In situ reversible underwater superwetting transition by electrochemical atomic alternation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Qianbin Wang, Bojie Xu, Qing Hao, Dong Wang, Huan Liu, Lei Jiang

ABSTRACT

Materials with in situ reversible wettability have attractive properties but remain a challenge to use since the inverse process of liquid spreading is normally energetically unfavorable. Here, we propose a general electrochemical strategy that enables the in situ reversible superwetting transition between underwater superoleophilicity and superoleophobicity by constructing a binary textured surface. Taking the copper/tin system as an example, the surface energy of the copper electrode can be lowered significantly by electrodeposited tin, and be brought back to the initial high-energy state as a result of dissolving tin by removing the potential. Tin atoms with the water depletion layer inhibit the formation of a hydrogen-bonding network, causing oil droplets to spread over the surface, while copper atoms, with a high affinity for hydroxyl groups, facilitate replacing the oil layer with the aqueous electrolyte. The concept is applicable to other systems, such as copper/lead, copper/antimony, gold/tin, gold/lead and gold/antimony, for both polar and nonpolar oils, representing a potentially useful class of switchable surfaces. More... »

PAGES

1212

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-09201-1

DOI

http://dx.doi.org/10.1038/s41467-019-09201-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112766944

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30872585


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qianbin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Bojie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418929.f", 
          "name": [
            "Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Qing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418929.f", 
          "name": [
            "Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Dong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Huan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Institute of Physics and Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.458502.e", 
          "name": [
            "Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China", 
            "CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Lei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35003149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000166050", 
          "https://doi.org/10.1038/35003149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35003149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000166050", 
          "https://doi.org/10.1038/35003149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000340436", 
          "https://doi.org/10.1038/nbt.3020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2015.08.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000579196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1148326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001573935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201504407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006571702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201202516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006842899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b925673c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014402859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b925673c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014402859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-5729(87)90001-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015686291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-5729(87)90001-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015686291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017069288", 
          "https://doi.org/10.1038/nmat3545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018117082", 
          "https://doi.org/10.1038/nature11418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cphc.200800438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018272985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018490554", 
          "https://doi.org/10.1038/nature14272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200401646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020122727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024654648", 
          "https://doi.org/10.1038/nmat924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024654648", 
          "https://doi.org/10.1038/nmat924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/41233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025007901", 
          "https://doi.org/10.1038/41233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/41233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025007901", 
          "https://doi.org/10.1038/41233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2004.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030972821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa0946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032755798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl062606c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033164385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl062606c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033164385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035436708", 
          "https://doi.org/10.1038/nmat2998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b913622c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036169922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp071957s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037394055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp071957s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037394055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040378279", 
          "https://doi.org/10.1038/nature10447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(98)00012-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041524100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cs35501b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041907976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200352565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048268009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b501657f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051633063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01099a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055768004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la062301d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la062301d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la303717n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056157049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la903392n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056165913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la903392n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056165913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma020109m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056186678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma020109m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056186678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1724992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057791548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4816461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058079815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.266101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.266101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1078933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.291.5504.633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062572807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf2073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062667425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2138/am-2002-5-604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069056543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084509218", 
          "https://doi.org/10.1038/nnano.2017.33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084509218", 
          "https://doi.org/10.1038/nnano.2017.33"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Materials with in situ reversible wettability have attractive properties but remain a challenge to use since the inverse process of liquid spreading is normally energetically unfavorable. Here, we propose a general electrochemical strategy that enables the in situ reversible superwetting transition between underwater superoleophilicity and superoleophobicity by constructing a binary textured surface. Taking the copper/tin system as an example, the surface energy of the copper electrode can be lowered significantly by electrodeposited tin, and be brought back to the initial high-energy state as a result of dissolving tin by removing the potential. Tin atoms with the water depletion layer inhibit the formation of a hydrogen-bonding network, causing oil droplets to spread over the surface, while copper atoms, with a high affinity for hydroxyl groups, facilitate replacing the oil layer with the aqueous electrolyte. The concept is applicable to other systems, such as copper/lead, copper/antimony, gold/tin, gold/lead and gold/antimony, for both polar and nonpolar oils, representing a potentially useful class of switchable surfaces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-019-09201-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "In situ reversible underwater superwetting transition by electrochemical atomic alternation", 
    "pagination": "1212", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb9994c95a335de1f2522ae53946b8dfb6e8bd0deffa7d3e21246811075067c4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30872585"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-09201-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112766944"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-09201-1", 
      "https://app.dimensions.ai/details/publication/pub.1112766944"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78972_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-019-09201-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09201-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09201-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09201-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09201-1'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-09201-1 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nbb3436fbc4c1472697737b5eb0092351
4 schema:citation sg:pub.10.1038/35003149
5 sg:pub.10.1038/41233
6 sg:pub.10.1038/nature10447
7 sg:pub.10.1038/nature11418
8 sg:pub.10.1038/nature14272
9 sg:pub.10.1038/nbt.3020
10 sg:pub.10.1038/nmat2998
11 sg:pub.10.1038/nmat3545
12 sg:pub.10.1038/nmat924
13 sg:pub.10.1038/nnano.2017.33
14 https://doi.org/10.1002/adma.200401646
15 https://doi.org/10.1002/adma.201202516
16 https://doi.org/10.1002/adma.201504407
17 https://doi.org/10.1002/anie.200352565
18 https://doi.org/10.1002/cphc.200800438
19 https://doi.org/10.1016/0167-5729(87)90001-x
20 https://doi.org/10.1016/j.electacta.2004.07.010
21 https://doi.org/10.1016/j.surfcoat.2015.08.052
22 https://doi.org/10.1016/s0022-0248(98)00012-8
23 https://doi.org/10.1021/ja01099a013
24 https://doi.org/10.1021/jp071957s
25 https://doi.org/10.1021/la062301d
26 https://doi.org/10.1021/la303717n
27 https://doi.org/10.1021/la903392n
28 https://doi.org/10.1021/ma020109m
29 https://doi.org/10.1021/nl062606c
30 https://doi.org/10.1039/b501657f
31 https://doi.org/10.1039/b913622c
32 https://doi.org/10.1039/b925673c
33 https://doi.org/10.1039/c3cs35501b
34 https://doi.org/10.1063/1.1724992
35 https://doi.org/10.1063/1.4816461
36 https://doi.org/10.1103/physrevlett.97.266101
37 https://doi.org/10.1126/science.1078933
38 https://doi.org/10.1126/science.1148326
39 https://doi.org/10.1126/science.291.5504.633
40 https://doi.org/10.1126/science.aaa0946
41 https://doi.org/10.1126/science.aaf2073
42 https://doi.org/10.2138/am-2002-5-604
43 schema:datePublished 2019-12
44 schema:datePublishedReg 2019-12-01
45 schema:description Materials with in situ reversible wettability have attractive properties but remain a challenge to use since the inverse process of liquid spreading is normally energetically unfavorable. Here, we propose a general electrochemical strategy that enables the in situ reversible superwetting transition between underwater superoleophilicity and superoleophobicity by constructing a binary textured surface. Taking the copper/tin system as an example, the surface energy of the copper electrode can be lowered significantly by electrodeposited tin, and be brought back to the initial high-energy state as a result of dissolving tin by removing the potential. Tin atoms with the water depletion layer inhibit the formation of a hydrogen-bonding network, causing oil droplets to spread over the surface, while copper atoms, with a high affinity for hydroxyl groups, facilitate replacing the oil layer with the aqueous electrolyte. The concept is applicable to other systems, such as copper/lead, copper/antimony, gold/tin, gold/lead and gold/antimony, for both polar and nonpolar oils, representing a potentially useful class of switchable surfaces.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N04cbeed69863402ea3f725a160e35a89
50 N58ecccff12ee4273b4056e28de7d808e
51 sg:journal.1043282
52 schema:name In situ reversible underwater superwetting transition by electrochemical atomic alternation
53 schema:pagination 1212
54 schema:productId N39be0b63370d425386bf87268bf15e3a
55 N4f9a5d40f93640098a0ca8cd06e9e30f
56 N52f54b3df1634fc7b6bee1497e59a539
57 N6de956242c2a43de9f35200e0e61a4cd
58 Nbe6fea56bc7c47fdbe6f8033f30aa28d
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112766944
60 https://doi.org/10.1038/s41467-019-09201-1
61 schema:sdDatePublished 2019-04-11T13:21
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nf7a8c3c4697e44b6be17f748eda7a753
64 schema:url https://www.nature.com/articles/s41467-019-09201-1
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N03a985d3ad44496b9288a95ef8989fc1 rdf:first N257bc9a9c1814938881fb9a8b90466de
69 rdf:rest Nd8457cf057944a3bae70b836f5c85273
70 N04cbeed69863402ea3f725a160e35a89 schema:volumeNumber 10
71 rdf:type schema:PublicationVolume
72 N0f0d2f83e89b4d97b1b69b3d221dc2fa schema:affiliation https://www.grid.ac/institutes/grid.458502.e
73 schema:familyName Jiang
74 schema:givenName Lei
75 rdf:type schema:Person
76 N0f399412c79f4fa3b8a348d2d3c413ba rdf:first Nfb13043a37a74c63bf770fabc8448e10
77 rdf:rest N9f82b0f09abb4d758a6b167ef8d0394f
78 N1d1b91d64dc54f06b9b630aa1891285a schema:affiliation https://www.grid.ac/institutes/grid.64939.31
79 schema:familyName Wang
80 schema:givenName Qianbin
81 rdf:type schema:Person
82 N257bc9a9c1814938881fb9a8b90466de schema:affiliation https://www.grid.ac/institutes/grid.418929.f
83 schema:familyName Wang
84 schema:givenName Dong
85 rdf:type schema:Person
86 N39be0b63370d425386bf87268bf15e3a schema:name nlm_unique_id
87 schema:value 101528555
88 rdf:type schema:PropertyValue
89 N4c4f2d05fd0c480b876f921b87f9c915 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
90 schema:familyName Liu
91 schema:givenName Huan
92 rdf:type schema:Person
93 N4f9a5d40f93640098a0ca8cd06e9e30f schema:name pubmed_id
94 schema:value 30872585
95 rdf:type schema:PropertyValue
96 N52f54b3df1634fc7b6bee1497e59a539 schema:name readcube_id
97 schema:value cb9994c95a335de1f2522ae53946b8dfb6e8bd0deffa7d3e21246811075067c4
98 rdf:type schema:PropertyValue
99 N58ecccff12ee4273b4056e28de7d808e schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N6de956242c2a43de9f35200e0e61a4cd schema:name dimensions_id
102 schema:value pub.1112766944
103 rdf:type schema:PropertyValue
104 N75dfd98737a44f79b86aaa862c201a46 schema:affiliation https://www.grid.ac/institutes/grid.418929.f
105 schema:familyName Hao
106 schema:givenName Qing
107 rdf:type schema:Person
108 N79a2e9faa79445ea85038a403d815bf0 rdf:first N0f0d2f83e89b4d97b1b69b3d221dc2fa
109 rdf:rest rdf:nil
110 N9f82b0f09abb4d758a6b167ef8d0394f rdf:first N75dfd98737a44f79b86aaa862c201a46
111 rdf:rest N03a985d3ad44496b9288a95ef8989fc1
112 Nbb3436fbc4c1472697737b5eb0092351 rdf:first N1d1b91d64dc54f06b9b630aa1891285a
113 rdf:rest N0f399412c79f4fa3b8a348d2d3c413ba
114 Nbe6fea56bc7c47fdbe6f8033f30aa28d schema:name doi
115 schema:value 10.1038/s41467-019-09201-1
116 rdf:type schema:PropertyValue
117 Nd8457cf057944a3bae70b836f5c85273 rdf:first N4c4f2d05fd0c480b876f921b87f9c915
118 rdf:rest N79a2e9faa79445ea85038a403d815bf0
119 Nf7a8c3c4697e44b6be17f748eda7a753 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Nfb13043a37a74c63bf770fabc8448e10 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
122 schema:familyName Xu
123 schema:givenName Bojie
124 rdf:type schema:Person
125 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
126 schema:name Chemical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
129 schema:name Physical Chemistry (incl. Structural)
130 rdf:type schema:DefinedTerm
131 sg:journal.1043282 schema:issn 2041-1723
132 schema:name Nature Communications
133 rdf:type schema:Periodical
134 sg:pub.10.1038/35003149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000166050
135 https://doi.org/10.1038/35003149
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/41233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025007901
138 https://doi.org/10.1038/41233
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature10447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040378279
141 https://doi.org/10.1038/nature10447
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature11418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018117082
144 https://doi.org/10.1038/nature11418
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature14272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018490554
147 https://doi.org/10.1038/nature14272
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nbt.3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000340436
150 https://doi.org/10.1038/nbt.3020
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nmat2998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035436708
153 https://doi.org/10.1038/nmat2998
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nmat3545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017069288
156 https://doi.org/10.1038/nmat3545
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmat924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024654648
159 https://doi.org/10.1038/nmat924
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nnano.2017.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084509218
162 https://doi.org/10.1038/nnano.2017.33
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/adma.200401646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020122727
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/adma.201202516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006842899
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/adma.201504407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006571702
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/anie.200352565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048268009
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/cphc.200800438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018272985
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0167-5729(87)90001-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015686291
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.electacta.2004.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030972821
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.surfcoat.2015.08.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000579196
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0022-0248(98)00012-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041524100
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/ja01099a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055768004
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/jp071957s schema:sameAs https://app.dimensions.ai/details/publication/pub.1037394055
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/la062301d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056151093
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/la303717n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056157049
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/la903392n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056165913
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/ma020109m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056186678
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/nl062606c schema:sameAs https://app.dimensions.ai/details/publication/pub.1033164385
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1039/b501657f schema:sameAs https://app.dimensions.ai/details/publication/pub.1051633063
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1039/b913622c schema:sameAs https://app.dimensions.ai/details/publication/pub.1036169922
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1039/b925673c schema:sameAs https://app.dimensions.ai/details/publication/pub.1014402859
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1039/c3cs35501b schema:sameAs https://app.dimensions.ai/details/publication/pub.1041907976
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.1724992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791548
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1063/1.4816461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058079815
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.97.266101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833314
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1078933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447172
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1148326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001573935
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.291.5504.633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572807
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.aaa0946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032755798
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.aaf2073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062667425
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2138/am-2002-5-604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069056543
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.418929.f schema:alternateName Institute of Chemistry
223 schema:name Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.458502.e schema:alternateName Technical Institute of Physics and Chemistry
226 schema:name CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
227 Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
230 schema:name Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...