Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yihua Chen, Nengxu Li, Ligang Wang, Liang Li, Ziqi Xu, Haoyang Jiao, Pengfei Liu, Cheng Zhu, Huachao Zai, Mingzi Sun, Wei Zou, Shuai Zhang, Guichuan Xing, Xinfeng Liu, Jianpu Wang, Dongdong Li, Bolong Huang, Qi Chen, Huanping Zhou

ABSTRACT

Further minimizing the defect state density in the semiconducting absorber is vital to boost the power conversion efficiency of solar cells approaching Shockley-Queisser limit. However, it lacks a general strategy to control the precursor chemistry for defects density reduction in the family of iodine based perovskite. Here the alkaline environment in precursor solution is carefully investigated as an effective parameter to suppress the incident iodine and affects the crystallization kinetics during film fabrication, via rationale adjustment of the alkalinity of additives. Especially, a 'residual free' weak alkaline is proposed not only to shrink the bandgap of the absorber by modulating the stoichiometry of organic cation, but also to improve the open circuit voltage in the resultant device. Consequently, the certified efficiency of 20.87% (Newport) is achieved with one of the smallest voltage deficits of 413 mV in the planar heterojunction perovskite solar cell. More... »

PAGES

1112

References to SciGraph publications

  • 2012-12. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% in SCIENTIFIC REPORTS
  • 2016-11. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells in NATURE PHOTONICS
  • 2015-12. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells in NATURE COMMUNICATIONS
  • 2018-03. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation in NATURE
  • 2018-06. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency in NATURE PHOTONICS
  • 2014-11. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells in NATURE NANOTECHNOLOGY
  • 2015-12. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells in NATURE COMMUNICATIONS
  • 2018-12. Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade in NATURE COMMUNICATIONS
  • 2014-05. Low-temperature solution-processed wavelength-tunable perovskites for lasing in NATURE MATERIALS
  • 2014-12. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells in NATURE COMMUNICATIONS
  • 2016-05-26. Electron–phonon coupling in hybrid lead halide perovskites in NATURE COMMUNICATIONS
  • 2016-11. Defects in perovskite-halides and their effects in solar cells in NATURE ENERGY
  • 2017-05. Perovskite ink with wide processing window for scalable high-efficiency solar cells in NATURE ENERGY
  • 2016-11. Towards stable and commercially available perovskite solar cells in NATURE ENERGY
  • 2017-01. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour in NATURE ENERGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-09093-1

    DOI

    http://dx.doi.org/10.1038/s41467-019-09093-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112604478

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30846692


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Yihua", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Nengxu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Ligang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Liang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Ziqi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiao", 
            "givenName": "Haoyang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.43555.32", 
              "name": [
                "School of Material Science and Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Pengfei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.43555.32", 
              "name": [
                "School of Material Science and Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Cheng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.43555.32", 
              "name": [
                "School of Material Science and Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zai", 
            "givenName": "Huachao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hong Kong Polytechnic University", 
              "id": "https://www.grid.ac/institutes/grid.16890.36", 
              "name": [
                "Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, 999077, Hong Kong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Mingzi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.412022.7", 
              "name": [
                "Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 211816, Nanjing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zou", 
            "givenName": "Wei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Center for Nanoscience and Technology", 
              "id": "https://www.grid.ac/institutes/grid.419265.d", 
              "name": [
                "CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Shuai", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Macau", 
              "id": "https://www.grid.ac/institutes/grid.437123.0", 
              "name": [
                "Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xing", 
            "givenName": "Guichuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Center for Nanoscience and Technology", 
              "id": "https://www.grid.ac/institutes/grid.419265.d", 
              "name": [
                "CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Xinfeng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.412022.7", 
              "name": [
                "Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 211816, Nanjing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jianpu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Advanced Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.458506.a", 
              "name": [
                "Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Dongdong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hong Kong Polytechnic University", 
              "id": "https://www.grid.ac/institutes/grid.16890.36", 
              "name": [
                "Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, 999077, Hong Kong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Bolong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.43555.32", 
              "name": [
                "School of Material Science and Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Qi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Huanping", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1126/science.aah5557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001523792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1254050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004394295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005063401", 
              "https://doi.org/10.1038/nphoton.2016.185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2016.152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005786950", 
              "https://doi.org/10.1038/nenergy.2016.152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaf1168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007922127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008010168", 
              "https://doi.org/10.1038/ncomms6784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201600594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011415556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aenm.201502356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012827326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2016.195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017660432", 
              "https://doi.org/10.1038/nenergy.2016.195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaa5760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018565505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4864778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020033673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jz500279b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020618007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaa2725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021708733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl501838y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022983025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024354805", 
              "https://doi.org/10.1038/nmat3911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024602720", 
              "https://doi.org/10.1038/ncomms7142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja809598r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025956825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja809598r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025956825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/sciadv.1501170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026970141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b303351a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027090377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja512833n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030398158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.6b04924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032375963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.075204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034669265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.075204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034669265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jphotov.2012.2198434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039021237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl502612m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039838824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep00591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039872873", 
              "https://doi.org/10.1038/srep00591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040624037", 
              "https://doi.org/10.1038/nnano.2014.181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3ta13606j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040939204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2016.149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043109203", 
              "https://doi.org/10.1038/nenergy.2016.149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1524/zkri.220.5.567.65075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043574940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045020501", 
              "https://doi.org/10.1038/ncomms11755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4cp04479g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046155281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpcc.6b03472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047935117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048053207", 
              "https://doi.org/10.1038/ncomms10030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5ee01265a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049238679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.19970090308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051341864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201306281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051660440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.chemmater.5b01909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053848053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpclett.5b00199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055113657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsami.6b07368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055131194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja5079305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055856845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.13244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.13244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aai9081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083524250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2017.38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129125", 
              "https://doi.org/10.1038/nenergy.2017.38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2017.38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129125", 
              "https://doi.org/10.1038/nenergy.2017.38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7cp01140g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084135108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201606774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084920846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.7b01439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085466992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aan2301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090389042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nanoen.2017.08.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091427655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.7b07223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091617662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7ee02272g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092194023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201703852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092236370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7ee02634j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092406448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pip.2978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099673025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c8cp00280k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100919604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c8ee00124c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100922767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101632668", 
              "https://doi.org/10.1038/nature25989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101632668", 
              "https://doi.org/10.1038/nature25989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101632668", 
              "https://doi.org/10.1038/nature25989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41566-018-0154-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103685675", 
              "https://doi.org/10.1038/s41566-018-0154-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05076-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105573252", 
              "https://doi.org/10.1038/s41467-018-05076-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aau5701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111493662"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Further minimizing the defect state density in the semiconducting absorber is vital to boost the power conversion efficiency of solar cells approaching Shockley-Queisser limit. However, it lacks a general strategy to control the precursor chemistry for defects density reduction in the family of iodine based perovskite. Here the alkaline environment in precursor solution is carefully investigated as an effective parameter to suppress the incident iodine and affects the crystallization kinetics during film fabrication, via rationale adjustment of the alkalinity of additives. Especially, a 'residual free' weak alkaline is proposed not only to shrink the bandgap of the absorber by modulating the stoichiometry of organic cation, but also to improve the open circuit voltage in the resultant device. Consequently, the certified efficiency of 20.87%\u00a0(Newport) is achieved with one of the smallest voltage deficits of 413\u2009mV in the planar heterojunction perovskite solar cell.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-019-09093-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells", 
        "pagination": "1112", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a1a7b256cc53674f6210fae86041b237f98389576f5696b3600ea35683a68e68"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30846692"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-09093-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112604478"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-09093-1", 
          "https://app.dimensions.ai/details/publication/pub.1112604478"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112042_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-019-09093-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09093-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09093-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09093-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09093-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    385 TRIPLES      21 PREDICATES      88 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-09093-1 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N3826c971a43649a8b1445ad5e6cef992
    4 schema:citation sg:pub.10.1038/nature25989
    5 sg:pub.10.1038/ncomms10030
    6 sg:pub.10.1038/ncomms11755
    7 sg:pub.10.1038/ncomms6784
    8 sg:pub.10.1038/ncomms7142
    9 sg:pub.10.1038/nenergy.2016.149
    10 sg:pub.10.1038/nenergy.2016.152
    11 sg:pub.10.1038/nenergy.2016.195
    12 sg:pub.10.1038/nenergy.2017.38
    13 sg:pub.10.1038/nmat3911
    14 sg:pub.10.1038/nnano.2014.181
    15 sg:pub.10.1038/nphoton.2016.185
    16 sg:pub.10.1038/s41467-018-05076-w
    17 sg:pub.10.1038/s41566-018-0154-z
    18 sg:pub.10.1038/srep00591
    19 https://doi.org/10.1002/adma.19970090308
    20 https://doi.org/10.1002/adma.201306281
    21 https://doi.org/10.1002/adma.201600594
    22 https://doi.org/10.1002/adma.201606774
    23 https://doi.org/10.1002/adma.201703852
    24 https://doi.org/10.1002/aenm.201502356
    25 https://doi.org/10.1002/pip.2978
    26 https://doi.org/10.1016/j.nanoen.2017.08.059
    27 https://doi.org/10.1021/acs.chemmater.5b01909
    28 https://doi.org/10.1021/acs.jpcc.6b03472
    29 https://doi.org/10.1021/acs.jpclett.5b00199
    30 https://doi.org/10.1021/acsami.6b07368
    31 https://doi.org/10.1021/ja5079305
    32 https://doi.org/10.1021/ja512833n
    33 https://doi.org/10.1021/ja809598r
    34 https://doi.org/10.1021/jacs.6b04924
    35 https://doi.org/10.1021/jacs.7b01439
    36 https://doi.org/10.1021/jacs.7b07223
    37 https://doi.org/10.1021/jz500279b
    38 https://doi.org/10.1021/nl501838y
    39 https://doi.org/10.1021/nl502612m
    40 https://doi.org/10.1039/b303351a
    41 https://doi.org/10.1039/c3ta13606j
    42 https://doi.org/10.1039/c4cp04479g
    43 https://doi.org/10.1039/c5ee01265a
    44 https://doi.org/10.1039/c7cp01140g
    45 https://doi.org/10.1039/c7ee02272g
    46 https://doi.org/10.1039/c7ee02634j
    47 https://doi.org/10.1039/c8cp00280k
    48 https://doi.org/10.1039/c8ee00124c
    49 https://doi.org/10.1063/1.4864778
    50 https://doi.org/10.1103/physrevb.45.13244
    51 https://doi.org/10.1103/physrevb.67.075204
    52 https://doi.org/10.1109/jphotov.2012.2198434
    53 https://doi.org/10.1126/sciadv.1501170
    54 https://doi.org/10.1126/science.1254050
    55 https://doi.org/10.1126/science.aaa2725
    56 https://doi.org/10.1126/science.aaa5760
    57 https://doi.org/10.1126/science.aaf1168
    58 https://doi.org/10.1126/science.aah5557
    59 https://doi.org/10.1126/science.aai9081
    60 https://doi.org/10.1126/science.aan2301
    61 https://doi.org/10.1126/science.aau5701
    62 https://doi.org/10.1524/zkri.220.5.567.65075
    63 schema:datePublished 2019-12
    64 schema:datePublishedReg 2019-12-01
    65 schema:description Further minimizing the defect state density in the semiconducting absorber is vital to boost the power conversion efficiency of solar cells approaching Shockley-Queisser limit. However, it lacks a general strategy to control the precursor chemistry for defects density reduction in the family of iodine based perovskite. Here the alkaline environment in precursor solution is carefully investigated as an effective parameter to suppress the incident iodine and affects the crystallization kinetics during film fabrication, via rationale adjustment of the alkalinity of additives. Especially, a 'residual free' weak alkaline is proposed not only to shrink the bandgap of the absorber by modulating the stoichiometry of organic cation, but also to improve the open circuit voltage in the resultant device. Consequently, the certified efficiency of 20.87% (Newport) is achieved with one of the smallest voltage deficits of 413 mV in the planar heterojunction perovskite solar cell.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree true
    69 schema:isPartOf N8e9241ea92154b0d88b0e8e416861e0d
    70 N956fb1b7a92b4604b647e2dfdad2bffb
    71 sg:journal.1043282
    72 schema:name Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells
    73 schema:pagination 1112
    74 schema:productId N00f6cdde8abd452fb21875fde890bf01
    75 N4347504641544557b019a82ec0cba135
    76 N5548847956d6444b82699778c62f8be3
    77 N62fa615f61b24d38acadfe9b2d7f246d
    78 Ne4672358187944df99bd5083f16e669b
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112604478
    80 https://doi.org/10.1038/s41467-019-09093-1
    81 schema:sdDatePublished 2019-04-11T13:04
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N5b5f11b0b3e94e3ba3c34e0ca529f6e4
    84 schema:url https://www.nature.com/articles/s41467-019-09093-1
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N00f6cdde8abd452fb21875fde890bf01 schema:name readcube_id
    89 schema:value a1a7b256cc53674f6210fae86041b237f98389576f5696b3600ea35683a68e68
    90 rdf:type schema:PropertyValue
    91 N01316943fe93421c9ee68f8f1f07aae4 schema:affiliation https://www.grid.ac/institutes/grid.419265.d
    92 schema:familyName Zhang
    93 schema:givenName Shuai
    94 rdf:type schema:Person
    95 N0527d94cadaa48ea8e437a14e97a262e rdf:first N7c4709028c434c79841129c2df337ca7
    96 rdf:rest Nccbe3ed6b4ff437c8c34a12459884af5
    97 N0b49238492714bd9b4624431836e1d23 schema:affiliation https://www.grid.ac/institutes/grid.412022.7
    98 schema:familyName Zou
    99 schema:givenName Wei
    100 rdf:type schema:Person
    101 N2b17390e299c4ad7ac1f92ac0e51ae8c rdf:first Ne518cc5a61494cc4a3ab83b04eb4f835
    102 rdf:rest N458d64cb83d94dde8e97975efbf0dc88
    103 N2d978654344749aab58485961980cc06 schema:affiliation https://www.grid.ac/institutes/grid.43555.32
    104 schema:familyName Zai
    105 schema:givenName Huachao
    106 rdf:type schema:Person
    107 N34dcf2d0b1b74cb1b7a5c49cafe319fa rdf:first N851ed53face04373b0b1a9e1068aa104
    108 rdf:rest N81d081e0fe89411bb5faa995e703e849
    109 N3539e3cce16844238dd9442d702f4115 schema:affiliation https://www.grid.ac/institutes/grid.458506.a
    110 schema:familyName Li
    111 schema:givenName Dongdong
    112 rdf:type schema:Person
    113 N3826c971a43649a8b1445ad5e6cef992 rdf:first N3d908f64d755484ab933e482db237fe2
    114 rdf:rest Nfeec0917ed1848a08329f05d05b43ac9
    115 N3d1bef25797141bcbf1ccba08ad981ab schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    116 schema:familyName Xu
    117 schema:givenName Ziqi
    118 rdf:type schema:Person
    119 N3d908f64d755484ab933e482db237fe2 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    120 schema:familyName Chen
    121 schema:givenName Yihua
    122 rdf:type schema:Person
    123 N3e00599836a14df8aaeca61f1973fdfc rdf:first Nb7d251d832004c8383c6d631a63717b5
    124 rdf:rest N34dcf2d0b1b74cb1b7a5c49cafe319fa
    125 N42aec4675e164dd6bf4f06fb9174ba17 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    126 schema:familyName Li
    127 schema:givenName Nengxu
    128 rdf:type schema:Person
    129 N4347504641544557b019a82ec0cba135 schema:name dimensions_id
    130 schema:value pub.1112604478
    131 rdf:type schema:PropertyValue
    132 N458d64cb83d94dde8e97975efbf0dc88 rdf:first Na4503585a7904096b3502ad89ad4a3f8
    133 rdf:rest Nb0215baf9c75485abeebe270ef8d21ae
    134 N5548847956d6444b82699778c62f8be3 schema:name pubmed_id
    135 schema:value 30846692
    136 rdf:type schema:PropertyValue
    137 N5a702e6b3f3d46b69eb9dfe88f7a696a schema:affiliation https://www.grid.ac/institutes/grid.16890.36
    138 schema:familyName Sun
    139 schema:givenName Mingzi
    140 rdf:type schema:Person
    141 N5b5f11b0b3e94e3ba3c34e0ca529f6e4 schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 N62f259355da9438098dfb441a1922884 rdf:first Na762f91db4f14f5eb7264b15f90136af
    144 rdf:rest N8e9ad141b1ab44d5a26dc26b3d072955
    145 N62fa615f61b24d38acadfe9b2d7f246d schema:name nlm_unique_id
    146 schema:value 101528555
    147 rdf:type schema:PropertyValue
    148 N637e686730884f36a4281dfaed206c3e rdf:first N9ed73d1360b34668a01465f503b108e5
    149 rdf:rest N62f259355da9438098dfb441a1922884
    150 N6f3f07dc81c2458aa2ec1d5a4990d1f5 rdf:first N0b49238492714bd9b4624431836e1d23
    151 rdf:rest Nba5ce9bb5ec34cc7b7eaf29830390153
    152 N76e7578d14cb4606b8231a18da5e4a2a rdf:first Nfb1198b5e8374120a1f1ba7bc6aff9a8
    153 rdf:rest Nf1cb814e2cf24b0a9d22332245e08d44
    154 N7c4709028c434c79841129c2df337ca7 schema:affiliation https://www.grid.ac/institutes/grid.437123.0
    155 schema:familyName Xing
    156 schema:givenName Guichuan
    157 rdf:type schema:Person
    158 N81d081e0fe89411bb5faa995e703e849 rdf:first N2d978654344749aab58485961980cc06
    159 rdf:rest N936b9c62e5834c118242a2096c5a9b7d
    160 N851ed53face04373b0b1a9e1068aa104 schema:affiliation https://www.grid.ac/institutes/grid.43555.32
    161 schema:familyName Zhu
    162 schema:givenName Cheng
    163 rdf:type schema:Person
    164 N8e9241ea92154b0d88b0e8e416861e0d schema:volumeNumber 10
    165 rdf:type schema:PublicationVolume
    166 N8e9ad141b1ab44d5a26dc26b3d072955 rdf:first Ne57af83d743547129aeb50d10cb3b291
    167 rdf:rest rdf:nil
    168 N936b9c62e5834c118242a2096c5a9b7d rdf:first N5a702e6b3f3d46b69eb9dfe88f7a696a
    169 rdf:rest N6f3f07dc81c2458aa2ec1d5a4990d1f5
    170 N956fb1b7a92b4604b647e2dfdad2bffb schema:issueNumber 1
    171 rdf:type schema:PublicationIssue
    172 N9ed73d1360b34668a01465f503b108e5 schema:affiliation https://www.grid.ac/institutes/grid.16890.36
    173 schema:familyName Huang
    174 schema:givenName Bolong
    175 rdf:type schema:Person
    176 Na4503585a7904096b3502ad89ad4a3f8 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    177 schema:familyName Li
    178 schema:givenName Liang
    179 rdf:type schema:Person
    180 Na762f91db4f14f5eb7264b15f90136af schema:affiliation https://www.grid.ac/institutes/grid.43555.32
    181 schema:familyName Chen
    182 schema:givenName Qi
    183 rdf:type schema:Person
    184 Nb0215baf9c75485abeebe270ef8d21ae rdf:first N3d1bef25797141bcbf1ccba08ad981ab
    185 rdf:rest Nfaae64e565f546faa82c71eb660922d6
    186 Nb7d251d832004c8383c6d631a63717b5 schema:affiliation https://www.grid.ac/institutes/grid.43555.32
    187 schema:familyName Liu
    188 schema:givenName Pengfei
    189 rdf:type schema:Person
    190 Nba5ce9bb5ec34cc7b7eaf29830390153 rdf:first N01316943fe93421c9ee68f8f1f07aae4
    191 rdf:rest N0527d94cadaa48ea8e437a14e97a262e
    192 Nccbe3ed6b4ff437c8c34a12459884af5 rdf:first Ncf9d001b7b1144f4a296f859a0fbc839
    193 rdf:rest N76e7578d14cb4606b8231a18da5e4a2a
    194 Ncd6aba8a360e424cbcf7a3ca302ededa schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    195 schema:familyName Jiao
    196 schema:givenName Haoyang
    197 rdf:type schema:Person
    198 Ncf9d001b7b1144f4a296f859a0fbc839 schema:affiliation https://www.grid.ac/institutes/grid.419265.d
    199 schema:familyName Liu
    200 schema:givenName Xinfeng
    201 rdf:type schema:Person
    202 Ne4672358187944df99bd5083f16e669b schema:name doi
    203 schema:value 10.1038/s41467-019-09093-1
    204 rdf:type schema:PropertyValue
    205 Ne518cc5a61494cc4a3ab83b04eb4f835 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    206 schema:familyName Wang
    207 schema:givenName Ligang
    208 rdf:type schema:Person
    209 Ne57af83d743547129aeb50d10cb3b291 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    210 schema:familyName Zhou
    211 schema:givenName Huanping
    212 rdf:type schema:Person
    213 Nf1cb814e2cf24b0a9d22332245e08d44 rdf:first N3539e3cce16844238dd9442d702f4115
    214 rdf:rest N637e686730884f36a4281dfaed206c3e
    215 Nfaae64e565f546faa82c71eb660922d6 rdf:first Ncd6aba8a360e424cbcf7a3ca302ededa
    216 rdf:rest N3e00599836a14df8aaeca61f1973fdfc
    217 Nfb1198b5e8374120a1f1ba7bc6aff9a8 schema:affiliation https://www.grid.ac/institutes/grid.412022.7
    218 schema:familyName Wang
    219 schema:givenName Jianpu
    220 rdf:type schema:Person
    221 Nfeec0917ed1848a08329f05d05b43ac9 rdf:first N42aec4675e164dd6bf4f06fb9174ba17
    222 rdf:rest N2b17390e299c4ad7ac1f92ac0e51ae8c
    223 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    224 schema:name Chemical Sciences
    225 rdf:type schema:DefinedTerm
    226 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    227 schema:name Physical Chemistry (incl. Structural)
    228 rdf:type schema:DefinedTerm
    229 sg:journal.1043282 schema:issn 2041-1723
    230 schema:name Nature Communications
    231 rdf:type schema:Periodical
    232 sg:pub.10.1038/nature25989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101632668
    233 https://doi.org/10.1038/nature25989
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/ncomms10030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048053207
    236 https://doi.org/10.1038/ncomms10030
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/ncomms11755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045020501
    239 https://doi.org/10.1038/ncomms11755
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/ncomms6784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008010168
    242 https://doi.org/10.1038/ncomms6784
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/ncomms7142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024602720
    245 https://doi.org/10.1038/ncomms7142
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nenergy.2016.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043109203
    248 https://doi.org/10.1038/nenergy.2016.149
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nenergy.2016.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005786950
    251 https://doi.org/10.1038/nenergy.2016.152
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nenergy.2016.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017660432
    254 https://doi.org/10.1038/nenergy.2016.195
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nenergy.2017.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129125
    257 https://doi.org/10.1038/nenergy.2017.38
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nmat3911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024354805
    260 https://doi.org/10.1038/nmat3911
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nnano.2014.181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040624037
    263 https://doi.org/10.1038/nnano.2014.181
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nphoton.2016.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005063401
    266 https://doi.org/10.1038/nphoton.2016.185
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/s41467-018-05076-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1105573252
    269 https://doi.org/10.1038/s41467-018-05076-w
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/s41566-018-0154-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103685675
    272 https://doi.org/10.1038/s41566-018-0154-z
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/srep00591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039872873
    275 https://doi.org/10.1038/srep00591
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1002/adma.19970090308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051341864
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1002/adma.201306281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051660440
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1002/adma.201600594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011415556
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1002/adma.201606774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084920846
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1002/adma.201703852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092236370
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1002/aenm.201502356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012827326
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1002/pip.2978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099673025
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1016/j.nanoen.2017.08.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091427655
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1021/acs.chemmater.5b01909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053848053
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1021/acs.jpcc.6b03472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047935117
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1021/acs.jpclett.5b00199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055113657
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1021/acsami.6b07368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055131194
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1021/ja5079305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055856845
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1021/ja512833n schema:sameAs https://app.dimensions.ai/details/publication/pub.1030398158
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1021/ja809598r schema:sameAs https://app.dimensions.ai/details/publication/pub.1025956825
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1021/jacs.6b04924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032375963
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1021/jacs.7b01439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085466992
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1021/jacs.7b07223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091617662
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1021/jz500279b schema:sameAs https://app.dimensions.ai/details/publication/pub.1020618007
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1021/nl501838y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022983025
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1021/nl502612m schema:sameAs https://app.dimensions.ai/details/publication/pub.1039838824
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1039/b303351a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027090377
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1039/c3ta13606j schema:sameAs https://app.dimensions.ai/details/publication/pub.1040939204
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1039/c4cp04479g schema:sameAs https://app.dimensions.ai/details/publication/pub.1046155281
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1039/c5ee01265a schema:sameAs https://app.dimensions.ai/details/publication/pub.1049238679
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1039/c7cp01140g schema:sameAs https://app.dimensions.ai/details/publication/pub.1084135108
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1039/c7ee02272g schema:sameAs https://app.dimensions.ai/details/publication/pub.1092194023
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1039/c7ee02634j schema:sameAs https://app.dimensions.ai/details/publication/pub.1092406448
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1039/c8cp00280k schema:sameAs https://app.dimensions.ai/details/publication/pub.1100919604
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1039/c8ee00124c schema:sameAs https://app.dimensions.ai/details/publication/pub.1100922767
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1063/1.4864778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020033673
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1103/physrevb.45.13244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560884
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1103/physrevb.67.075204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034669265
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1109/jphotov.2012.2198434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039021237
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1126/sciadv.1501170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026970141
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1126/science.1254050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004394295
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1126/science.aaa2725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021708733
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1126/science.aaa5760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018565505
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1126/science.aaf1168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007922127
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1126/science.aah5557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001523792
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1126/science.aai9081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083524250
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.1126/science.aan2301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090389042
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.1126/science.aau5701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111493662
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.1524/zkri.220.5.567.65075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043574940
    364 rdf:type schema:CreativeWork
    365 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
    366 schema:name Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China
    367 rdf:type schema:Organization
    368 https://www.grid.ac/institutes/grid.16890.36 schema:alternateName Hong Kong Polytechnic University
    369 schema:name Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, 999077, Hong Kong, P. R. China
    370 rdf:type schema:Organization
    371 https://www.grid.ac/institutes/grid.412022.7 schema:alternateName Nanjing University of Technology
    372 schema:name Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 211816, Nanjing, P. R. China
    373 rdf:type schema:Organization
    374 https://www.grid.ac/institutes/grid.419265.d schema:alternateName National Center for Nanoscience and Technology
    375 schema:name CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
    376 rdf:type schema:Organization
    377 https://www.grid.ac/institutes/grid.43555.32 schema:alternateName Beijing Institute of Technology
    378 schema:name School of Material Science and Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China
    379 rdf:type schema:Organization
    380 https://www.grid.ac/institutes/grid.437123.0 schema:alternateName University of Macau
    381 schema:name Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, P. R. China
    382 rdf:type schema:Organization
    383 https://www.grid.ac/institutes/grid.458506.a schema:alternateName Shanghai Advanced Research Institute
    384 schema:name Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
    385 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...