Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-11

AUTHORS

Xinyu Huang, Hongbo Li, Chunfeng Zhang, Shijing Tan, Zhangzhang Chen, Lan Chen, Zhenda Lu, Xiaoyong Wang, Min Xiao

ABSTRACT

Hybrid metal/semiconductor nano-heterostructures with strong exciton-plasmon coupling have been proposed for applications in hot carrier optoelectronic devices. However, the performance of devices based on this concept has been limited by the poor efficiency of plasmon-hot electron conversion at the metal/semiconductor interface. Here, we report that the efficiency of interfacial hot excitation transfer can be substantially improved in hybrid metal semiconductor nano-heterostructures consisting of perovskite semiconductors. In Ag–CsPbBr3 nanocrystals, both the plasmon-induced hot electron and the resonant energy transfer processes can occur on a time scale of less than 100 fs with quantum efficiencies of 50 ± 18% and 15 ± 5%, respectively. The markedly high efficiency of hot electron transfer observed here can be ascribed to the increased metal/semiconductor coupling compared with those in conventional systems. These findings suggest that hybrid architectures of metal and perovskite semiconductors may be excellent candidates to achieve highly efficient plasmon-induced hot carrier devices. More... »

PAGES

1163

References to SciGraph publications

  • 2014-03-16. Low-temperature solution-processed wavelength-tunable perovskites for lasing in NATURE MATERIALS
  • 2010-02-19. Plasmonics for improved photovoltaic devices in NATURE MATERIALS
  • 2016-01-19. Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods in NATURE COMMUNICATIONS
  • 2015-05-07. Metal-halide perovskites for photovoltaic and light-emitting devices in NATURE NANOTECHNOLOGY
  • 2013-10-20. Hot-electron nanoscopy using adiabatic compression of surface plasmons in NATURE NANOTECHNOLOGY
  • 2011-07-31. Long-range electron tunnelling in oligo-porphyrin molecular wires in NATURE NANOTECHNOLOGY
  • 2014-06-27. The emergence of perovskite solar cells in NATURE PHOTONICS
  • 2015-08-10. Plasmon-induced resonance energy transfer for solar energy conversion in NATURE PHOTONICS
  • 2013-03-27. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device in NATURE COMMUNICATIONS
  • 2015-01-06. Plasmon-induced hot carrier science and technology in NATURE NANOTECHNOLOGY
  • 2013-02-24. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons in NATURE NANOTECHNOLOGY
  • 2015-08-20. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites in NATURE COMMUNICATIONS
  • 2017-11-30. Plasmonic coupling at a metal/semiconductor interface in NATURE PHOTONICS
  • 2014-01-30. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices in NATURE PHOTONICS
  • 2017-05-12. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals in NATURE COMMUNICATIONS
  • 2016-12-01. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor in NATURE COMMUNICATIONS
  • 2015-01-06. The case for plasmon-derived hot carrier devices in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-09112-1

    DOI

    http://dx.doi.org/10.1038/s41467-019-09112-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112675068

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30858372


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Condensed Matter Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.509497.6", 
              "name": [
                "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Xinyu", 
            "id": "sg:person.012155156260.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155156260.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.484516.a", 
              "name": [
                "College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China", 
                "Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Hongbo", 
            "id": "sg:person.013504124466.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504124466.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China", 
                "Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Chunfeng", 
            "id": "sg:person.01357236035.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357236035.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
              "id": "http://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Shijing", 
            "id": "sg:person.0657326240.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657326240.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.509497.6", 
              "name": [
                "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Zhangzhang", 
            "id": "sg:person.016260256117.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016260256117.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.509497.6", 
              "name": [
                "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Lan", 
            "id": "sg:person.015600712125.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015600712125.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Zhenda", 
            "id": "sg:person.01205155640.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205155640.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.509497.6", 
              "name": [
                "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiaoyong", 
            "id": "sg:person.01060151142.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060151142.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of Arkansas, 72701, Fayetteville, AR, USA", 
              "id": "http://www.grid.ac/institutes/grid.411017.2", 
              "name": [
                "National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China", 
                "Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
                "Department of Physics, University of Arkansas, 72701, Fayetteville, AR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Min", 
            "id": "sg:person.014070572411.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070572411.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphoton.2013.238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005722192", 
              "https://doi.org/10.1038/nphoton.2013.238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2011.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012315440", 
              "https://doi.org/10.1038/nnano.2011.111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040403690", 
              "https://doi.org/10.1038/nnano.2014.311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085398039", 
              "https://doi.org/10.1038/ncomms15198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41566-017-0049-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092730337", 
              "https://doi.org/10.1038/s41566-017-0049-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038007353", 
              "https://doi.org/10.1038/nnano.2013.18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047645515", 
              "https://doi.org/10.1038/nnano.2013.207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052443614", 
              "https://doi.org/10.1038/nphoton.2015.142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038803945", 
              "https://doi.org/10.1038/ncomms9056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035914481", 
              "https://doi.org/10.1038/ncomms13651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012597090", 
              "https://doi.org/10.1038/ncomms10413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016821296", 
              "https://doi.org/10.1038/nnano.2015.90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024354805", 
              "https://doi.org/10.1038/nmat3911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025980679", 
              "https://doi.org/10.1038/nnano.2014.280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027885712", 
              "https://doi.org/10.1038/ncomms2642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047990558", 
              "https://doi.org/10.1038/nmat2629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2014.134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045181228", 
              "https://doi.org/10.1038/nphoton.2014.134"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-11", 
        "datePublishedReg": "2019-03-11", 
        "description": "Hybrid metal/semiconductor nano-heterostructures with strong exciton-plasmon coupling have been proposed for applications in hot carrier optoelectronic devices. However, the performance of devices based on this concept has been limited by the poor efficiency of plasmon-hot electron conversion at the metal/semiconductor interface. Here, we report that the efficiency of interfacial hot excitation transfer can be substantially improved in hybrid metal semiconductor nano-heterostructures consisting of perovskite semiconductors. In Ag\u2013CsPbBr3 nanocrystals, both the plasmon-induced hot electron and the resonant energy transfer processes can occur on a time scale of less than 100 fs with quantum efficiencies of 50\u2009\u00b1\u200918% and 15\u2009\u00b1\u20095%, respectively. The markedly high efficiency of hot electron transfer observed here can be ascribed to the increased metal/semiconductor coupling compared with those in conventional systems. These findings suggest that hybrid architectures of metal and perovskite semiconductors may be excellent candidates to achieve highly efficient plasmon-induced hot carrier devices.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-09112-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8124821", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8902252", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8127106", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8891343", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8891209", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "electron conversion", 
          "perovskite semiconductors", 
          "plasmon-induced hot electrons", 
          "strong exciton-plasmon coupling", 
          "exciton-plasmon coupling", 
          "hot carrier devices", 
          "metal/semiconductor interface", 
          "resonant energy transfer process", 
          "hot electron transfer", 
          "energy transfer process", 
          "metal/semiconductor", 
          "hot electrons", 
          "optoelectronic devices", 
          "quantum efficiency", 
          "semiconductor interface", 
          "performance of devices", 
          "excitation transfer", 
          "carrier devices", 
          "semiconductors", 
          "metal semiconductor", 
          "semiconductor coupling", 
          "hybrid nanocrystals", 
          "time scales", 
          "electron transfer", 
          "transfer process", 
          "high efficiency", 
          "nanocrystals", 
          "conventional system", 
          "devices", 
          "excellent candidate", 
          "coupling", 
          "electrons", 
          "poor efficiency", 
          "efficiency", 
          "hybrid architecture", 
          "transfer", 
          "interface", 
          "metals", 
          "performance", 
          "conversion", 
          "applications", 
          "process", 
          "candidates", 
          "system", 
          "scale", 
          "architecture", 
          "concept", 
          "findings", 
          "Hybrid metal/semiconductor", 
          "hot carrier optoelectronic devices", 
          "carrier optoelectronic devices", 
          "plasmon-hot electron conversion", 
          "interfacial hot excitation transfer", 
          "hot excitation transfer", 
          "hybrid metal semiconductor", 
          "Ag\u2013CsPbBr3 nanocrystals", 
          "metal/semiconductor coupling", 
          "efficient plasmon-induced hot carrier devices", 
          "plasmon-induced hot carrier devices", 
          "Efficient plasmon-hot electron conversion", 
          "Ag\u2013CsPbBr3 hybrid nanocrystals"
        ], 
        "name": "Efficient plasmon-hot electron conversion in Ag\u2013CsPbBr3 hybrid nanocrystals", 
        "pagination": "1163", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112675068"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-09112-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30858372"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-09112-1", 
          "https://app.dimensions.ai/details/publication/pub.1112675068"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_813.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-09112-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09112-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09112-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09112-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09112-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    298 TRIPLES      22 PREDICATES      110 URIs      79 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-09112-1 schema:about anzsrc-for:02
    2 anzsrc-for:0204
    3 anzsrc-for:03
    4 anzsrc-for:0306
    5 anzsrc-for:09
    6 anzsrc-for:0912
    7 anzsrc-for:10
    8 anzsrc-for:1007
    9 schema:author Nc746de47020d485c985a4d3f54e1843a
    10 schema:citation sg:pub.10.1038/ncomms10413
    11 sg:pub.10.1038/ncomms13651
    12 sg:pub.10.1038/ncomms15198
    13 sg:pub.10.1038/ncomms2642
    14 sg:pub.10.1038/ncomms9056
    15 sg:pub.10.1038/nmat2629
    16 sg:pub.10.1038/nmat3911
    17 sg:pub.10.1038/nnano.2011.111
    18 sg:pub.10.1038/nnano.2013.18
    19 sg:pub.10.1038/nnano.2013.207
    20 sg:pub.10.1038/nnano.2014.280
    21 sg:pub.10.1038/nnano.2014.311
    22 sg:pub.10.1038/nnano.2015.90
    23 sg:pub.10.1038/nphoton.2013.238
    24 sg:pub.10.1038/nphoton.2014.134
    25 sg:pub.10.1038/nphoton.2015.142
    26 sg:pub.10.1038/s41566-017-0049-4
    27 schema:datePublished 2019-03-11
    28 schema:datePublishedReg 2019-03-11
    29 schema:description Hybrid metal/semiconductor nano-heterostructures with strong exciton-plasmon coupling have been proposed for applications in hot carrier optoelectronic devices. However, the performance of devices based on this concept has been limited by the poor efficiency of plasmon-hot electron conversion at the metal/semiconductor interface. Here, we report that the efficiency of interfacial hot excitation transfer can be substantially improved in hybrid metal semiconductor nano-heterostructures consisting of perovskite semiconductors. In Ag–CsPbBr3 nanocrystals, both the plasmon-induced hot electron and the resonant energy transfer processes can occur on a time scale of less than 100 fs with quantum efficiencies of 50 ± 18% and 15 ± 5%, respectively. The markedly high efficiency of hot electron transfer observed here can be ascribed to the increased metal/semiconductor coupling compared with those in conventional systems. These findings suggest that hybrid architectures of metal and perovskite semiconductors may be excellent candidates to achieve highly efficient plasmon-induced hot carrier devices.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N7352800ea0844931a4440fcb119d5de0
    34 Nc9917ea11f994d53a7b780050fe38800
    35 sg:journal.1043282
    36 schema:keywords Ag–CsPbBr3 hybrid nanocrystals
    37 Ag–CsPbBr3 nanocrystals
    38 Efficient plasmon-hot electron conversion
    39 Hybrid metal/semiconductor
    40 applications
    41 architecture
    42 candidates
    43 carrier devices
    44 carrier optoelectronic devices
    45 concept
    46 conventional system
    47 conversion
    48 coupling
    49 devices
    50 efficiency
    51 efficient plasmon-induced hot carrier devices
    52 electron conversion
    53 electron transfer
    54 electrons
    55 energy transfer process
    56 excellent candidate
    57 excitation transfer
    58 exciton-plasmon coupling
    59 findings
    60 high efficiency
    61 hot carrier devices
    62 hot carrier optoelectronic devices
    63 hot electron transfer
    64 hot electrons
    65 hot excitation transfer
    66 hybrid architecture
    67 hybrid metal semiconductor
    68 hybrid nanocrystals
    69 interface
    70 interfacial hot excitation transfer
    71 metal semiconductor
    72 metal/semiconductor
    73 metal/semiconductor coupling
    74 metal/semiconductor interface
    75 metals
    76 nanocrystals
    77 optoelectronic devices
    78 performance
    79 performance of devices
    80 perovskite semiconductors
    81 plasmon-hot electron conversion
    82 plasmon-induced hot carrier devices
    83 plasmon-induced hot electrons
    84 poor efficiency
    85 process
    86 quantum efficiency
    87 resonant energy transfer process
    88 scale
    89 semiconductor coupling
    90 semiconductor interface
    91 semiconductors
    92 strong exciton-plasmon coupling
    93 system
    94 time scales
    95 transfer
    96 transfer process
    97 schema:name Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals
    98 schema:pagination 1163
    99 schema:productId N525d7dfd2430424bb998e15203f9e7c9
    100 Naac9729b3f0944b99ad160c180dd9168
    101 Nc1934cc66c8849909f618715a5a4cf24
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112675068
    103 https://doi.org/10.1038/s41467-019-09112-1
    104 schema:sdDatePublished 2021-11-01T18:35
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher N109ef538199a4833b2b8c98c7f3c9f38
    107 schema:url https://doi.org/10.1038/s41467-019-09112-1
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N109ef538199a4833b2b8c98c7f3c9f38 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 N525d7dfd2430424bb998e15203f9e7c9 schema:name dimensions_id
    114 schema:value pub.1112675068
    115 rdf:type schema:PropertyValue
    116 N7352800ea0844931a4440fcb119d5de0 schema:issueNumber 1
    117 rdf:type schema:PublicationIssue
    118 N84d1052a73e94b9c83c269262a8e634e rdf:first sg:person.01357236035.01
    119 rdf:rest Ndb1d44f5436042748a612b941e3e6298
    120 Na44290cd7bbb4e6d8c6eb096a8cb9d8b rdf:first sg:person.014070572411.16
    121 rdf:rest rdf:nil
    122 Naac9729b3f0944b99ad160c180dd9168 schema:name doi
    123 schema:value 10.1038/s41467-019-09112-1
    124 rdf:type schema:PropertyValue
    125 Nb290a4e21709479282eb26baeaf70cd1 rdf:first sg:person.016260256117.53
    126 rdf:rest Nce13e0404f8a4e9d9924c3bffdbb0cbe
    127 Nc1934cc66c8849909f618715a5a4cf24 schema:name pubmed_id
    128 schema:value 30858372
    129 rdf:type schema:PropertyValue
    130 Nc746de47020d485c985a4d3f54e1843a rdf:first sg:person.012155156260.29
    131 rdf:rest Nc8fd2985fc994583acbbcb4da5cf824e
    132 Nc8fd2985fc994583acbbcb4da5cf824e rdf:first sg:person.013504124466.79
    133 rdf:rest N84d1052a73e94b9c83c269262a8e634e
    134 Nc9917ea11f994d53a7b780050fe38800 schema:volumeNumber 10
    135 rdf:type schema:PublicationVolume
    136 Nce13e0404f8a4e9d9924c3bffdbb0cbe rdf:first sg:person.015600712125.04
    137 rdf:rest Neb5e25efe7f54447a54cf8bd7677f649
    138 Ndb1d44f5436042748a612b941e3e6298 rdf:first sg:person.0657326240.95
    139 rdf:rest Nb290a4e21709479282eb26baeaf70cd1
    140 Ne535a26b0723444b8994b5630772653f rdf:first sg:person.01060151142.75
    141 rdf:rest Na44290cd7bbb4e6d8c6eb096a8cb9d8b
    142 Neb5e25efe7f54447a54cf8bd7677f649 rdf:first sg:person.01205155640.04
    143 rdf:rest Ne535a26b0723444b8994b5630772653f
    144 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Physical Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Condensed Matter Physics
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Chemical Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Physical Chemistry (incl. Structural)
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Engineering
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Materials Engineering
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Technology
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Nanotechnology
    167 rdf:type schema:DefinedTerm
    168 sg:grant.8124821 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09112-1
    169 rdf:type schema:MonetaryGrant
    170 sg:grant.8127106 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09112-1
    171 rdf:type schema:MonetaryGrant
    172 sg:grant.8891209 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09112-1
    173 rdf:type schema:MonetaryGrant
    174 sg:grant.8891343 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09112-1
    175 rdf:type schema:MonetaryGrant
    176 sg:grant.8902252 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09112-1
    177 rdf:type schema:MonetaryGrant
    178 sg:journal.1043282 schema:issn 2041-1723
    179 schema:name Nature Communications
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.01060151142.75 schema:affiliation grid-institutes:grid.509497.6
    183 schema:familyName Wang
    184 schema:givenName Xiaoyong
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060151142.75
    186 rdf:type schema:Person
    187 sg:person.01205155640.04 schema:affiliation grid-institutes:grid.41156.37
    188 schema:familyName Lu
    189 schema:givenName Zhenda
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205155640.04
    191 rdf:type schema:Person
    192 sg:person.012155156260.29 schema:affiliation grid-institutes:grid.509497.6
    193 schema:familyName Huang
    194 schema:givenName Xinyu
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155156260.29
    196 rdf:type schema:Person
    197 sg:person.013504124466.79 schema:affiliation grid-institutes:grid.484516.a
    198 schema:familyName Li
    199 schema:givenName Hongbo
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504124466.79
    201 rdf:type schema:Person
    202 sg:person.01357236035.01 schema:affiliation grid-institutes:grid.59053.3a
    203 schema:familyName Zhang
    204 schema:givenName Chunfeng
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357236035.01
    206 rdf:type schema:Person
    207 sg:person.014070572411.16 schema:affiliation grid-institutes:grid.411017.2
    208 schema:familyName Xiao
    209 schema:givenName Min
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070572411.16
    211 rdf:type schema:Person
    212 sg:person.015600712125.04 schema:affiliation grid-institutes:grid.509497.6
    213 schema:familyName Chen
    214 schema:givenName Lan
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015600712125.04
    216 rdf:type schema:Person
    217 sg:person.016260256117.53 schema:affiliation grid-institutes:grid.509497.6
    218 schema:familyName Chen
    219 schema:givenName Zhangzhang
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016260256117.53
    221 rdf:type schema:Person
    222 sg:person.0657326240.95 schema:affiliation grid-institutes:grid.59053.3a
    223 schema:familyName Tan
    224 schema:givenName Shijing
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657326240.95
    226 rdf:type schema:Person
    227 sg:pub.10.1038/ncomms10413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012597090
    228 https://doi.org/10.1038/ncomms10413
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/ncomms13651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035914481
    231 https://doi.org/10.1038/ncomms13651
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/ncomms15198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085398039
    234 https://doi.org/10.1038/ncomms15198
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/ncomms2642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027885712
    237 https://doi.org/10.1038/ncomms2642
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/ncomms9056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038803945
    240 https://doi.org/10.1038/ncomms9056
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nmat2629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047990558
    243 https://doi.org/10.1038/nmat2629
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nmat3911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024354805
    246 https://doi.org/10.1038/nmat3911
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nnano.2011.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012315440
    249 https://doi.org/10.1038/nnano.2011.111
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nnano.2013.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038007353
    252 https://doi.org/10.1038/nnano.2013.18
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nnano.2013.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047645515
    255 https://doi.org/10.1038/nnano.2013.207
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nnano.2014.280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025980679
    258 https://doi.org/10.1038/nnano.2014.280
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nnano.2014.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040403690
    261 https://doi.org/10.1038/nnano.2014.311
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nnano.2015.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016821296
    264 https://doi.org/10.1038/nnano.2015.90
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nphoton.2013.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005722192
    267 https://doi.org/10.1038/nphoton.2013.238
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nphoton.2014.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045181228
    270 https://doi.org/10.1038/nphoton.2014.134
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nphoton.2015.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052443614
    273 https://doi.org/10.1038/nphoton.2015.142
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/s41566-017-0049-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092730337
    276 https://doi.org/10.1038/s41566-017-0049-4
    277 rdf:type schema:CreativeWork
    278 grid-institutes:grid.411017.2 schema:alternateName Department of Physics, University of Arkansas, 72701, Fayetteville, AR, USA
    279 schema:name Department of Physics, University of Arkansas, 72701, Fayetteville, AR, USA
    280 National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
    281 Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
    282 rdf:type schema:Organization
    283 grid-institutes:grid.41156.37 schema:alternateName College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
    284 schema:name College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
    285 rdf:type schema:Organization
    286 grid-institutes:grid.484516.a schema:alternateName Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
    287 schema:name College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
    288 Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
    289 rdf:type schema:Organization
    290 grid-institutes:grid.509497.6 schema:alternateName National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
    291 schema:name National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
    292 rdf:type schema:Organization
    293 grid-institutes:grid.59053.3a schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
    294 Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
    295 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
    296 National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
    297 Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
    298 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...