    363 rdf:type schema:Organization
    364 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
    365 schema:name Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, China
    366 Geneplus-Beijing, 102206, Beijing, China
    367 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...