Reversible defect engineering in graphene grain boundaries View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-06

AUTHORS

Krishna Balasubramanian, Tathagatha Biswas, Priyadarshini Ghosh, Swathi Suran, Abhishek Mishra, Rohan Mishra, Ritesh Sachan, Manish Jain, Manoj Varma, Rudra Pratap, Srinivasan Raghavan

ABSTRACT

Research efforts in large area graphene synthesis have been focused on increasing grain size. Here, it is shown that, beyond 1 μm grain size, grain boundary engineering determines the electronic properties of the monolayer. It is established by chemical vapor deposition experiments and first-principle calculations that there is a thermodynamic correlation between the vapor phase chemistry and carbon potential at grain boundaries and triple junctions. As a result, boundary formation can be controlled, and well-formed boundaries can be intentionally made defective, reversibly. In 100 µm long channels this aspect is demonstrated by reversibly changing room temperature electronic mobilities from 1000 to 20,000 cm2 V-1 s-1. Water permeation experiments show that changes are localized to grain boundaries. Electron microscopy is further used to correlate the global vapor phase conditions and the boundary defect types. Such thermodynamic control is essential to enable consistent growth and control of two-dimensional layer properties over large areas. More... »

PAGES

1090

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-09000-8

DOI

http://dx.doi.org/10.1038/s41467-019-09000-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112575944

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30842414


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Present Address: Electrical Engineering, Technion Israel Institute of Technology, Haifa, 3200003 Israel", 
          "id": "http://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India", 
            "Present Address: Electrical Engineering, Technion Israel Institute of Technology, Haifa, 3200003 Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balasubramanian", 
        "givenName": "Krishna", 
        "id": "sg:person.013330561374.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013330561374.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physics Department, Indian Institute of Science, Bangalore, 560012 India", 
          "id": "http://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Physics Department, Indian Institute of Science, Bangalore, 560012 India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biswas", 
        "givenName": "Tathagatha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present Address: Materials Engineering, Technion Israel Institute of Technology, Haifa, 3200003 Israel", 
          "id": "http://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India", 
            "Materials Research Center, Indian Institute of Science, Bangalore, 560012 India", 
            "Present Address: Materials Engineering, Technion Israel Institute of Technology, Haifa, 3200003 Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "Priyadarshini", 
        "id": "sg:person.013572167720.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013572167720.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India", 
          "id": "http://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suran", 
        "givenName": "Swathi", 
        "id": "sg:person.010211704771.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010211704771.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India", 
          "id": "http://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishra", 
        "givenName": "Abhishek", 
        "id": "sg:person.015311624221.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311624221.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Washington, MO 63130 USA", 
          "id": "http://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Washington, MO 63130 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishra", 
        "givenName": "Rohan", 
        "id": "sg:person.01014444476.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014444476.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present Address: School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, 74078 OK USA", 
          "id": "http://www.grid.ac/institutes/grid.65519.3e", 
          "name": [
            "Material Science and Technology division, Oak Ridge National Laboratory, Tennessee, 37831 USA", 
            "Present Address: School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, 74078 OK USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachan", 
        "givenName": "Ritesh", 
        "id": "sg:person.0637673440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637673440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physics Department, Indian Institute of Science, Bangalore, 560012 India", 
          "id": "http://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Physics Department, Indian Institute of Science, Bangalore, 560012 India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Manish", 
        "id": "sg:person.01332741442.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332741442.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India", 
          "id": "http://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varma", 
        "givenName": "Manoj", 
        "id": "sg:person.0725433401.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725433401.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India", 
          "id": "http://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pratap", 
        "givenName": "Rudra", 
        "id": "sg:person.014062630047.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014062630047.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India", 
          "id": "http://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raghavan", 
        "givenName": "Srinivasan", 
        "id": "sg:person.01162651375.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162651375.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature09579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018507382", 
          "https://doi.org/10.1038/nature09579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013560949", 
          "https://doi.org/10.1038/nmat2830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043756216", 
          "https://doi.org/10.1038/nature09718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038425024", 
          "https://doi.org/10.1038/nnano.2014.166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034724219", 
          "https://doi.org/10.1038/srep25011"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-06", 
    "datePublishedReg": "2019-03-06", 
    "description": "Research efforts in large area graphene synthesis have been focused on increasing grain size. Here, it is shown that, beyond 1\u2009\u03bcm grain size, grain boundary engineering determines the electronic properties of the monolayer. It is established by chemical vapor deposition experiments and first-principle calculations that there is a thermodynamic correlation between the vapor phase chemistry and carbon potential at grain boundaries and triple junctions. As a result, boundary formation can be controlled, and well-formed boundaries can be intentionally made defective, reversibly. In 100\u2009\u00b5m long channels this aspect is demonstrated by reversibly changing room temperature electronic mobilities from 1000 to 20,000\u2009cm2\u2009V-1\u2009s-1. Water permeation experiments show that changes are localized to grain boundaries. Electron microscopy is further used to correlate the global vapor phase conditions and the boundary defect types. Such thermodynamic control is essential to enable consistent growth and control of two-dimensional layer properties over large areas.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-019-09000-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6938333", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "large-area graphene synthesis", 
      "graphene grain boundaries", 
      "grain boundary engineering", 
      "graphene synthesis", 
      "grain boundaries", 
      "defect engineering", 
      "vapor phase chemistry", 
      "electronic mobility", 
      "electron microscopy", 
      "boundary engineering", 
      "grain size", 
      "electronic properties", 
      "vapor phase conditions", 
      "first-principles calculations", 
      "layer properties", 
      "long channel", 
      "engineering", 
      "chemical vapor deposition experiments", 
      "large areas", 
      "vapor deposition experiments", 
      "research efforts", 
      "microscopy", 
      "permeation experiments", 
      "water permeation experiments", 
      "size", 
      "properties", 
      "deposition experiments", 
      "channels", 
      "monolayers", 
      "defect types", 
      "synthesis", 
      "phase conditions", 
      "mobility", 
      "triple junction", 
      "consistent growth", 
      "thermodynamic control", 
      "boundary formation", 
      "junction", 
      "potential", 
      "chemistry", 
      "phase chemistry", 
      "carbon potential", 
      "boundaries", 
      "formation", 
      "growth", 
      "area", 
      "experiments", 
      "control", 
      "results", 
      "conditions", 
      "thermodynamic correlations", 
      "calculations", 
      "types", 
      "efforts", 
      "aspects", 
      "correlation", 
      "changes", 
      "area graphene synthesis", 
      "room temperature electronic mobilities", 
      "temperature electronic mobilities", 
      "global vapor phase conditions", 
      "boundary defect types", 
      "Such thermodynamic control", 
      "two-dimensional layer properties", 
      "Reversible defect engineering"
    ], 
    "name": "Reversible defect engineering in graphene grain boundaries", 
    "pagination": "1090", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112575944"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-09000-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30842414"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-09000-8", 
      "https://app.dimensions.ai/details/publication/pub.1112575944"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_812.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-019-09000-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09000-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09000-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09000-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-09000-8'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      22 PREDICATES      96 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-09000-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc59d17668c0b4f079f8348596951ef2a
4 schema:citation sg:pub.10.1038/nature09579
5 sg:pub.10.1038/nature09718
6 sg:pub.10.1038/nmat2830
7 sg:pub.10.1038/nnano.2014.166
8 sg:pub.10.1038/srep25011
9 schema:datePublished 2019-03-06
10 schema:datePublishedReg 2019-03-06
11 schema:description Research efforts in large area graphene synthesis have been focused on increasing grain size. Here, it is shown that, beyond 1 μm grain size, grain boundary engineering determines the electronic properties of the monolayer. It is established by chemical vapor deposition experiments and first-principle calculations that there is a thermodynamic correlation between the vapor phase chemistry and carbon potential at grain boundaries and triple junctions. As a result, boundary formation can be controlled, and well-formed boundaries can be intentionally made defective, reversibly. In 100 µm long channels this aspect is demonstrated by reversibly changing room temperature electronic mobilities from 1000 to 20,000 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. Water permeation experiments show that changes are localized to grain boundaries. Electron microscopy is further used to correlate the global vapor phase conditions and the boundary defect types. Such thermodynamic control is essential to enable consistent growth and control of two-dimensional layer properties over large areas.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N4194564318f443d8aa7dce7f1c14fd4f
16 N780ceb7b71c441b08378ddef0c999ff9
17 sg:journal.1043282
18 schema:keywords Reversible defect engineering
19 Such thermodynamic control
20 area
21 area graphene synthesis
22 aspects
23 boundaries
24 boundary defect types
25 boundary engineering
26 boundary formation
27 calculations
28 carbon potential
29 changes
30 channels
31 chemical vapor deposition experiments
32 chemistry
33 conditions
34 consistent growth
35 control
36 correlation
37 defect engineering
38 defect types
39 deposition experiments
40 efforts
41 electron microscopy
42 electronic mobility
43 electronic properties
44 engineering
45 experiments
46 first-principles calculations
47 formation
48 global vapor phase conditions
49 grain boundaries
50 grain boundary engineering
51 grain size
52 graphene grain boundaries
53 graphene synthesis
54 growth
55 junction
56 large areas
57 large-area graphene synthesis
58 layer properties
59 long channel
60 microscopy
61 mobility
62 monolayers
63 permeation experiments
64 phase chemistry
65 phase conditions
66 potential
67 properties
68 research efforts
69 results
70 room temperature electronic mobilities
71 size
72 synthesis
73 temperature electronic mobilities
74 thermodynamic control
75 thermodynamic correlations
76 triple junction
77 two-dimensional layer properties
78 types
79 vapor deposition experiments
80 vapor phase chemistry
81 vapor phase conditions
82 water permeation experiments
83 schema:name Reversible defect engineering in graphene grain boundaries
84 schema:pagination 1090
85 schema:productId N6bdd99d212d94b9f9870d2d3aa44918e
86 N73b6400611ee4961aa404621708cdb8f
87 Nbd068511131e4f6596ad3eed717a3b7a
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112575944
89 https://doi.org/10.1038/s41467-019-09000-8
90 schema:sdDatePublished 2021-12-01T19:45
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nfd1ff796ac3a4b1a8c16f0f732a2c807
93 schema:url https://doi.org/10.1038/s41467-019-09000-8
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N2654170c33414cf8adf530eb2c56b533 rdf:first sg:person.014062630047.88
98 rdf:rest Nbafe3b0aa478449daba86bd829502334
99 N4194564318f443d8aa7dce7f1c14fd4f schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N5776978d62b04efb85540a5a8d2ba01d rdf:first sg:person.010211704771.29
102 rdf:rest N7edc174ce1a84ebca8de20ffac3f7332
103 N64a5a81c60a34193a7dceb7f5c545c62 rdf:first sg:person.013572167720.97
104 rdf:rest N5776978d62b04efb85540a5a8d2ba01d
105 N6bdd99d212d94b9f9870d2d3aa44918e schema:name doi
106 schema:value 10.1038/s41467-019-09000-8
107 rdf:type schema:PropertyValue
108 N73b6400611ee4961aa404621708cdb8f schema:name dimensions_id
109 schema:value pub.1112575944
110 rdf:type schema:PropertyValue
111 N780ceb7b71c441b08378ddef0c999ff9 schema:volumeNumber 10
112 rdf:type schema:PublicationVolume
113 N7edc174ce1a84ebca8de20ffac3f7332 rdf:first sg:person.015311624221.05
114 rdf:rest Na8cf9b1a878d4f939a2931f81bcea803
115 N9c5ba37c2af64330a55296229f6bdc0d rdf:first sg:person.0637673440.34
116 rdf:rest Na84f2669128140ab9fa0e09eae7b8d39
117 Na84f2669128140ab9fa0e09eae7b8d39 rdf:first sg:person.01332741442.08
118 rdf:rest Ne3011a8218dd46c49399ca40a1631143
119 Na8cf9b1a878d4f939a2931f81bcea803 rdf:first sg:person.01014444476.65
120 rdf:rest N9c5ba37c2af64330a55296229f6bdc0d
121 Nbafe3b0aa478449daba86bd829502334 rdf:first sg:person.01162651375.63
122 rdf:rest rdf:nil
123 Nbd068511131e4f6596ad3eed717a3b7a schema:name pubmed_id
124 schema:value 30842414
125 rdf:type schema:PropertyValue
126 Nc59d17668c0b4f079f8348596951ef2a rdf:first sg:person.013330561374.79
127 rdf:rest Ne0ed9d937673453896ff44a1e02ce623
128 Ne0ed9d937673453896ff44a1e02ce623 rdf:first Ned60a5df337c473e813e7684afa96c78
129 rdf:rest N64a5a81c60a34193a7dceb7f5c545c62
130 Ne3011a8218dd46c49399ca40a1631143 rdf:first sg:person.0725433401.11
131 rdf:rest N2654170c33414cf8adf530eb2c56b533
132 Ned60a5df337c473e813e7684afa96c78 schema:affiliation grid-institutes:grid.34980.36
133 schema:familyName Biswas
134 schema:givenName Tathagatha
135 rdf:type schema:Person
136 Nfd1ff796ac3a4b1a8c16f0f732a2c807 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
139 schema:name Engineering
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
142 schema:name Materials Engineering
143 rdf:type schema:DefinedTerm
144 sg:grant.6938333 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-09000-8
145 rdf:type schema:MonetaryGrant
146 sg:journal.1043282 schema:issn 2041-1723
147 schema:name Nature Communications
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.01014444476.65 schema:affiliation grid-institutes:grid.4367.6
151 schema:familyName Mishra
152 schema:givenName Rohan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014444476.65
154 rdf:type schema:Person
155 sg:person.010211704771.29 schema:affiliation grid-institutes:grid.34980.36
156 schema:familyName Suran
157 schema:givenName Swathi
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010211704771.29
159 rdf:type schema:Person
160 sg:person.01162651375.63 schema:affiliation grid-institutes:grid.34980.36
161 schema:familyName Raghavan
162 schema:givenName Srinivasan
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162651375.63
164 rdf:type schema:Person
165 sg:person.01332741442.08 schema:affiliation grid-institutes:grid.34980.36
166 schema:familyName Jain
167 schema:givenName Manish
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332741442.08
169 rdf:type schema:Person
170 sg:person.013330561374.79 schema:affiliation grid-institutes:grid.6451.6
171 schema:familyName Balasubramanian
172 schema:givenName Krishna
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013330561374.79
174 rdf:type schema:Person
175 sg:person.013572167720.97 schema:affiliation grid-institutes:grid.6451.6
176 schema:familyName Ghosh
177 schema:givenName Priyadarshini
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013572167720.97
179 rdf:type schema:Person
180 sg:person.014062630047.88 schema:affiliation grid-institutes:grid.34980.36
181 schema:familyName Pratap
182 schema:givenName Rudra
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014062630047.88
184 rdf:type schema:Person
185 sg:person.015311624221.05 schema:affiliation grid-institutes:grid.34980.36
186 schema:familyName Mishra
187 schema:givenName Abhishek
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311624221.05
189 rdf:type schema:Person
190 sg:person.0637673440.34 schema:affiliation grid-institutes:grid.65519.3e
191 schema:familyName Sachan
192 schema:givenName Ritesh
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637673440.34
194 rdf:type schema:Person
195 sg:person.0725433401.11 schema:affiliation grid-institutes:grid.34980.36
196 schema:familyName Varma
197 schema:givenName Manoj
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725433401.11
199 rdf:type schema:Person
200 sg:pub.10.1038/nature09579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018507382
201 https://doi.org/10.1038/nature09579
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nature09718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043756216
204 https://doi.org/10.1038/nature09718
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nmat2830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013560949
207 https://doi.org/10.1038/nmat2830
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nnano.2014.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038425024
210 https://doi.org/10.1038/nnano.2014.166
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/srep25011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034724219
213 https://doi.org/10.1038/srep25011
214 rdf:type schema:CreativeWork
215 grid-institutes:grid.34980.36 schema:alternateName Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India
216 Physics Department, Indian Institute of Science, Bangalore, 560012 India
217 schema:name Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India
218 Physics Department, Indian Institute of Science, Bangalore, 560012 India
219 rdf:type schema:Organization
220 grid-institutes:grid.4367.6 schema:alternateName Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Washington, MO 63130 USA
221 schema:name Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Washington, MO 63130 USA
222 rdf:type schema:Organization
223 grid-institutes:grid.6451.6 schema:alternateName Present Address: Electrical Engineering, Technion Israel Institute of Technology, Haifa, 3200003 Israel
224 Present Address: Materials Engineering, Technion Israel Institute of Technology, Haifa, 3200003 Israel
225 schema:name Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012 India
226 Materials Research Center, Indian Institute of Science, Bangalore, 560012 India
227 Present Address: Electrical Engineering, Technion Israel Institute of Technology, Haifa, 3200003 Israel
228 Present Address: Materials Engineering, Technion Israel Institute of Technology, Haifa, 3200003 Israel
229 rdf:type schema:Organization
230 grid-institutes:grid.65519.3e schema:alternateName Present Address: School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, 74078 OK USA
231 schema:name Material Science and Technology division, Oak Ridge National Laboratory, Tennessee, 37831 USA
232 Present Address: School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, 74078 OK USA
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...