Supercluster-coupled crystal growth in metallic glass forming liquids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yujun Xie, Sungwoo Sohn, Minglei Wang, Huolin Xin, Yeonwoong Jung, Mark D. Shattuck, Corey S. O’Hern, Jan Schroers, Judy J. Cha

ABSTRACT

While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid. More... »

PAGES

915

References to SciGraph publications

  • 2016-10-03. Multistep nucleation of nanocrystals in aqueous solution in NATURE CHEMISTRY
  • 2013-12. Liquid–liquid transition in a strong bulk metallic glass-forming liquid in NATURE COMMUNICATIONS
  • 2010-12. The role of prenucleation clusters in surface-induced calcium phosphate crystallization in NATURE MATERIALS
  • 2017-11. Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses in JOM
  • 2015-08. Rejuvenation of metallic glasses by non-affine thermal strain in NATURE
  • 2013-04. Nucleation and growth of magnetite from solution in NATURE MATERIALS
  • 2006-01. Atomic packing and short-to-medium-range order in metallic glasses in NATURE
  • 2011-09. Stable prenucleation mineral clusters are liquid-like ionic polymers in NATURE COMMUNICATIONS
  • 2014-01. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization in NATURE PHYSICS
  • 2017-12. Tailoring crystallization phases in metallic glass nanorods via nucleus starvation in NATURE COMMUNICATIONS
  • 2018-10. The mechanism of the ultrafast crystal growth of pure metals from their melts in NATURE MATERIALS
  • 2015-12. Nanoscale size effects in crystallization of metallic glass nanorods in NATURE COMMUNICATIONS
  • 2009-02. Nanomoulding with amorphous metals in NATURE
  • 2012-10. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization in THE EUROPEAN PHYSICAL JOURNAL E
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4

    DOI

    http://dx.doi.org/10.1038/s41467-019-08898-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112308281

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30796248


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
                "Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Yujun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sohn", 
            "givenName": "Sungwoo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Minglei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brookhaven National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.202665.5", 
              "name": [
                "Center for Functional Nanomaterials, Brookhaven National Laboratory, 11973, Upton, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xin", 
            "givenName": "Huolin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Central Florida", 
              "id": "https://www.grid.ac/institutes/grid.170430.1", 
              "name": [
                "Nanoscience Technology Center, Department of Materials Science and Engineering, Electrical and Computer Engineering, University of Central Florida, 32826, Orlando, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jung", 
            "givenName": "Yeonwoong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "City College of New York", 
              "id": "https://www.grid.ac/institutes/grid.254250.4", 
              "name": [
                "Department of Physics and Benjamin Levich Institute, City College of the City University of New York, 10031, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shattuck", 
            "givenName": "Mark D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
                "Department of Physics, Yale University, 06511, New Haven, CT, USA", 
                "Department of Applied Physics, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Hern", 
            "givenName": "Corey S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schroers", 
            "givenName": "Jan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Canadian Institute for Advanced Research", 
              "id": "https://www.grid.ac/institutes/grid.440050.5", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
                "Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA", 
                "Canadian Institute for Advanced Research, Azrieli Global Scholar, M5G 1M1, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cha", 
            "givenName": "Judy J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-3093(86)90229-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001994121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3093(86)90229-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001994121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1309320111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002983256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009569043", 
              "https://doi.org/10.1038/nmat2900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009569043", 
              "https://doi.org/10.1038/nmat2900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010078177", 
              "https://doi.org/10.1038/nmat3558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2006.09.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011978623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014001816", 
              "https://doi.org/10.1038/nature14674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018290838", 
              "https://doi.org/10.1038/nature07718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019106955", 
              "https://doi.org/10.1038/nature04421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019106955", 
              "https://doi.org/10.1038/nature04421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019106955", 
              "https://doi.org/10.1038/nature04421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020300303", 
              "https://doi.org/10.1038/ncomms9157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/095008398178318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025093731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4821637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025099785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026177985", 
              "https://doi.org/10.1038/ncomms3083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1161517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027171921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epje/i2012-12113-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027314319", 
              "https://doi.org/10.1140/epje/i2012-12113-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027684034", 
              "https://doi.org/10.1038/nphys2817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2008.10.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030321721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0079-6425(00)00021-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030762385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.1951.0006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035670954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044424294", 
              "https://doi.org/10.1038/ncomms1604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044871739", 
              "https://doi.org/10.1038/nchem.2618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaa6760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053438359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpcb.5b05389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055106214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1897830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057831190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4808342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058076903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.32.3399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060538291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.32.3399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060538291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.3900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060578193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.3900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060578193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.60.11855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060593236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.60.11855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060593236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.214103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060646003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.214103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060646003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.245501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.245501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.195504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060826714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.195504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060826714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1177483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062460436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1221561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062466637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2017.04.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085113374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-017-2579-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091861809", 
              "https://doi.org/10.1007/s11837-017-2579-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aao3212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092619850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02153-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093139659", 
              "https://doi.org/10.1038/s41467-017-02153-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-018-0174-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107042457", 
              "https://doi.org/10.1038/s41563-018-0174-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-019-08898-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4179248", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3127424", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Supercluster-coupled crystal growth in metallic glass forming liquids", 
        "pagination": "915", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c5488e284774bebebc3db7837847a3701df8630ef500f8a2497d4688e0192909"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30796248"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-08898-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112308281"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-08898-4", 
          "https://app.dimensions.ai/details/publication/pub.1112308281"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88251_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-019-08898-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    264 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-08898-4 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nd6bceaa72a8a4bd1a32b5ccd048c8d18
    4 schema:citation sg:pub.10.1007/s11837-017-2579-0
    5 sg:pub.10.1038/nature04421
    6 sg:pub.10.1038/nature07718
    7 sg:pub.10.1038/nature14674
    8 sg:pub.10.1038/nchem.2618
    9 sg:pub.10.1038/ncomms1604
    10 sg:pub.10.1038/ncomms3083
    11 sg:pub.10.1038/ncomms9157
    12 sg:pub.10.1038/nmat2900
    13 sg:pub.10.1038/nmat3558
    14 sg:pub.10.1038/nphys2817
    15 sg:pub.10.1038/s41467-017-02153-4
    16 sg:pub.10.1038/s41563-018-0174-6
    17 sg:pub.10.1140/epje/i2012-12113-y
    18 https://doi.org/10.1016/0022-3093(86)90229-2
    19 https://doi.org/10.1016/j.actamat.2006.09.024
    20 https://doi.org/10.1016/j.actamat.2008.10.020
    21 https://doi.org/10.1016/j.actamat.2017.04.030
    22 https://doi.org/10.1016/j.scriptamat.2015.03.024
    23 https://doi.org/10.1016/s0079-6425(00)00021-9
    24 https://doi.org/10.1021/acs.jpcb.5b05389
    25 https://doi.org/10.1063/1.1897830
    26 https://doi.org/10.1063/1.4808342
    27 https://doi.org/10.1063/1.4821637
    28 https://doi.org/10.1073/pnas.1309320111
    29 https://doi.org/10.1080/095008398178318
    30 https://doi.org/10.1098/rsta.1951.0006
    31 https://doi.org/10.1103/physrevb.32.3399
    32 https://doi.org/10.1103/physrevb.52.3900
    33 https://doi.org/10.1103/physrevb.60.11855
    34 https://doi.org/10.1103/physrevb.91.214103
    35 https://doi.org/10.1103/physrevlett.102.245501
    36 https://doi.org/10.1103/physrevlett.90.195504
    37 https://doi.org/10.1126/science.1161517
    38 https://doi.org/10.1126/science.1177483
    39 https://doi.org/10.1126/science.1221561
    40 https://doi.org/10.1126/science.aaa6760
    41 https://doi.org/10.1126/science.aao3212
    42 schema:datePublished 2019-12
    43 schema:datePublishedReg 2019-12-01
    44 schema:description While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree true
    48 schema:isPartOf Nd22fc53b504b4523b7dae27fe0a9d7ac
    49 Nd29e9e0a84e546c88cd3e51701766663
    50 sg:journal.1043282
    51 schema:name Supercluster-coupled crystal growth in metallic glass forming liquids
    52 schema:pagination 915
    53 schema:productId N391f469aad494579a9de3f6b6bc0fc56
    54 Nbd508bec06ee457986571824848abd4c
    55 Ndeeb66064d0748c693e58a22550631c1
    56 Ne3c6c03c7a324ff3a62cda7c3249bfc6
    57 Ne60d34fa2715431d89b792d85e7afc0e
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112308281
    59 https://doi.org/10.1038/s41467-019-08898-4
    60 schema:sdDatePublished 2019-04-11T13:11
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N2faf3b00f54f4d8ea4619ef7c0344d6f
    63 schema:url https://www.nature.com/articles/s41467-019-08898-4
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N0b4eb694c85b4b38b8f68c8fb90c3cfd schema:affiliation https://www.grid.ac/institutes/grid.202665.5
    68 schema:familyName Xin
    69 schema:givenName Huolin
    70 rdf:type schema:Person
    71 N18cdf7c96a1a4d888ead45d50922ab3b rdf:first Nbdae36eeefc040209373555e37b9dd4e
    72 rdf:rest Nb7281d1ae9ad4324a60715d28d8d148b
    73 N1f86c1d3ba8749ca984c0f64df548adc schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    74 schema:familyName Sohn
    75 schema:givenName Sungwoo
    76 rdf:type schema:Person
    77 N2faf3b00f54f4d8ea4619ef7c0344d6f schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N391f469aad494579a9de3f6b6bc0fc56 schema:name nlm_unique_id
    80 schema:value 101528555
    81 rdf:type schema:PropertyValue
    82 N42deed6be00043949f7e1426b533f876 rdf:first N1f86c1d3ba8749ca984c0f64df548adc
    83 rdf:rest Naaeb971c8d584cebb079e9b2c10866f0
    84 N54c5302570ab468ca78f4e2bab2c5d1d rdf:first N0b4eb694c85b4b38b8f68c8fb90c3cfd
    85 rdf:rest N5c1e0e2978bd4abcb766a87da45d7cb5
    86 N5c1e0e2978bd4abcb766a87da45d7cb5 rdf:first Ne09b4d2b8abd4d0f9ade12fd4775183d
    87 rdf:rest N18cdf7c96a1a4d888ead45d50922ab3b
    88 N66c144d0e59a4119803c5f4012e7ebe5 schema:affiliation https://www.grid.ac/institutes/grid.440050.5
    89 schema:familyName Cha
    90 schema:givenName Judy J.
    91 rdf:type schema:Person
    92 N7c5ebc66e3d742d19e3a151a7a57d9ce rdf:first Nf90a1fe66b824ea9899f7c79617e77b0
    93 rdf:rest Nb54f6f1b7be446c8a3815137bd4cb58a
    94 N95cb4f251eb94c43b82435c752292f88 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    95 schema:familyName O’Hern
    96 schema:givenName Corey S.
    97 rdf:type schema:Person
    98 N9a226e5b07684ac6845ace55f7cc1c72 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    99 schema:familyName Xie
    100 schema:givenName Yujun
    101 rdf:type schema:Person
    102 Naaeb971c8d584cebb079e9b2c10866f0 rdf:first Nc11b46562e314a9f85857cc24da42882
    103 rdf:rest N54c5302570ab468ca78f4e2bab2c5d1d
    104 Nb54f6f1b7be446c8a3815137bd4cb58a rdf:first N66c144d0e59a4119803c5f4012e7ebe5
    105 rdf:rest rdf:nil
    106 Nb7281d1ae9ad4324a60715d28d8d148b rdf:first N95cb4f251eb94c43b82435c752292f88
    107 rdf:rest N7c5ebc66e3d742d19e3a151a7a57d9ce
    108 Nbd508bec06ee457986571824848abd4c schema:name pubmed_id
    109 schema:value 30796248
    110 rdf:type schema:PropertyValue
    111 Nbdae36eeefc040209373555e37b9dd4e schema:affiliation https://www.grid.ac/institutes/grid.254250.4
    112 schema:familyName Shattuck
    113 schema:givenName Mark D.
    114 rdf:type schema:Person
    115 Nc11b46562e314a9f85857cc24da42882 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    116 schema:familyName Wang
    117 schema:givenName Minglei
    118 rdf:type schema:Person
    119 Nd22fc53b504b4523b7dae27fe0a9d7ac schema:issueNumber 1
    120 rdf:type schema:PublicationIssue
    121 Nd29e9e0a84e546c88cd3e51701766663 schema:volumeNumber 10
    122 rdf:type schema:PublicationVolume
    123 Nd6bceaa72a8a4bd1a32b5ccd048c8d18 rdf:first N9a226e5b07684ac6845ace55f7cc1c72
    124 rdf:rest N42deed6be00043949f7e1426b533f876
    125 Ndeeb66064d0748c693e58a22550631c1 schema:name doi
    126 schema:value 10.1038/s41467-019-08898-4
    127 rdf:type schema:PropertyValue
    128 Ne09b4d2b8abd4d0f9ade12fd4775183d schema:affiliation https://www.grid.ac/institutes/grid.170430.1
    129 schema:familyName Jung
    130 schema:givenName Yeonwoong
    131 rdf:type schema:Person
    132 Ne3c6c03c7a324ff3a62cda7c3249bfc6 schema:name dimensions_id
    133 schema:value pub.1112308281
    134 rdf:type schema:PropertyValue
    135 Ne60d34fa2715431d89b792d85e7afc0e schema:name readcube_id
    136 schema:value c5488e284774bebebc3db7837847a3701df8630ef500f8a2497d4688e0192909
    137 rdf:type schema:PropertyValue
    138 Nf90a1fe66b824ea9899f7c79617e77b0 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    139 schema:familyName Schroers
    140 schema:givenName Jan
    141 rdf:type schema:Person
    142 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Chemical Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Physical Chemistry (incl. Structural)
    147 rdf:type schema:DefinedTerm
    148 sg:grant.3127424 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08898-4
    149 rdf:type schema:MonetaryGrant
    150 sg:grant.4179248 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08898-4
    151 rdf:type schema:MonetaryGrant
    152 sg:journal.1043282 schema:issn 2041-1723
    153 schema:name Nature Communications
    154 rdf:type schema:Periodical
    155 sg:pub.10.1007/s11837-017-2579-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091861809
    156 https://doi.org/10.1007/s11837-017-2579-0
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nature04421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019106955
    159 https://doi.org/10.1038/nature04421
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
    162 https://doi.org/10.1038/nature07718
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nature14674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014001816
    165 https://doi.org/10.1038/nature14674
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nchem.2618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044871739
    168 https://doi.org/10.1038/nchem.2618
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/ncomms1604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044424294
    171 https://doi.org/10.1038/ncomms1604
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/ncomms3083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026177985
    174 https://doi.org/10.1038/ncomms3083
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/ncomms9157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300303
    177 https://doi.org/10.1038/ncomms9157
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nmat2900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009569043
    180 https://doi.org/10.1038/nmat2900
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nmat3558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010078177
    183 https://doi.org/10.1038/nmat3558
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nphys2817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027684034
    186 https://doi.org/10.1038/nphys2817
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/s41467-017-02153-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093139659
    189 https://doi.org/10.1038/s41467-017-02153-4
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/s41563-018-0174-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107042457
    192 https://doi.org/10.1038/s41563-018-0174-6
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1140/epje/i2012-12113-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027314319
    195 https://doi.org/10.1140/epje/i2012-12113-y
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0022-3093(86)90229-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001994121
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.actamat.2006.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011978623
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.actamat.2008.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030321721
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.actamat.2017.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085113374
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.scriptamat.2015.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042986431
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/s0079-6425(00)00021-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030762385
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1021/acs.jpcb.5b05389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055106214
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1063/1.1897830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057831190
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1063/1.4808342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058076903
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1063/1.4821637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025099785
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1073/pnas.1309320111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002983256
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1080/095008398178318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025093731
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1098/rsta.1951.0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035670954
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1103/physrevb.32.3399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060538291
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1103/physrevb.52.3900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578193
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1103/physrevb.60.11855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060593236
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1103/physrevb.91.214103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646003
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1103/physrevlett.102.245501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755553
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1103/physrevlett.90.195504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826714
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1126/science.1161517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027171921
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1126/science.1177483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460436
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1126/science.1221561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466637
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1126/science.aaa6760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053438359
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1126/science.aao3212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092619850
    244 rdf:type schema:CreativeWork
    245 https://www.grid.ac/institutes/grid.170430.1 schema:alternateName University of Central Florida
    246 schema:name Nanoscience Technology Center, Department of Materials Science and Engineering, Electrical and Computer Engineering, University of Central Florida, 32826, Orlando, FL, USA
    247 rdf:type schema:Organization
    248 https://www.grid.ac/institutes/grid.202665.5 schema:alternateName Brookhaven National Laboratory
    249 schema:name Center for Functional Nanomaterials, Brookhaven National Laboratory, 11973, Upton, NY, USA
    250 rdf:type schema:Organization
    251 https://www.grid.ac/institutes/grid.254250.4 schema:alternateName City College of New York
    252 schema:name Department of Physics and Benjamin Levich Institute, City College of the City University of New York, 10031, New York, USA
    253 rdf:type schema:Organization
    254 https://www.grid.ac/institutes/grid.440050.5 schema:alternateName Canadian Institute for Advanced Research
    255 schema:name Canadian Institute for Advanced Research, Azrieli Global Scholar, M5G 1M1, Toronto, ON, Canada
    256 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
    257 Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA
    258 rdf:type schema:Organization
    259 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    260 schema:name Department of Applied Physics, Yale University, 06511, New Haven, CT, USA
    261 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
    262 Department of Physics, Yale University, 06511, New Haven, CT, USA
    263 Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA
    264 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...