Stokes flow analogous to viscous electron current in graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Jonathan Mayzel, Victor Steinberg, Atul Varshney

ABSTRACT

Electron transport in two-dimensional conducting materials such as graphene, with dominant electron-electron interaction, exhibits unusual vortex flow that leads to a nonlocal current-field relation (negative resistance), distinct from the classical Ohm's law. The transport behavior of these materials is best described by low Reynolds number hydrodynamics, where the constitutive pressure-speed relation is Stoke's law. Here we report evidence of such vortices observed in a viscous flow of Newtonian fluid in a microfluidic device consisting of a rectangular cavity-analogous to the electronic system. We extend our experimental observations to elliptic cavities of different eccentricities, and validate them by numerically solving bi-harmonic equation obtained for the viscous flow with no-slip boundary conditions. We verify the existence of a predicted threshold at which vortices appear. Strikingly, we find that a two-dimensional theoretical model captures the essential features of three-dimensional Stokes flow in experiments. More... »

PAGES

937

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-08916-5

DOI

http://dx.doi.org/10.1038/s41467-019-08916-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112398473

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30808870


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayzel", 
        "givenName": "Jonathan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebrew University of Jerusalem", 
          "id": "https://www.grid.ac/institutes/grid.9619.7", 
          "name": [
            "Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel", 
            "The Racah Institute of Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steinberg", 
        "givenName": "Victor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Science and Technology Austria", 
          "id": "https://www.grid.ac/institutes/grid.33565.36", 
          "name": [
            "Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel", 
            "Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varshney", 
        "givenName": "Atul", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys3534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001367359", 
          "https://doi.org/10.1038/nphys3534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016251833", 
          "https://doi.org/10.1038/nphys3667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.256804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020266799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.256804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020266799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aac8385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021748445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad0201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031895169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5334/jors.bl", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036368586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(94)90244-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048658388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(94)90244-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048658388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.13389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049685086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.13389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049685086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00607-008-0012-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051000133", 
          "https://doi.org/10.1007/s00607-008-0012-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00607-008-0012-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051000133", 
          "https://doi.org/10.1007/s00607-008-0012-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.245418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.245418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.165433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.165433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.155414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.155414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.086102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.086102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.066601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091149795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.066601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091149795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091282784", 
          "https://doi.org/10.1038/nphys4240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091282784", 
          "https://doi.org/10.1038/nphys4240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-648x/aaa274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099865852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.98.241304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110836137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.98.241304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110836137"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Electron transport in two-dimensional conducting materials such as graphene, with dominant electron-electron interaction, exhibits unusual vortex flow that leads to a nonlocal current-field relation (negative resistance), distinct from the classical Ohm's law. The transport behavior of these materials is best described by low Reynolds number hydrodynamics, where the constitutive pressure-speed relation is Stoke's law. Here we report evidence of such vortices observed in a viscous flow of Newtonian fluid in a microfluidic device consisting of a rectangular cavity-analogous to the electronic system. We extend our experimental observations to elliptic cavities of different eccentricities, and validate them by numerically solving bi-harmonic equation obtained for the viscous flow with no-slip boundary conditions. We verify the existence of\u00a0a\u00a0 predicted threshold at which vortices appear.\u00a0Strikingly, we find that a two-dimensional theoretical model captures the essential features of three-dimensional Stokes flow in experiments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-019-08916-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6814939", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Stokes flow analogous to viscous electron current in graphene", 
    "pagination": "937", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ff4169d5bbfda9bdbbbd6e4fdc8cd0790aae62b75515874278c9192e3096aebe"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30808870"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-08916-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112398473"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-08916-5", 
      "https://app.dimensions.ai/details/publication/pub.1112398473"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112064_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-019-08916-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08916-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08916-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08916-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08916-5'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      46 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-08916-5 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N0f24a2a0c7cf4b388e75a6c5463a58c6
4 schema:citation sg:pub.10.1007/s00607-008-0012-9
5 sg:pub.10.1038/nphys3534
6 sg:pub.10.1038/nphys3667
7 sg:pub.10.1038/nphys4240
8 https://doi.org/10.1016/0038-1101(94)90244-5
9 https://doi.org/10.1088/1361-648x/aaa274
10 https://doi.org/10.1103/physrevb.51.13389
11 https://doi.org/10.1103/physrevb.72.245418
12 https://doi.org/10.1103/physrevb.92.165433
13 https://doi.org/10.1103/physrevb.94.155414
14 https://doi.org/10.1103/physrevb.98.241304
15 https://doi.org/10.1103/physrevlett.102.086102
16 https://doi.org/10.1103/physrevlett.106.256804
17 https://doi.org/10.1103/physrevlett.119.066601
18 https://doi.org/10.1126/science.aac8385
19 https://doi.org/10.1126/science.aad0201
20 https://doi.org/10.5334/jors.bl
21 schema:datePublished 2019-12
22 schema:datePublishedReg 2019-12-01
23 schema:description Electron transport in two-dimensional conducting materials such as graphene, with dominant electron-electron interaction, exhibits unusual vortex flow that leads to a nonlocal current-field relation (negative resistance), distinct from the classical Ohm's law. The transport behavior of these materials is best described by low Reynolds number hydrodynamics, where the constitutive pressure-speed relation is Stoke's law. Here we report evidence of such vortices observed in a viscous flow of Newtonian fluid in a microfluidic device consisting of a rectangular cavity-analogous to the electronic system. We extend our experimental observations to elliptic cavities of different eccentricities, and validate them by numerically solving bi-harmonic equation obtained for the viscous flow with no-slip boundary conditions. We verify the existence of a  predicted threshold at which vortices appear. Strikingly, we find that a two-dimensional theoretical model captures the essential features of three-dimensional Stokes flow in experiments.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N2a1e2ac721d84986920c59b68e03d049
28 N85e1150dfd70414f87ba46e6d87a0dd7
29 sg:journal.1043282
30 schema:name Stokes flow analogous to viscous electron current in graphene
31 schema:pagination 937
32 schema:productId N609ee93cfd1e4963b7a171af5c54d697
33 Na1245f6393d84184b23586b46c7a2a73
34 Ncb8d42bc40034a7b9670e36b4639fb61
35 Nd66e31de633f42768a69536f60efc3a4
36 Nfd63cc9ca95f49b2bdcb30d56d70d89c
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112398473
38 https://doi.org/10.1038/s41467-019-08916-5
39 schema:sdDatePublished 2019-04-11T13:05
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N12a65e7607b1429a9e6a6cf6964b0e3f
42 schema:url https://www.nature.com/articles/s41467-019-08916-5
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N0f24a2a0c7cf4b388e75a6c5463a58c6 rdf:first N7486b1328ab1465ab9e64d35de4a6d97
47 rdf:rest N96c37b08b00f406995c906fa8887757b
48 N12a65e7607b1429a9e6a6cf6964b0e3f schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N2a1e2ac721d84986920c59b68e03d049 schema:issueNumber 1
51 rdf:type schema:PublicationIssue
52 N329ee576f9664f6da9d7097fc7fe2705 schema:affiliation https://www.grid.ac/institutes/grid.33565.36
53 schema:familyName Varshney
54 schema:givenName Atul
55 rdf:type schema:Person
56 N3f59065676304c6da2c184378067d8fd schema:affiliation https://www.grid.ac/institutes/grid.9619.7
57 schema:familyName Steinberg
58 schema:givenName Victor
59 rdf:type schema:Person
60 N609ee93cfd1e4963b7a171af5c54d697 schema:name nlm_unique_id
61 schema:value 101528555
62 rdf:type schema:PropertyValue
63 N63a6c630df35452c9d1aa3d9bdf6b9ab rdf:first N329ee576f9664f6da9d7097fc7fe2705
64 rdf:rest rdf:nil
65 N7486b1328ab1465ab9e64d35de4a6d97 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
66 schema:familyName Mayzel
67 schema:givenName Jonathan
68 rdf:type schema:Person
69 N85e1150dfd70414f87ba46e6d87a0dd7 schema:volumeNumber 10
70 rdf:type schema:PublicationVolume
71 N96c37b08b00f406995c906fa8887757b rdf:first N3f59065676304c6da2c184378067d8fd
72 rdf:rest N63a6c630df35452c9d1aa3d9bdf6b9ab
73 Na1245f6393d84184b23586b46c7a2a73 schema:name doi
74 schema:value 10.1038/s41467-019-08916-5
75 rdf:type schema:PropertyValue
76 Ncb8d42bc40034a7b9670e36b4639fb61 schema:name pubmed_id
77 schema:value 30808870
78 rdf:type schema:PropertyValue
79 Nd66e31de633f42768a69536f60efc3a4 schema:name readcube_id
80 schema:value ff4169d5bbfda9bdbbbd6e4fdc8cd0790aae62b75515874278c9192e3096aebe
81 rdf:type schema:PropertyValue
82 Nfd63cc9ca95f49b2bdcb30d56d70d89c schema:name dimensions_id
83 schema:value pub.1112398473
84 rdf:type schema:PropertyValue
85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
86 schema:name Engineering
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
89 schema:name Interdisciplinary Engineering
90 rdf:type schema:DefinedTerm
91 sg:grant.6814939 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08916-5
92 rdf:type schema:MonetaryGrant
93 sg:journal.1043282 schema:issn 2041-1723
94 schema:name Nature Communications
95 rdf:type schema:Periodical
96 sg:pub.10.1007/s00607-008-0012-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051000133
97 https://doi.org/10.1007/s00607-008-0012-9
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/nphys3534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001367359
100 https://doi.org/10.1038/nphys3534
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nphys3667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016251833
103 https://doi.org/10.1038/nphys3667
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nphys4240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091282784
106 https://doi.org/10.1038/nphys4240
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0038-1101(94)90244-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048658388
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/1361-648x/aaa274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099865852
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevb.51.13389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049685086
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.72.245418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060616134
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.92.165433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647617
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.94.155414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060652628
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.98.241304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110836137
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.102.086102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754880
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.106.256804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020266799
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.119.066601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091149795
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1126/science.aac8385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021748445
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1126/science.aad0201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031895169
131 rdf:type schema:CreativeWork
132 https://doi.org/10.5334/jors.bl schema:sameAs https://app.dimensions.ai/details/publication/pub.1036368586
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
135 schema:name Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.33565.36 schema:alternateName Institute of Science and Technology Austria
138 schema:name Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel
139 Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.9619.7 schema:alternateName Hebrew University of Jerusalem
142 schema:name Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel
143 The Racah Institute of Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...