Giant thermoelectric power factor in ultrathin FeSe superconductor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sunao Shimizu, Junichi Shiogai, Nayuta Takemori, Shiro Sakai, Hiroaki Ikeda, Ryotaro Arita, Tsutomu Nojima, Atsushi Tsukazaki, Yoshihiro Iwasa

ABSTRACT

The thermoelectric effect is attracting a renewed interest as a concept for energy harvesting technologies. Nanomaterials have been considered a key to realize efficient thermoelectric conversions owing to the low dimensional charge and phonon transports. In this regard, recently emerging two-dimensional materials could be promising candidates with novel thermoelectric functionalities. Here we report that FeSe ultrathin films, a high-Tc superconductor (Tc; superconducting transition temperature), exhibit superior thermoelectric responses. With decreasing thickness d, the electrical conductivity increases accompanying the emergence of high-Tc superconductivity; unexpectedly, the Seebeck coefficient α shows a concomitant increase as a result of the appearance of two-dimensional natures. When d is reduced down to ~1 nm, the thermoelectric power factor at 50 K and room temperature reach unprecedented values as high as 13,000 and 260 μW cm-1 K-2, respectively. The large thermoelectric effect in high Tc superconductors indicates the high potential of two-dimensional layered materials towards multi-functionalization. More... »

PAGES

825

References to SciGraph publications

  • 2017-12. Origin of charge transfer and enhanced electron–phonon coupling in single unit-cell FeSe films on SrTiO3 in NATURE COMMUNICATIONS
  • 2018-12. Double thermoelectric power factor of a 2D electron system in NATURE COMMUNICATIONS
  • 2013-07. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films in NATURE MATERIALS
  • 2016-01. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO in NATURE PHYSICS
  • 2010-11. Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal in NATURE COMMUNICATIONS
  • 2015-08. High-temperature superconductivity in potassium-coated multilayer FeSe thin films in NATURE MATERIALS
  • 2007-02. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3 in NATURE MATERIALS
  • 2015-05. High temperature superconducting FeSe films on SrTiO3 substrates in SCIENTIFIC REPORTS
  • 2016-04. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating in SCIENTIFIC REPORTS
  • 2014-10. Electronics based on two-dimensional materials in NATURE NANOTECHNOLOGY
  • 2001-10. Thin-film thermoelectric devices with high room-temperature figures of merit in NATURE
  • 2016-03-08. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy in NATURE COMMUNICATIONS
  • 2015-03. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 in NATURE MATERIALS
  • 2016-12. Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal in NATURE COMMUNICATIONS
  • 2012-01. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor in NATURE COMMUNICATIONS
  • 2013-04. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets in NATURE CHEMISTRY
  • 2013-07. Van der Waals heterostructures in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-08784-z

    DOI

    http://dx.doi.org/10.1038/s41467-019-08784-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112199839

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30778077


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "RIKEN Center for Emergent Matter Science", 
              "id": "https://www.grid.ac/institutes/grid.474689.0", 
              "name": [
                "RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shimizu", 
            "givenName": "Sunao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shiogai", 
            "givenName": "Junichi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RIKEN Center for Emergent Matter Science", 
              "id": "https://www.grid.ac/institutes/grid.474689.0", 
              "name": [
                "RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takemori", 
            "givenName": "Nayuta", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RIKEN Center for Emergent Matter Science", 
              "id": "https://www.grid.ac/institutes/grid.474689.0", 
              "name": [
                "RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sakai", 
            "givenName": "Shiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ritsumeikan University", 
              "id": "https://www.grid.ac/institutes/grid.262576.2", 
              "name": [
                "Department of Physics, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ikeda", 
            "givenName": "Hiroaki", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RIKEN Center for Emergent Matter Science", 
              "id": "https://www.grid.ac/institutes/grid.474689.0", 
              "name": [
                "RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arita", 
            "givenName": "Ryotaro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nojima", 
            "givenName": "Tsutomu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsukazaki", 
            "givenName": "Atsushi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan", 
                "Quantum Phase Electronics Center (QPEC) and Department of Applied Physics, University of Tokyo, 113-8656, Bunkyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iwasa", 
            "givenName": "Yoshihiro", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/adma.200600527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000728851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201103809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001328951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1525500113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002756036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physc.2010.01.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003323820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0268-1242/2/7/011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004529082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0256-307x/29/3/037402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005911355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006127136", 
              "https://doi.org/10.1038/nmat4153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep06040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006936974", 
              "https://doi.org/10.1038/srep06040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7567/apex.8.051101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007862221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.237001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009793917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.237001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009793917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012595464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012595464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014934672", 
              "https://doi.org/10.1038/35098012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014934672", 
              "https://doi.org/10.1038/35098012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.180502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015343345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.180502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015343345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016377132", 
              "https://doi.org/10.1038/nphys3530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2010.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021177340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022224835", 
              "https://doi.org/10.1038/nnano.2014.207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/10/6/063021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022292269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024857999", 
              "https://doi.org/10.1038/nature12385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.014522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025983680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.014522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025983680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027064259", 
              "https://doi.org/10.1038/nmat4302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027717711", 
              "https://doi.org/10.1038/ncomms11116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027717711", 
              "https://doi.org/10.1038/ncomms11116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4971310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028352240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1414094112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028431217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.081413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028707717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.081413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028707717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.201600807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030159356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031043737", 
              "https://doi.org/10.1038/ncomms1946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.87.224508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031711629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.87.224508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031711629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035552947", 
              "https://doi.org/10.1038/nmat3648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1072886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038144297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.024301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040308931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.024301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040308931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.096807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041026766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.096807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041026766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041171371", 
              "https://doi.org/10.1038/nmat1821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041171371", 
              "https://doi.org/10.1038/nmat1821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2007.11.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041208656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043590960", 
              "https://doi.org/10.1038/ncomms10840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1520810113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043671410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.092507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045929317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.092507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045929317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.024511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046239207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.024511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046239207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048905376", 
              "https://doi.org/10.1038/ncomms1112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048905376", 
              "https://doi.org/10.1038/ncomms1112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4363(84)90190-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049515762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4363(84)90190-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049515762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050119463", 
              "https://doi.org/10.1038/nchem.1589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.256801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051886991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.256801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051886991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep20402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052089645", 
              "https://doi.org/10.1038/srep20402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b00075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055121304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl502982f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056220991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3231873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057921837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3362932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057941863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3370355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057942931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.12727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.12727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.060506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060642850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.060506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060642850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.165304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060647579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.165304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060647579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.014312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060651005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.94.014312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060651005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.077002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060765049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.077002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060765049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/apex.2.121103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063030954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/apex.2.121103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063030954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.78.073705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063124182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3938/jkps.59.312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071751334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7567/apex.10.015001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073831203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201607054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085863527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00281-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091025238", 
              "https://doi.org/10.1038/s41467-017-00281-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04660-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104381172", 
              "https://doi.org/10.1038/s41467-018-04660-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "The thermoelectric effect is attracting a renewed interest as a concept for energy harvesting technologies. Nanomaterials have been considered a key to realize efficient thermoelectric conversions owing to the low dimensional charge and phonon transports. In this regard, recently emerging two-dimensional materials could be promising candidates with novel thermoelectric functionalities. Here we report that FeSe ultrathin films, a high-Tc superconductor (Tc; superconducting transition temperature), exhibit superior thermoelectric responses. With decreasing thickness d, the electrical conductivity increases accompanying the emergence of high-Tc superconductivity; unexpectedly, the Seebeck coefficient \u03b1 shows a concomitant increase as a result of the appearance of two-dimensional natures. When d is reduced down to ~1\u2009nm, the thermoelectric power factor at 50\u2009K and room temperature reach unprecedented values as high as 13,000 and 260 \u03bcW cm-1 K-2, respectively. The large thermoelectric effect in high Tc superconductors indicates the high potential of two-dimensional layered materials towards multi-functionalization.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-019-08784-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6958525", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6533288", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5904425", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6820957", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Giant thermoelectric power factor in ultrathin FeSe superconductor", 
        "pagination": "825", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "873c96d51b0fff97cf828bd17f023a965ec489fd21116a264ae47361be9fe58e"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30778077"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-08784-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112199839"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-08784-z", 
          "https://app.dimensions.ai/details/publication/pub.1112199839"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72867_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-019-08784-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08784-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08784-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08784-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08784-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    330 TRIPLES      21 PREDICATES      89 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-08784-z schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N4186ec66cd3349db999c16396124df76
    4 schema:citation sg:pub.10.1038/35098012
    5 sg:pub.10.1038/nature12385
    6 sg:pub.10.1038/nchem.1589
    7 sg:pub.10.1038/ncomms10840
    8 sg:pub.10.1038/ncomms11116
    9 sg:pub.10.1038/ncomms1112
    10 sg:pub.10.1038/ncomms1946
    11 sg:pub.10.1038/nmat1821
    12 sg:pub.10.1038/nmat3648
    13 sg:pub.10.1038/nmat4153
    14 sg:pub.10.1038/nmat4302
    15 sg:pub.10.1038/nnano.2014.207
    16 sg:pub.10.1038/nphys3530
    17 sg:pub.10.1038/s41467-017-00281-5
    18 sg:pub.10.1038/s41467-018-04660-4
    19 sg:pub.10.1038/srep06040
    20 sg:pub.10.1038/srep20402
    21 https://doi.org/10.1002/adma.200600527
    22 https://doi.org/10.1002/adma.201103809
    23 https://doi.org/10.1002/adma.201607054
    24 https://doi.org/10.1002/smll.201600807
    25 https://doi.org/10.1016/0378-4363(84)90190-6
    26 https://doi.org/10.1016/j.cpc.2007.11.016
    27 https://doi.org/10.1016/j.cpc.2010.08.005
    28 https://doi.org/10.1016/j.physc.2010.01.043
    29 https://doi.org/10.1021/acs.nanolett.6b00075
    30 https://doi.org/10.1021/nl502982f
    31 https://doi.org/10.1063/1.3231873
    32 https://doi.org/10.1063/1.3362932
    33 https://doi.org/10.1063/1.3370355
    34 https://doi.org/10.1063/1.4971310
    35 https://doi.org/10.1073/pnas.1414094112
    36 https://doi.org/10.1073/pnas.1520810113
    37 https://doi.org/10.1073/pnas.1525500113
    38 https://doi.org/10.1088/0256-307x/29/3/037402
    39 https://doi.org/10.1088/0268-1242/2/7/011
    40 https://doi.org/10.1088/1367-2630/10/6/063021
    41 https://doi.org/10.1103/physrevb.47.12727
    42 https://doi.org/10.1103/physrevb.79.014522
    43 https://doi.org/10.1103/physrevb.80.081413
    44 https://doi.org/10.1103/physrevb.82.024301
    45 https://doi.org/10.1103/physrevb.83.092507
    46 https://doi.org/10.1103/physrevb.84.075148
    47 https://doi.org/10.1103/physrevb.85.024511
    48 https://doi.org/10.1103/physrevb.86.180502
    49 https://doi.org/10.1103/physrevb.87.224508
    50 https://doi.org/10.1103/physrevb.89.060506
    51 https://doi.org/10.1103/physrevb.92.165304
    52 https://doi.org/10.1103/physrevb.94.014312
    53 https://doi.org/10.1103/physrevlett.102.096807
    54 https://doi.org/10.1103/physrevlett.113.237001
    55 https://doi.org/10.1103/physrevlett.116.077002
    56 https://doi.org/10.1103/physrevlett.77.3865
    57 https://doi.org/10.1103/physrevlett.91.256801
    58 https://doi.org/10.1126/science.1072886
    59 https://doi.org/10.1143/apex.2.121103
    60 https://doi.org/10.1143/jpsj.78.073705
    61 https://doi.org/10.3938/jkps.59.312
    62 https://doi.org/10.7567/apex.10.015001
    63 https://doi.org/10.7567/apex.8.051101
    64 schema:datePublished 2019-12
    65 schema:datePublishedReg 2019-12-01
    66 schema:description The thermoelectric effect is attracting a renewed interest as a concept for energy harvesting technologies. Nanomaterials have been considered a key to realize efficient thermoelectric conversions owing to the low dimensional charge and phonon transports. In this regard, recently emerging two-dimensional materials could be promising candidates with novel thermoelectric functionalities. Here we report that FeSe ultrathin films, a high-T<sub>c</sub> superconductor (T<sub>c</sub>; superconducting transition temperature), exhibit superior thermoelectric responses. With decreasing thickness d, the electrical conductivity increases accompanying the emergence of high-T<sub>c</sub> superconductivity; unexpectedly, the Seebeck coefficient α shows a concomitant increase as a result of the appearance of two-dimensional natures. When d is reduced down to ~1 nm, the thermoelectric power factor at 50 K and room temperature reach unprecedented values as high as 13,000 and 260 μW cm<sup>-1</sup> K<sup>-2</sup>, respectively. The large thermoelectric effect in high T<sub>c</sub> superconductors indicates the high potential of two-dimensional layered materials towards multi-functionalization.
    67 schema:genre research_article
    68 schema:inLanguage en
    69 schema:isAccessibleForFree true
    70 schema:isPartOf Nd1ed4732a9fe4cd2b90be51d918767e7
    71 Nfc2c62310a6b4286b98b011763ea964e
    72 sg:journal.1043282
    73 schema:name Giant thermoelectric power factor in ultrathin FeSe superconductor
    74 schema:pagination 825
    75 schema:productId N44af8582d9024c349c54fc7fe782764c
    76 N5a9203a8ff5e4b6387f4293e675b01dc
    77 Nc7d2a2828ce84b1d943beb35ccb884db
    78 Nf1021060455b49fab25c8d7b0ce6a826
    79 Nf6d4b310c9224d1e9710059557993720
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112199839
    81 https://doi.org/10.1038/s41467-019-08784-z
    82 schema:sdDatePublished 2019-04-11T12:55
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N45b25715feb1459fad807ef1d73adddf
    85 schema:url https://www.nature.com/articles/s41467-019-08784-z
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N05fc6a789d0949e0a8387cd543ccc210 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
    90 schema:familyName Arita
    91 schema:givenName Ryotaro
    92 rdf:type schema:Person
    93 N22964305ade243469837e5c35162f97d rdf:first N05fc6a789d0949e0a8387cd543ccc210
    94 rdf:rest Nff74e4e9a616423dbcd6d2116a2efaac
    95 N368d287089e0482ba3aece0cce39bbd7 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
    96 schema:familyName Takemori
    97 schema:givenName Nayuta
    98 rdf:type schema:Person
    99 N3ca1ed99f023416eac9b05d2f1e6068b rdf:first Nd124395198a54656b5231c5e85b388fb
    100 rdf:rest N22964305ade243469837e5c35162f97d
    101 N4186ec66cd3349db999c16396124df76 rdf:first N8c22a22175a54283a90ac3b059ba3550
    102 rdf:rest N62d319d163104ccdb8f20ea6d6108183
    103 N44af8582d9024c349c54fc7fe782764c schema:name readcube_id
    104 schema:value 873c96d51b0fff97cf828bd17f023a965ec489fd21116a264ae47361be9fe58e
    105 rdf:type schema:PropertyValue
    106 N45b25715feb1459fad807ef1d73adddf schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N59375ca8a2574f829b01ccc63e8e889b schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    109 schema:familyName Nojima
    110 schema:givenName Tsutomu
    111 rdf:type schema:Person
    112 N5a9203a8ff5e4b6387f4293e675b01dc schema:name doi
    113 schema:value 10.1038/s41467-019-08784-z
    114 rdf:type schema:PropertyValue
    115 N62d319d163104ccdb8f20ea6d6108183 rdf:first Nbc6e4a0d65d848e4a5d339f67b69f1a8
    116 rdf:rest N815ab581d1a340629a24c2f2d2f556ce
    117 N815ab581d1a340629a24c2f2d2f556ce rdf:first N368d287089e0482ba3aece0cce39bbd7
    118 rdf:rest Ne92ff5eb94c7404db0e833fe6526f340
    119 N8c22a22175a54283a90ac3b059ba3550 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
    120 schema:familyName Shimizu
    121 schema:givenName Sunao
    122 rdf:type schema:Person
    123 Na19e208be097408ab75f4e8469753f8f rdf:first Nf814e9fb17754b55b2528bede89fc1de
    124 rdf:rest rdf:nil
    125 Nb9a5d64398e64f138509d9aeed9f390a rdf:first Ne4d26397ff9a4c10b38882fb137722bb
    126 rdf:rest Na19e208be097408ab75f4e8469753f8f
    127 Nbc6e4a0d65d848e4a5d339f67b69f1a8 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    128 schema:familyName Shiogai
    129 schema:givenName Junichi
    130 rdf:type schema:Person
    131 Nc7d2a2828ce84b1d943beb35ccb884db schema:name dimensions_id
    132 schema:value pub.1112199839
    133 rdf:type schema:PropertyValue
    134 Nd124395198a54656b5231c5e85b388fb schema:affiliation https://www.grid.ac/institutes/grid.262576.2
    135 schema:familyName Ikeda
    136 schema:givenName Hiroaki
    137 rdf:type schema:Person
    138 Nd1ed4732a9fe4cd2b90be51d918767e7 schema:volumeNumber 10
    139 rdf:type schema:PublicationVolume
    140 Ne4d26397ff9a4c10b38882fb137722bb schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    141 schema:familyName Tsukazaki
    142 schema:givenName Atsushi
    143 rdf:type schema:Person
    144 Ne92ff5eb94c7404db0e833fe6526f340 rdf:first Nebe93974a7024a9bb2d4fd341a5ef120
    145 rdf:rest N3ca1ed99f023416eac9b05d2f1e6068b
    146 Nebe93974a7024a9bb2d4fd341a5ef120 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
    147 schema:familyName Sakai
    148 schema:givenName Shiro
    149 rdf:type schema:Person
    150 Nf1021060455b49fab25c8d7b0ce6a826 schema:name nlm_unique_id
    151 schema:value 101528555
    152 rdf:type schema:PropertyValue
    153 Nf6d4b310c9224d1e9710059557993720 schema:name pubmed_id
    154 schema:value 30778077
    155 rdf:type schema:PropertyValue
    156 Nf814e9fb17754b55b2528bede89fc1de schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    157 schema:familyName Iwasa
    158 schema:givenName Yoshihiro
    159 rdf:type schema:Person
    160 Nfc2c62310a6b4286b98b011763ea964e schema:issueNumber 1
    161 rdf:type schema:PublicationIssue
    162 Nff74e4e9a616423dbcd6d2116a2efaac rdf:first N59375ca8a2574f829b01ccc63e8e889b
    163 rdf:rest Nb9a5d64398e64f138509d9aeed9f390a
    164 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Engineering
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Materials Engineering
    169 rdf:type schema:DefinedTerm
    170 sg:grant.5904425 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08784-z
    171 rdf:type schema:MonetaryGrant
    172 sg:grant.6533288 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08784-z
    173 rdf:type schema:MonetaryGrant
    174 sg:grant.6820957 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08784-z
    175 rdf:type schema:MonetaryGrant
    176 sg:grant.6958525 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08784-z
    177 rdf:type schema:MonetaryGrant
    178 sg:journal.1043282 schema:issn 2041-1723
    179 schema:name Nature Communications
    180 rdf:type schema:Periodical
    181 sg:pub.10.1038/35098012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014934672
    182 https://doi.org/10.1038/35098012
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nature12385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024857999
    185 https://doi.org/10.1038/nature12385
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nchem.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119463
    188 https://doi.org/10.1038/nchem.1589
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/ncomms10840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043590960
    191 https://doi.org/10.1038/ncomms10840
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/ncomms11116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027717711
    194 https://doi.org/10.1038/ncomms11116
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/ncomms1112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048905376
    197 https://doi.org/10.1038/ncomms1112
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ncomms1946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031043737
    200 https://doi.org/10.1038/ncomms1946
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nmat1821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041171371
    203 https://doi.org/10.1038/nmat1821
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nmat3648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552947
    206 https://doi.org/10.1038/nmat3648
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nmat4153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006127136
    209 https://doi.org/10.1038/nmat4153
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nmat4302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027064259
    212 https://doi.org/10.1038/nmat4302
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nnano.2014.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022224835
    215 https://doi.org/10.1038/nnano.2014.207
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nphys3530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016377132
    218 https://doi.org/10.1038/nphys3530
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/s41467-017-00281-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091025238
    221 https://doi.org/10.1038/s41467-017-00281-5
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/s41467-018-04660-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104381172
    224 https://doi.org/10.1038/s41467-018-04660-4
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/srep06040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006936974
    227 https://doi.org/10.1038/srep06040
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/srep20402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052089645
    230 https://doi.org/10.1038/srep20402
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1002/adma.200600527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000728851
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1002/adma.201103809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001328951
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1002/adma.201607054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085863527
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1002/smll.201600807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030159356
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/0378-4363(84)90190-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049515762
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.cpc.2007.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041208656
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.cpc.2010.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021177340
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/j.physc.2010.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003323820
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1021/acs.nanolett.6b00075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121304
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1021/nl502982f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220991
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1063/1.3231873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057921837
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1063/1.3362932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057941863
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1063/1.3370355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057942931
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1063/1.4971310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028352240
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1073/pnas.1414094112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028431217
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1073/pnas.1520810113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043671410
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1073/pnas.1525500113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002756036
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1088/0256-307x/29/3/037402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005911355
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1088/0268-1242/2/7/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004529082
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1088/1367-2630/10/6/063021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022292269
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1103/physrevb.47.12727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565088
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1103/physrevb.79.014522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025983680
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1103/physrevb.80.081413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028707717
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1103/physrevb.82.024301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040308931
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1103/physrevb.83.092507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045929317
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1103/physrevb.84.075148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012595464
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1103/physrevb.85.024511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046239207
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1103/physrevb.86.180502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015343345
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1103/physrevb.87.224508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031711629
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1103/physrevb.89.060506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642850
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1103/physrevb.92.165304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647579
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1103/physrevb.94.014312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651005
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1103/physrevlett.102.096807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041026766
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1103/physrevlett.113.237001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009793917
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1103/physrevlett.116.077002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765049
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1103/physrevlett.91.256801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051886991
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1126/science.1072886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038144297
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1143/apex.2.121103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063030954
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1143/jpsj.78.073705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063124182
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.3938/jkps.59.312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071751334
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.7567/apex.10.015001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073831203
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.7567/apex.8.051101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007862221
    317 rdf:type schema:CreativeWork
    318 https://www.grid.ac/institutes/grid.262576.2 schema:alternateName Ritsumeikan University
    319 schema:name Department of Physics, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
    320 rdf:type schema:Organization
    321 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
    322 schema:name Quantum Phase Electronics Center (QPEC) and Department of Applied Physics, University of Tokyo, 113-8656, Bunkyo, Tokyo, Japan
    323 RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
    324 rdf:type schema:Organization
    325 https://www.grid.ac/institutes/grid.474689.0 schema:alternateName RIKEN Center for Emergent Matter Science
    326 schema:name RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
    327 rdf:type schema:Organization
    328 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
    329 schema:name Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
    330 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...