Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

S. A. Zvyagin, D. Graf, T. Sakurai, S. Kimura, H. Nojiri, J. Wosnitza, H. Ohta, T. Ono, H. Tanaka

ABSTRACT

Quantum triangular-lattice antiferromagnets are important prototype systems to investigate numerous phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs2CuCl4 as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and r.f. susceptibility measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases. More... »

PAGES

1064

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-09071-7

DOI

http://dx.doi.org/10.1038/s41467-019-09071-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112569206

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30842420


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zvyagin", 
        "givenName": "S. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graf", 
        "givenName": "D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kobe University", 
          "id": "https://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Research Facility Center for Science and Technology, Kobe University, 657-8501, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakurai", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Institute for Materials Research, Tohoku University, 980-8578, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Institute for Materials Research, Tohoku University, 980-8578, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nojiri", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany", 
            "Institut f\u00fcr Festk\u00f6rper- und Materialphysik, TU Dresden, 01062, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wosnitza", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kobe University", 
          "id": "https://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Molecular Photoscience Research Center, Kobe University, 657-8501, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohta", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Prefecture University", 
          "id": "https://www.grid.ac/institutes/grid.261455.1", 
          "name": [
            "Department of Physical Science, Osaka Prefecture University, 599-8531, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Department of Physics, Tokyo Institute of Technology, 152-8551, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "H.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.57.5200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000740017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.5200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000740017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.165123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002453486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.165123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002453486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(70)90375-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004220312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/8/40/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006439023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.064425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006620630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.064425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006620630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.137203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010740415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.137203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010740415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(73)90167-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012450990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(73)90167-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012450990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.014421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012582490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.014421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012582490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.257201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015288119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.257201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015288119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/78/5/052502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015507901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.087204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015910812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.087204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015910812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.077206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019819893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.077206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019819893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/11/028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020554702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020699369", 
          "https://doi.org/10.1038/ncomms11956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.134414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021050948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.134414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021050948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.241102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030167071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.241102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030167071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.224409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038993933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.224409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038993933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042830450", 
          "https://doi.org/10.1038/nature08917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042830450", 
          "https://doi.org/10.1038/nature08917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jssc.2000.8744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045208106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.237201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050641702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.237201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050641702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2015.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050971242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1684598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057760277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.321957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057920085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.159.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.159.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.014412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060645147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.014412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060645147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.257201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.257201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.73.3254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063121504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.73.3254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063121504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsjs.74s.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063126647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6668/aa6676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085127537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090740467", 
          "https://doi.org/10.1038/nphys4190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090740467", 
          "https://doi.org/10.1038/nphys4190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.020414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090980811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.020414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090980811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.140406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092263419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.140406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092263419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7566/jpsj.87.033701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100764064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7566/jpsj.87.033701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100764064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2018.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106320730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106933615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106933615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.201800270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107763653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Quantum triangular-lattice antiferromagnets are important prototype systems to investigate numerous phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs2CuCl4 as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and r.f. susceptibility measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8\u2009GPa, revealing a number of emergent field-induced phases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-019-09071-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5897431", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7507829", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4", 
    "pagination": "1064", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e856daa8e70ab775b482f95f117071f50cf090eef5266d426a9ad0955a303b0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30842420"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-09071-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112569206"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-09071-7", 
      "https://app.dimensions.ai/details/publication/pub.1112569206"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88221_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-019-09071-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09071-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09071-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09071-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09071-7'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-09071-7 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N42c1053fa574441d8aa58472038b2606
4 schema:citation sg:pub.10.1038/nature08917
5 sg:pub.10.1038/ncomms11956
6 sg:pub.10.1038/nphys4190
7 https://doi.org/10.1002/andp.201800270
8 https://doi.org/10.1006/jssc.2000.8744
9 https://doi.org/10.1016/0003-4916(70)90375-1
10 https://doi.org/10.1016/0025-5408(73)90167-0
11 https://doi.org/10.1016/j.jmr.2015.08.005
12 https://doi.org/10.1016/j.jmr.2018.08.005
13 https://doi.org/10.1063/1.1684598
14 https://doi.org/10.1063/1.321957
15 https://doi.org/10.1088/0034-4885/78/5/052502
16 https://doi.org/10.1088/0953-8984/16/11/028
17 https://doi.org/10.1088/0953-8984/8/40/012
18 https://doi.org/10.1088/1361-6668/aa6676
19 https://doi.org/10.1103/physrev.159.353
20 https://doi.org/10.1103/physrevb.57.5200
21 https://doi.org/10.1103/physrevb.73.134414
22 https://doi.org/10.1103/physrevb.78.224409
23 https://doi.org/10.1103/physrevb.82.014421
24 https://doi.org/10.1103/physrevb.83.064425
25 https://doi.org/10.1103/physrevb.87.165123
26 https://doi.org/10.1103/physrevb.87.241102
27 https://doi.org/10.1103/physrevb.91.014412
28 https://doi.org/10.1103/physrevb.96.020414
29 https://doi.org/10.1103/physrevb.96.140406
30 https://doi.org/10.1103/physrevlett.100.237201
31 https://doi.org/10.1103/physrevlett.102.257201
32 https://doi.org/10.1103/physrevlett.112.077206
33 https://doi.org/10.1103/physrevlett.113.087204
34 https://doi.org/10.1103/physrevlett.121.117201
35 https://doi.org/10.1103/physrevlett.88.137203
36 https://doi.org/10.1103/physrevlett.93.257201
37 https://doi.org/10.1143/jpsj.73.3254
38 https://doi.org/10.1143/jpsjs.74s.135
39 https://doi.org/10.7566/jpsj.87.033701
40 schema:datePublished 2019-12
41 schema:datePublishedReg 2019-12-01
42 schema:description Quantum triangular-lattice antiferromagnets are important prototype systems to investigate numerous phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs<sub>2</sub>CuCl<sub>4</sub> as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and r.f. susceptibility measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N162c7f7c3d77468f965003ab07f44d41
47 N9814a173652344cea8a7d62598c91ce3
48 sg:journal.1043282
49 schema:name Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4
50 schema:pagination 1064
51 schema:productId N285821c335674e95a59dd61012f7648e
52 N44952f8c782d439183c02f595dc912ad
53 N7d8bfc2566c34459b18bb5c376ea222e
54 N9855a4066f584e0baa2d1a1beb15c4db
55 Nf2960edeb4064da2bd4c128948bcb8fa
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112569206
57 https://doi.org/10.1038/s41467-019-09071-7
58 schema:sdDatePublished 2019-04-11T13:07
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N820d9ec0135646b8a05a33cefbb98d55
61 schema:url https://www.nature.com/articles/s41467-019-09071-7
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N03876bcc2e0d408d8d64c25c832b6555 rdf:first Ncd66d3c45da34973982b8daeec9034f7
66 rdf:rest N07c6e73c3678443c84b43b0a91dbf689
67 N07c6e73c3678443c84b43b0a91dbf689 rdf:first N8459d091b73640b0b5d7af4be40952bc
68 rdf:rest N6195b984bf5046bfb3460ca65c91d9e6
69 N1257a8a5bd1544dd89fc5905cbd11e60 schema:affiliation https://www.grid.ac/institutes/grid.31432.37
70 schema:familyName Sakurai
71 schema:givenName T.
72 rdf:type schema:Person
73 N162c7f7c3d77468f965003ab07f44d41 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 N17d72d5f6ed54c318c6420672a203e36 schema:affiliation https://www.grid.ac/institutes/grid.261455.1
76 schema:familyName Ono
77 schema:givenName T.
78 rdf:type schema:Person
79 N285821c335674e95a59dd61012f7648e schema:name doi
80 schema:value 10.1038/s41467-019-09071-7
81 rdf:type schema:PropertyValue
82 N2a6ff66fb9cc4aadb6b6e41c5414bd08 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
83 schema:familyName Tanaka
84 schema:givenName H.
85 rdf:type schema:Person
86 N3bf80e9867dd41dbb6330a3e7609e4b2 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
87 schema:familyName Wosnitza
88 schema:givenName J.
89 rdf:type schema:Person
90 N429adb39414748ed97f9070ef703f90a rdf:first Nc7069e81d56240679ca54324c026fb03
91 rdf:rest N8afbf6f938a34d759c0e46865946903d
92 N42c1053fa574441d8aa58472038b2606 rdf:first N81e1fe0b5f1148a1b1e206ccdd42286b
93 rdf:rest N52435a7ec31640ba9b85526791329e84
94 N44952f8c782d439183c02f595dc912ad schema:name nlm_unique_id
95 schema:value 101528555
96 rdf:type schema:PropertyValue
97 N463fd9393d86402ab0c965dc2824c254 rdf:first N1257a8a5bd1544dd89fc5905cbd11e60
98 rdf:rest N03876bcc2e0d408d8d64c25c832b6555
99 N52435a7ec31640ba9b85526791329e84 rdf:first Nc3836f0d44cd4f829a32f5c27e08ae43
100 rdf:rest N463fd9393d86402ab0c965dc2824c254
101 N6195b984bf5046bfb3460ca65c91d9e6 rdf:first N3bf80e9867dd41dbb6330a3e7609e4b2
102 rdf:rest N429adb39414748ed97f9070ef703f90a
103 N7b94ef328664421cacfc9976b800e7fb rdf:first N2a6ff66fb9cc4aadb6b6e41c5414bd08
104 rdf:rest rdf:nil
105 N7d8bfc2566c34459b18bb5c376ea222e schema:name readcube_id
106 schema:value 1e856daa8e70ab775b482f95f117071f50cf090eef5266d426a9ad0955a303b0
107 rdf:type schema:PropertyValue
108 N81e1fe0b5f1148a1b1e206ccdd42286b schema:affiliation https://www.grid.ac/institutes/grid.40602.30
109 schema:familyName Zvyagin
110 schema:givenName S. A.
111 rdf:type schema:Person
112 N820d9ec0135646b8a05a33cefbb98d55 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N8459d091b73640b0b5d7af4be40952bc schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
115 schema:familyName Nojiri
116 schema:givenName H.
117 rdf:type schema:Person
118 N8afbf6f938a34d759c0e46865946903d rdf:first N17d72d5f6ed54c318c6420672a203e36
119 rdf:rest N7b94ef328664421cacfc9976b800e7fb
120 N9814a173652344cea8a7d62598c91ce3 schema:volumeNumber 10
121 rdf:type schema:PublicationVolume
122 N9855a4066f584e0baa2d1a1beb15c4db schema:name dimensions_id
123 schema:value pub.1112569206
124 rdf:type schema:PropertyValue
125 Nc3836f0d44cd4f829a32f5c27e08ae43 schema:affiliation https://www.grid.ac/institutes/grid.481548.4
126 schema:familyName Graf
127 schema:givenName D.
128 rdf:type schema:Person
129 Nc7069e81d56240679ca54324c026fb03 schema:affiliation https://www.grid.ac/institutes/grid.31432.37
130 schema:familyName Ohta
131 schema:givenName H.
132 rdf:type schema:Person
133 Ncd66d3c45da34973982b8daeec9034f7 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
134 schema:familyName Kimura
135 schema:givenName S.
136 rdf:type schema:Person
137 Nf2960edeb4064da2bd4c128948bcb8fa schema:name pubmed_id
138 schema:value 30842420
139 rdf:type schema:PropertyValue
140 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
141 schema:name Physical Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
144 schema:name Condensed Matter Physics
145 rdf:type schema:DefinedTerm
146 sg:grant.5897431 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09071-7
147 rdf:type schema:MonetaryGrant
148 sg:grant.7507829 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09071-7
149 rdf:type schema:MonetaryGrant
150 sg:journal.1043282 schema:issn 2041-1723
151 schema:name Nature Communications
152 rdf:type schema:Periodical
153 sg:pub.10.1038/nature08917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042830450
154 https://doi.org/10.1038/nature08917
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/ncomms11956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020699369
157 https://doi.org/10.1038/ncomms11956
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nphys4190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090740467
160 https://doi.org/10.1038/nphys4190
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/andp.201800270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107763653
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1006/jssc.2000.8744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045208106
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0003-4916(70)90375-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004220312
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0025-5408(73)90167-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012450990
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jmr.2015.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050971242
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jmr.2018.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106320730
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.1684598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057760277
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.321957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057920085
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/0034-4885/78/5/052502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015507901
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/0953-8984/16/11/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020554702
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1088/0953-8984/8/40/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006439023
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/1361-6668/aa6676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085127537
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrev.159.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435800
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.57.5200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000740017
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.73.134414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021050948
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.78.224409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038993933
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.82.014421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012582490
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.83.064425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006620630
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.87.165123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002453486
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.87.241102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030167071
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.91.014412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060645147
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.96.020414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090980811
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.96.140406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092263419
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.100.237201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050641702
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.102.257201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015288119
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.112.077206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019819893
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.113.087204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015910812
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.121.117201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106933615
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.88.137203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010740415
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.93.257201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829567
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1143/jpsj.73.3254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063121504
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1143/jpsjs.74s.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063126647
225 rdf:type schema:CreativeWork
226 https://doi.org/10.7566/jpsj.87.033701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100764064
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.261455.1 schema:alternateName Osaka Prefecture University
229 schema:name Department of Physical Science, Osaka Prefecture University, 599-8531, Osaka, Japan
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.31432.37 schema:alternateName Kobe University
232 schema:name Molecular Photoscience Research Center, Kobe University, 657-8501, Kobe, Japan
233 Research Facility Center for Science and Technology, Kobe University, 657-8501, Kobe, Japan
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
236 schema:name Department of Physics, Tokyo Institute of Technology, 152-8551, Tokyo, Japan
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.40602.30 schema:alternateName Helmholtz-Zentrum Dresden-Rossendorf
239 schema:name Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
242 schema:name Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
243 Institut für Festkörper- und Materialphysik, TU Dresden, 01062, Dresden, Germany
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.481548.4 schema:alternateName National High Magnetic Field Laboratory
246 schema:name National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
249 schema:name Institute for Materials Research, Tohoku University, 980-8578, Sendai, Japan
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...