Supercluster-coupled crystal growth in metallic glass forming liquids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-22

AUTHORS

Yujun Xie, Sungwoo Sohn, Minglei Wang, Huolin Xin, Yeonwoong Jung, Mark D. Shattuck, Corey S. O’Hern, Jan Schroers, Judy J. Cha

ABSTRACT

While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid. More... »

PAGES

915

References to SciGraph publications

  • 2016-10-03. Multistep nucleation of nanocrystals in aqueous solution in NATURE CHEMISTRY
  • 2013-07-01. Liquid–liquid transition in a strong bulk metallic glass-forming liquid in NATURE COMMUNICATIONS
  • 2010-11-14. The role of prenucleation clusters in surface-induced calcium phosphate crystallization in NATURE MATERIALS
  • 2017-09-19. Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses in JOM
  • 2015-08-12. Rejuvenation of metallic glasses by non-affine thermal strain in NATURE
  • 2013-02-03. Nucleation and growth of magnetite from solution in NATURE MATERIALS
  • 2006-01. Atomic packing and short-to-medium-range order in metallic glasses in NATURE
  • 2011-09. Stable prenucleation mineral clusters are liquid-like ionic polymers in NATURE COMMUNICATIONS
  • 2013-12-15. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization in NATURE PHYSICS
  • 2017-12-07. Tailoring crystallization phases in metallic glass nanorods via nucleus starvation in NATURE COMMUNICATIONS
  • 2018-09-17. The mechanism of the ultrafast crystal growth of pure metals from their melts in NATURE MATERIALS
  • 2015-09-01. Nanoscale size effects in crystallization of metallic glass nanorods in NATURE COMMUNICATIONS
  • 2009-02-01. Nanomoulding with amorphous metals in NATURE
  • 2012-10-31. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization in THE EUROPEAN PHYSICAL JOURNAL E
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4

    DOI

    http://dx.doi.org/10.1038/s41467-019-08898-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112308281

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30796248


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
                "Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Yujun", 
            "id": "sg:person.015676036243.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676036243.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sohn", 
            "givenName": "Sungwoo", 
            "id": "sg:person.01167274630.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Minglei", 
            "id": "sg:person.01346274755.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346274755.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Functional Nanomaterials, Brookhaven National Laboratory, 11973, Upton, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.202665.5", 
              "name": [
                "Center for Functional Nanomaterials, Brookhaven National Laboratory, 11973, Upton, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xin", 
            "givenName": "Huolin", 
            "id": "sg:person.0664251607.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664251607.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanoscience Technology Center, Department of Materials Science and Engineering, Electrical and Computer Engineering, University of Central Florida, 32826, Orlando, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.170430.1", 
              "name": [
                "Nanoscience Technology Center, Department of Materials Science and Engineering, Electrical and Computer Engineering, University of Central Florida, 32826, Orlando, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jung", 
            "givenName": "Yeonwoong", 
            "id": "sg:person.01050413633.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050413633.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics and Benjamin Levich Institute, City College of the City University of New York, 10031, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.254250.4", 
              "name": [
                "Department of Physics and Benjamin Levich Institute, City College of the City University of New York, 10031, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shattuck", 
            "givenName": "Mark D.", 
            "id": "sg:person.01025110115.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025110115.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Applied Physics, Yale University, 06511, New Haven, CT, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
                "Department of Physics, Yale University, 06511, New Haven, CT, USA", 
                "Department of Applied Physics, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Hern", 
            "givenName": "Corey S.", 
            "id": "sg:person.01317407513.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317407513.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schroers", 
            "givenName": "Jan", 
            "id": "sg:person.01145527322.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Canadian Institute for Advanced Research, Azrieli Global Scholar, M5G 1M1, Toronto, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.440050.5", 
              "name": [
                "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
                "Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA", 
                "Canadian Institute for Advanced Research, Azrieli Global Scholar, M5G 1M1, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cha", 
            "givenName": "Judy J.", 
            "id": "sg:person.01214744402.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214744402.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nchem.2618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044871739", 
              "https://doi.org/10.1038/nchem.2618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02153-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093139659", 
              "https://doi.org/10.1038/s41467-017-02153-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018290838", 
              "https://doi.org/10.1038/nature07718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010078177", 
              "https://doi.org/10.1038/nmat3558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019106955", 
              "https://doi.org/10.1038/nature04421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020300303", 
              "https://doi.org/10.1038/ncomms9157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-017-2579-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091861809", 
              "https://doi.org/10.1007/s11837-017-2579-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027684034", 
              "https://doi.org/10.1038/nphys2817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-018-0174-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107042457", 
              "https://doi.org/10.1038/s41563-018-0174-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009569043", 
              "https://doi.org/10.1038/nmat2900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epje/i2012-12113-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027314319", 
              "https://doi.org/10.1140/epje/i2012-12113-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026177985", 
              "https://doi.org/10.1038/ncomms3083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044424294", 
              "https://doi.org/10.1038/ncomms1604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014001816", 
              "https://doi.org/10.1038/nature14674"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-22", 
        "datePublishedReg": "2019-02-22", 
        "description": "While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-08898-4", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3127424", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4179248", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "structural ordering", 
          "crystal growth", 
          "molecular dynamics simulations", 
          "asymmetric growth rate", 
          "dynamics simulations", 
          "same growth temperature", 
          "nanorod diameter", 
          "nanorods", 
          "crystallization experiments", 
          "common growth models", 
          "liquid", 
          "small clusters", 
          "model metallic glass", 
          "glass state", 
          "glass", 
          "ordering", 
          "heated glass", 
          "similar behavior", 
          "metals", 
          "metallic glasses", 
          "direct visualization", 
          "structure", 
          "liquid metal", 
          "small rods", 
          "growth temperature", 
          "temperature", 
          "clusters", 
          "rods", 
          "thermal history", 
          "diameter", 
          "units", 
          "behavior", 
          "state", 
          "growth", 
          "rate", 
          "experiments", 
          "growth rate", 
          "decrease", 
          "degree", 
          "simulations", 
          "contrast", 
          "flow units", 
          "growth model", 
          "visualization", 
          "model", 
          "differences", 
          "asymmetry", 
          "assumption", 
          "history", 
          "sparse"
        ], 
        "name": "Supercluster-coupled crystal growth in metallic glass forming liquids", 
        "pagination": "915", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112308281"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-08898-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30796248"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-08898-4", 
          "https://app.dimensions.ai/details/publication/pub.1112308281"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_821.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-08898-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08898-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      21 PREDICATES      89 URIs      67 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-08898-4 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N34d9c14f227248d2bf2bc8df75d9afaf
    4 schema:citation sg:pub.10.1007/s11837-017-2579-0
    5 sg:pub.10.1038/nature04421
    6 sg:pub.10.1038/nature07718
    7 sg:pub.10.1038/nature14674
    8 sg:pub.10.1038/nchem.2618
    9 sg:pub.10.1038/ncomms1604
    10 sg:pub.10.1038/ncomms3083
    11 sg:pub.10.1038/ncomms9157
    12 sg:pub.10.1038/nmat2900
    13 sg:pub.10.1038/nmat3558
    14 sg:pub.10.1038/nphys2817
    15 sg:pub.10.1038/s41467-017-02153-4
    16 sg:pub.10.1038/s41563-018-0174-6
    17 sg:pub.10.1140/epje/i2012-12113-y
    18 schema:datePublished 2019-02-22
    19 schema:datePublishedReg 2019-02-22
    20 schema:description While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid.
    21 schema:genre article
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N5bbacacb6b7d4401b4e9e5280a735141
    24 Naeac21b8da1c4c2284696f2bda342de0
    25 sg:journal.1043282
    26 schema:keywords assumption
    27 asymmetric growth rate
    28 asymmetry
    29 behavior
    30 clusters
    31 common growth models
    32 contrast
    33 crystal growth
    34 crystallization experiments
    35 decrease
    36 degree
    37 diameter
    38 differences
    39 direct visualization
    40 dynamics simulations
    41 experiments
    42 flow units
    43 glass
    44 glass state
    45 growth
    46 growth model
    47 growth rate
    48 growth temperature
    49 heated glass
    50 history
    51 liquid
    52 liquid metal
    53 metallic glasses
    54 metals
    55 model
    56 model metallic glass
    57 molecular dynamics simulations
    58 nanorod diameter
    59 nanorods
    60 ordering
    61 rate
    62 rods
    63 same growth temperature
    64 similar behavior
    65 simulations
    66 small clusters
    67 small rods
    68 sparse
    69 state
    70 structural ordering
    71 structure
    72 temperature
    73 thermal history
    74 units
    75 visualization
    76 schema:name Supercluster-coupled crystal growth in metallic glass forming liquids
    77 schema:pagination 915
    78 schema:productId N4c6079e4ad364aa1aa94c71aba15f4cf
    79 N909e5246c0c94defb59cb3479ea6a91e
    80 N929da537b80b4cb9a4a74340a6597bf1
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112308281
    82 https://doi.org/10.1038/s41467-019-08898-4
    83 schema:sdDatePublished 2022-09-02T16:04
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher N65c13cfa24184a29a888b5e0f7b50fdd
    86 schema:url https://doi.org/10.1038/s41467-019-08898-4
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N1d13c433762046c7aac28d4f217658ee rdf:first sg:person.01145527322.19
    91 rdf:rest N7742fcb288c04e2e891c64459d255686
    92 N34d9c14f227248d2bf2bc8df75d9afaf rdf:first sg:person.015676036243.79
    93 rdf:rest N97d9a7f5d7454cd9825aab96e1c7fb6a
    94 N4c6079e4ad364aa1aa94c71aba15f4cf schema:name doi
    95 schema:value 10.1038/s41467-019-08898-4
    96 rdf:type schema:PropertyValue
    97 N4d7b026138664090b736620a5e8fc1f7 rdf:first sg:person.01025110115.77
    98 rdf:rest Na2579ef0ed0146438cfadd5aff942ce5
    99 N5bbacacb6b7d4401b4e9e5280a735141 schema:issueNumber 1
    100 rdf:type schema:PublicationIssue
    101 N65c13cfa24184a29a888b5e0f7b50fdd schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 N66557f95bf4f4b40a8d1b732a0bd3691 rdf:first sg:person.01050413633.11
    104 rdf:rest N4d7b026138664090b736620a5e8fc1f7
    105 N7742fcb288c04e2e891c64459d255686 rdf:first sg:person.01214744402.60
    106 rdf:rest rdf:nil
    107 N909e5246c0c94defb59cb3479ea6a91e schema:name pubmed_id
    108 schema:value 30796248
    109 rdf:type schema:PropertyValue
    110 N91407f717d6c4d379ecde69f6439edd4 rdf:first sg:person.01346274755.07
    111 rdf:rest Nf187f5aec02b402f94b4d5afde69bba9
    112 N929da537b80b4cb9a4a74340a6597bf1 schema:name dimensions_id
    113 schema:value pub.1112308281
    114 rdf:type schema:PropertyValue
    115 N97d9a7f5d7454cd9825aab96e1c7fb6a rdf:first sg:person.01167274630.47
    116 rdf:rest N91407f717d6c4d379ecde69f6439edd4
    117 Na2579ef0ed0146438cfadd5aff942ce5 rdf:first sg:person.01317407513.14
    118 rdf:rest N1d13c433762046c7aac28d4f217658ee
    119 Naeac21b8da1c4c2284696f2bda342de0 schema:volumeNumber 10
    120 rdf:type schema:PublicationVolume
    121 Nf187f5aec02b402f94b4d5afde69bba9 rdf:first sg:person.0664251607.46
    122 rdf:rest N66557f95bf4f4b40a8d1b732a0bd3691
    123 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Chemical Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Physical Chemistry (incl. Structural)
    128 rdf:type schema:DefinedTerm
    129 sg:grant.3127424 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08898-4
    130 rdf:type schema:MonetaryGrant
    131 sg:grant.4179248 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08898-4
    132 rdf:type schema:MonetaryGrant
    133 sg:journal.1043282 schema:issn 2041-1723
    134 schema:name Nature Communications
    135 schema:publisher Springer Nature
    136 rdf:type schema:Periodical
    137 sg:person.01025110115.77 schema:affiliation grid-institutes:grid.254250.4
    138 schema:familyName Shattuck
    139 schema:givenName Mark D.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025110115.77
    141 rdf:type schema:Person
    142 sg:person.01050413633.11 schema:affiliation grid-institutes:grid.170430.1
    143 schema:familyName Jung
    144 schema:givenName Yeonwoong
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050413633.11
    146 rdf:type schema:Person
    147 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
    148 schema:familyName Schroers
    149 schema:givenName Jan
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
    151 rdf:type schema:Person
    152 sg:person.01167274630.47 schema:affiliation grid-institutes:grid.47100.32
    153 schema:familyName Sohn
    154 schema:givenName Sungwoo
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47
    156 rdf:type schema:Person
    157 sg:person.01214744402.60 schema:affiliation grid-institutes:grid.440050.5
    158 schema:familyName Cha
    159 schema:givenName Judy J.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214744402.60
    161 rdf:type schema:Person
    162 sg:person.01317407513.14 schema:affiliation grid-institutes:grid.47100.32
    163 schema:familyName O’Hern
    164 schema:givenName Corey S.
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317407513.14
    166 rdf:type schema:Person
    167 sg:person.01346274755.07 schema:affiliation grid-institutes:grid.47100.32
    168 schema:familyName Wang
    169 schema:givenName Minglei
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346274755.07
    171 rdf:type schema:Person
    172 sg:person.015676036243.79 schema:affiliation grid-institutes:None
    173 schema:familyName Xie
    174 schema:givenName Yujun
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676036243.79
    176 rdf:type schema:Person
    177 sg:person.0664251607.46 schema:affiliation grid-institutes:grid.202665.5
    178 schema:familyName Xin
    179 schema:givenName Huolin
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664251607.46
    181 rdf:type schema:Person
    182 sg:pub.10.1007/s11837-017-2579-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091861809
    183 https://doi.org/10.1007/s11837-017-2579-0
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nature04421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019106955
    186 https://doi.org/10.1038/nature04421
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
    189 https://doi.org/10.1038/nature07718
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature14674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014001816
    192 https://doi.org/10.1038/nature14674
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nchem.2618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044871739
    195 https://doi.org/10.1038/nchem.2618
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/ncomms1604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044424294
    198 https://doi.org/10.1038/ncomms1604
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/ncomms3083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026177985
    201 https://doi.org/10.1038/ncomms3083
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/ncomms9157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300303
    204 https://doi.org/10.1038/ncomms9157
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nmat2900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009569043
    207 https://doi.org/10.1038/nmat2900
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nmat3558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010078177
    210 https://doi.org/10.1038/nmat3558
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nphys2817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027684034
    213 https://doi.org/10.1038/nphys2817
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/s41467-017-02153-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093139659
    216 https://doi.org/10.1038/s41467-017-02153-4
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/s41563-018-0174-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107042457
    219 https://doi.org/10.1038/s41563-018-0174-6
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1140/epje/i2012-12113-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027314319
    222 https://doi.org/10.1140/epje/i2012-12113-y
    223 rdf:type schema:CreativeWork
    224 grid-institutes:None schema:alternateName Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA
    225 schema:name Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
    226 Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA
    227 rdf:type schema:Organization
    228 grid-institutes:grid.170430.1 schema:alternateName Nanoscience Technology Center, Department of Materials Science and Engineering, Electrical and Computer Engineering, University of Central Florida, 32826, Orlando, FL, USA
    229 schema:name Nanoscience Technology Center, Department of Materials Science and Engineering, Electrical and Computer Engineering, University of Central Florida, 32826, Orlando, FL, USA
    230 rdf:type schema:Organization
    231 grid-institutes:grid.202665.5 schema:alternateName Center for Functional Nanomaterials, Brookhaven National Laboratory, 11973, Upton, NY, USA
    232 schema:name Center for Functional Nanomaterials, Brookhaven National Laboratory, 11973, Upton, NY, USA
    233 rdf:type schema:Organization
    234 grid-institutes:grid.254250.4 schema:alternateName Department of Physics and Benjamin Levich Institute, City College of the City University of New York, 10031, New York, USA
    235 schema:name Department of Physics and Benjamin Levich Institute, City College of the City University of New York, 10031, New York, USA
    236 rdf:type schema:Organization
    237 grid-institutes:grid.440050.5 schema:alternateName Canadian Institute for Advanced Research, Azrieli Global Scholar, M5G 1M1, Toronto, ON, Canada
    238 schema:name Canadian Institute for Advanced Research, Azrieli Global Scholar, M5G 1M1, Toronto, ON, Canada
    239 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
    240 Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA
    241 rdf:type schema:Organization
    242 grid-institutes:grid.47100.32 schema:alternateName Department of Applied Physics, Yale University, 06511, New Haven, CT, USA
    243 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
    244 schema:name Department of Applied Physics, Yale University, 06511, New Haven, CT, USA
    245 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
    246 Department of Physics, Yale University, 06511, New Haven, CT, USA
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...