Supercluster-coupled crystal growth in metallic glass forming liquids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yujun Xie, Sungwoo Sohn, Minglei Wang, Huolin Xin, Yeonwoong Jung, Mark D. Shattuck, Corey S. O’Hern, Jan Schroers, Judy J. Cha

ABSTRACT

While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid. More... »

PAGES

915

References to SciGraph publications

  • 2016-10-03. Multistep nucleation of nanocrystals in aqueous solution in NATURE CHEMISTRY
  • 2013-12. Liquid–liquid transition in a strong bulk metallic glass-forming liquid in NATURE COMMUNICATIONS
  • 2010-12. The role of prenucleation clusters in surface-induced calcium phosphate crystallization in NATURE MATERIALS
  • 2017-11. Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses in JOM
  • 2015-08. Rejuvenation of metallic glasses by non-affine thermal strain in NATURE
  • 2013-04. Nucleation and growth of magnetite from solution in NATURE MATERIALS
  • 2006-01. Atomic packing and short-to-medium-range order in metallic glasses in NATURE
  • 2011-09. Stable prenucleation mineral clusters are liquid-like ionic polymers in NATURE COMMUNICATIONS
  • 2014-01. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization in NATURE PHYSICS
  • 2017-12. Tailoring crystallization phases in metallic glass nanorods via nucleus starvation in NATURE COMMUNICATIONS
  • 2018-10. The mechanism of the ultrafast crystal growth of pure metals from their melts in NATURE MATERIALS
  • 2015-12. Nanoscale size effects in crystallization of metallic glass nanorods in NATURE COMMUNICATIONS
  • 2009-02. Nanomoulding with amorphous metals in NATURE
  • 2012-10. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization in THE EUROPEAN PHYSICAL JOURNAL E
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4

    DOI

    http://dx.doi.org/10.1038/s41467-019-08898-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112308281

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30796248


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
                "Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Yujun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sohn", 
            "givenName": "Sungwoo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Minglei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brookhaven National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.202665.5", 
              "name": [
                "Center for Functional Nanomaterials, Brookhaven National Laboratory, 11973, Upton, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xin", 
            "givenName": "Huolin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Central Florida", 
              "id": "https://www.grid.ac/institutes/grid.170430.1", 
              "name": [
                "Nanoscience Technology Center, Department of Materials Science and Engineering, Electrical and Computer Engineering, University of Central Florida, 32826, Orlando, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jung", 
            "givenName": "Yeonwoong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "City College of New York", 
              "id": "https://www.grid.ac/institutes/grid.254250.4", 
              "name": [
                "Department of Physics and Benjamin Levich Institute, City College of the City University of New York, 10031, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shattuck", 
            "givenName": "Mark D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
                "Department of Physics, Yale University, 06511, New Haven, CT, USA", 
                "Department of Applied Physics, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Hern", 
            "givenName": "Corey S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schroers", 
            "givenName": "Jan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Canadian Institute for Advanced Research", 
              "id": "https://www.grid.ac/institutes/grid.440050.5", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
                "Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA", 
                "Canadian Institute for Advanced Research, Azrieli Global Scholar, M5G 1M1, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cha", 
            "givenName": "Judy J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-3093(86)90229-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001994121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3093(86)90229-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001994121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1309320111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002983256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009569043", 
              "https://doi.org/10.1038/nmat2900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009569043", 
              "https://doi.org/10.1038/nmat2900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010078177", 
              "https://doi.org/10.1038/nmat3558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2006.09.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011978623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014001816", 
              "https://doi.org/10.1038/nature14674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018290838", 
              "https://doi.org/10.1038/nature07718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019106955", 
              "https://doi.org/10.1038/nature04421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019106955", 
              "https://doi.org/10.1038/nature04421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019106955", 
              "https://doi.org/10.1038/nature04421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020300303", 
              "https://doi.org/10.1038/ncomms9157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/095008398178318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025093731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4821637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025099785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026177985", 
              "https://doi.org/10.1038/ncomms3083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1161517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027171921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epje/i2012-12113-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027314319", 
              "https://doi.org/10.1140/epje/i2012-12113-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027684034", 
              "https://doi.org/10.1038/nphys2817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2008.10.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030321721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0079-6425(00)00021-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030762385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.1951.0006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035670954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044424294", 
              "https://doi.org/10.1038/ncomms1604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044871739", 
              "https://doi.org/10.1038/nchem.2618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaa6760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053438359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpcb.5b05389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055106214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1897830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057831190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4808342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058076903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.32.3399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060538291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.32.3399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060538291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.3900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060578193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.3900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060578193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.60.11855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060593236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.60.11855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060593236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.214103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060646003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.214103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060646003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.245501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.245501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.195504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060826714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.195504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060826714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1177483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062460436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1221561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062466637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2017.04.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085113374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-017-2579-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091861809", 
              "https://doi.org/10.1007/s11837-017-2579-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aao3212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092619850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02153-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093139659", 
              "https://doi.org/10.1038/s41467-017-02153-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-018-0174-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107042457", 
              "https://doi.org/10.1038/s41563-018-0174-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-019-08898-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4179248", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3127424", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Supercluster-coupled crystal growth in metallic glass forming liquids", 
        "pagination": "915", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c5488e284774bebebc3db7837847a3701df8630ef500f8a2497d4688e0192909"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30796248"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-08898-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112308281"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-08898-4", 
          "https://app.dimensions.ai/details/publication/pub.1112308281"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88251_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-019-08898-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    264 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-08898-4 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N62d720551cdd479c9e43aae8956940a8
    4 schema:citation sg:pub.10.1007/s11837-017-2579-0
    5 sg:pub.10.1038/nature04421
    6 sg:pub.10.1038/nature07718
    7 sg:pub.10.1038/nature14674
    8 sg:pub.10.1038/nchem.2618
    9 sg:pub.10.1038/ncomms1604
    10 sg:pub.10.1038/ncomms3083
    11 sg:pub.10.1038/ncomms9157
    12 sg:pub.10.1038/nmat2900
    13 sg:pub.10.1038/nmat3558
    14 sg:pub.10.1038/nphys2817
    15 sg:pub.10.1038/s41467-017-02153-4
    16 sg:pub.10.1038/s41563-018-0174-6
    17 sg:pub.10.1140/epje/i2012-12113-y
    18 https://doi.org/10.1016/0022-3093(86)90229-2
    19 https://doi.org/10.1016/j.actamat.2006.09.024
    20 https://doi.org/10.1016/j.actamat.2008.10.020
    21 https://doi.org/10.1016/j.actamat.2017.04.030
    22 https://doi.org/10.1016/j.scriptamat.2015.03.024
    23 https://doi.org/10.1016/s0079-6425(00)00021-9
    24 https://doi.org/10.1021/acs.jpcb.5b05389
    25 https://doi.org/10.1063/1.1897830
    26 https://doi.org/10.1063/1.4808342
    27 https://doi.org/10.1063/1.4821637
    28 https://doi.org/10.1073/pnas.1309320111
    29 https://doi.org/10.1080/095008398178318
    30 https://doi.org/10.1098/rsta.1951.0006
    31 https://doi.org/10.1103/physrevb.32.3399
    32 https://doi.org/10.1103/physrevb.52.3900
    33 https://doi.org/10.1103/physrevb.60.11855
    34 https://doi.org/10.1103/physrevb.91.214103
    35 https://doi.org/10.1103/physrevlett.102.245501
    36 https://doi.org/10.1103/physrevlett.90.195504
    37 https://doi.org/10.1126/science.1161517
    38 https://doi.org/10.1126/science.1177483
    39 https://doi.org/10.1126/science.1221561
    40 https://doi.org/10.1126/science.aaa6760
    41 https://doi.org/10.1126/science.aao3212
    42 schema:datePublished 2019-12
    43 schema:datePublishedReg 2019-12-01
    44 schema:description While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree true
    48 schema:isPartOf N5f14c7bf7ced4fcca3d5fee90b23961a
    49 Nbb3f6f4f7de04113af44c82b2d42df01
    50 sg:journal.1043282
    51 schema:name Supercluster-coupled crystal growth in metallic glass forming liquids
    52 schema:pagination 915
    53 schema:productId N7ef1e77fdc0f48d1a1cada42fd130ccd
    54 N8abe3e9b44f843599fe271a4e60720b3
    55 N9cc6e804cfb34f0eb6fe545900ce2df0
    56 Ne5f762aca1dd470aae2f851486189492
    57 Ne74ccb7c939c4dce9cf9e4f7e33ff091
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112308281
    59 https://doi.org/10.1038/s41467-019-08898-4
    60 schema:sdDatePublished 2019-04-11T13:11
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher Nfc7704a6cd0a4ad08a9ea0c314a0da63
    63 schema:url https://www.nature.com/articles/s41467-019-08898-4
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N02e2a5d117db45789273244a101a46a5 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    68 schema:familyName Wang
    69 schema:givenName Minglei
    70 rdf:type schema:Person
    71 N06d874fde3d841439c37fc0a97df0778 rdf:first N132bb63a557b4eab814a6a21c65d4b61
    72 rdf:rest N62482bf50ee544848a6941cbc7f5bdbc
    73 N09f5f0ae96e24eb3b9e0e5cc853de280 schema:affiliation https://www.grid.ac/institutes/grid.440050.5
    74 schema:familyName Cha
    75 schema:givenName Judy J.
    76 rdf:type schema:Person
    77 N132bb63a557b4eab814a6a21c65d4b61 schema:affiliation https://www.grid.ac/institutes/grid.254250.4
    78 schema:familyName Shattuck
    79 schema:givenName Mark D.
    80 rdf:type schema:Person
    81 N1f45ef85bcf8458687fdc59a05a387ff schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    82 schema:familyName Schroers
    83 schema:givenName Jan
    84 rdf:type schema:Person
    85 N297b07a06de0476a8a60c04c1df8bb33 rdf:first N09f5f0ae96e24eb3b9e0e5cc853de280
    86 rdf:rest rdf:nil
    87 N5f14c7bf7ced4fcca3d5fee90b23961a schema:issueNumber 1
    88 rdf:type schema:PublicationIssue
    89 N5fc28501bb5747af8b7b35ed93de2845 schema:affiliation https://www.grid.ac/institutes/grid.202665.5
    90 schema:familyName Xin
    91 schema:givenName Huolin
    92 rdf:type schema:Person
    93 N62482bf50ee544848a6941cbc7f5bdbc rdf:first N8b46d7553c6a417ba781426ce8c50e76
    94 rdf:rest N9de3e382e4af4e9baf1054dc1b7c1565
    95 N62d720551cdd479c9e43aae8956940a8 rdf:first N7dc85e8aacae4c4bbea687e9baf4bd9c
    96 rdf:rest N7d37926afc494cc28437cf0c9ec2fd3f
    97 N7d37926afc494cc28437cf0c9ec2fd3f rdf:first Nfb2387d7557c4d81a3b1133e522f0ef6
    98 rdf:rest N819b8197ae1447de9904c000341c6ffd
    99 N7d4ebcfeaad044a4bd20af7608334e34 rdf:first Ne7c79636f5c148f2b2830b3960f3ed60
    100 rdf:rest N06d874fde3d841439c37fc0a97df0778
    101 N7dc85e8aacae4c4bbea687e9baf4bd9c schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    102 schema:familyName Xie
    103 schema:givenName Yujun
    104 rdf:type schema:Person
    105 N7ef1e77fdc0f48d1a1cada42fd130ccd schema:name nlm_unique_id
    106 schema:value 101528555
    107 rdf:type schema:PropertyValue
    108 N819b8197ae1447de9904c000341c6ffd rdf:first N02e2a5d117db45789273244a101a46a5
    109 rdf:rest Nceb6a3ac33ee4601b41267e103f108a1
    110 N8abe3e9b44f843599fe271a4e60720b3 schema:name doi
    111 schema:value 10.1038/s41467-019-08898-4
    112 rdf:type schema:PropertyValue
    113 N8b46d7553c6a417ba781426ce8c50e76 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    114 schema:familyName O’Hern
    115 schema:givenName Corey S.
    116 rdf:type schema:Person
    117 N9cc6e804cfb34f0eb6fe545900ce2df0 schema:name readcube_id
    118 schema:value c5488e284774bebebc3db7837847a3701df8630ef500f8a2497d4688e0192909
    119 rdf:type schema:PropertyValue
    120 N9de3e382e4af4e9baf1054dc1b7c1565 rdf:first N1f45ef85bcf8458687fdc59a05a387ff
    121 rdf:rest N297b07a06de0476a8a60c04c1df8bb33
    122 Nbb3f6f4f7de04113af44c82b2d42df01 schema:volumeNumber 10
    123 rdf:type schema:PublicationVolume
    124 Nceb6a3ac33ee4601b41267e103f108a1 rdf:first N5fc28501bb5747af8b7b35ed93de2845
    125 rdf:rest N7d4ebcfeaad044a4bd20af7608334e34
    126 Ne5f762aca1dd470aae2f851486189492 schema:name pubmed_id
    127 schema:value 30796248
    128 rdf:type schema:PropertyValue
    129 Ne74ccb7c939c4dce9cf9e4f7e33ff091 schema:name dimensions_id
    130 schema:value pub.1112308281
    131 rdf:type schema:PropertyValue
    132 Ne7c79636f5c148f2b2830b3960f3ed60 schema:affiliation https://www.grid.ac/institutes/grid.170430.1
    133 schema:familyName Jung
    134 schema:givenName Yeonwoong
    135 rdf:type schema:Person
    136 Nfb2387d7557c4d81a3b1133e522f0ef6 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    137 schema:familyName Sohn
    138 schema:givenName Sungwoo
    139 rdf:type schema:Person
    140 Nfc7704a6cd0a4ad08a9ea0c314a0da63 schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Chemical Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Physical Chemistry (incl. Structural)
    147 rdf:type schema:DefinedTerm
    148 sg:grant.3127424 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08898-4
    149 rdf:type schema:MonetaryGrant
    150 sg:grant.4179248 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08898-4
    151 rdf:type schema:MonetaryGrant
    152 sg:journal.1043282 schema:issn 2041-1723
    153 schema:name Nature Communications
    154 rdf:type schema:Periodical
    155 sg:pub.10.1007/s11837-017-2579-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091861809
    156 https://doi.org/10.1007/s11837-017-2579-0
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nature04421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019106955
    159 https://doi.org/10.1038/nature04421
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
    162 https://doi.org/10.1038/nature07718
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nature14674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014001816
    165 https://doi.org/10.1038/nature14674
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nchem.2618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044871739
    168 https://doi.org/10.1038/nchem.2618
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/ncomms1604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044424294
    171 https://doi.org/10.1038/ncomms1604
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/ncomms3083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026177985
    174 https://doi.org/10.1038/ncomms3083
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/ncomms9157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300303
    177 https://doi.org/10.1038/ncomms9157
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nmat2900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009569043
    180 https://doi.org/10.1038/nmat2900
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nmat3558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010078177
    183 https://doi.org/10.1038/nmat3558
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nphys2817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027684034
    186 https://doi.org/10.1038/nphys2817
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/s41467-017-02153-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093139659
    189 https://doi.org/10.1038/s41467-017-02153-4
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/s41563-018-0174-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107042457
    192 https://doi.org/10.1038/s41563-018-0174-6
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1140/epje/i2012-12113-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027314319
    195 https://doi.org/10.1140/epje/i2012-12113-y
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0022-3093(86)90229-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001994121
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.actamat.2006.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011978623
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.actamat.2008.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030321721
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.actamat.2017.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085113374
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.scriptamat.2015.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042986431
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/s0079-6425(00)00021-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030762385
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1021/acs.jpcb.5b05389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055106214
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1063/1.1897830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057831190
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1063/1.4808342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058076903
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1063/1.4821637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025099785
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1073/pnas.1309320111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002983256
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1080/095008398178318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025093731
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1098/rsta.1951.0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035670954
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1103/physrevb.32.3399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060538291
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1103/physrevb.52.3900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578193
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1103/physrevb.60.11855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060593236
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1103/physrevb.91.214103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646003
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1103/physrevlett.102.245501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755553
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1103/physrevlett.90.195504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826714
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1126/science.1161517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027171921
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1126/science.1177483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460436
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1126/science.1221561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466637
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1126/science.aaa6760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053438359
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1126/science.aao3212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092619850
    244 rdf:type schema:CreativeWork
    245 https://www.grid.ac/institutes/grid.170430.1 schema:alternateName University of Central Florida
    246 schema:name Nanoscience Technology Center, Department of Materials Science and Engineering, Electrical and Computer Engineering, University of Central Florida, 32826, Orlando, FL, USA
    247 rdf:type schema:Organization
    248 https://www.grid.ac/institutes/grid.202665.5 schema:alternateName Brookhaven National Laboratory
    249 schema:name Center for Functional Nanomaterials, Brookhaven National Laboratory, 11973, Upton, NY, USA
    250 rdf:type schema:Organization
    251 https://www.grid.ac/institutes/grid.254250.4 schema:alternateName City College of New York
    252 schema:name Department of Physics and Benjamin Levich Institute, City College of the City University of New York, 10031, New York, USA
    253 rdf:type schema:Organization
    254 https://www.grid.ac/institutes/grid.440050.5 schema:alternateName Canadian Institute for Advanced Research
    255 schema:name Canadian Institute for Advanced Research, Azrieli Global Scholar, M5G 1M1, Toronto, ON, Canada
    256 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
    257 Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA
    258 rdf:type schema:Organization
    259 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    260 schema:name Department of Applied Physics, Yale University, 06511, New Haven, CT, USA
    261 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
    262 Department of Physics, Yale University, 06511, New Haven, CT, USA
    263 Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA
    264 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...