Long non-coding RNAs discriminate the stages and gene regulatory states of human humoral immune response View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Xabier Agirre, Cem Meydan, Yanwen Jiang, Leire Garate, Ashley S. Doane, Zhuoning Li, Akanksha Verma, Bruno Paiva, José I. Martín-Subero, Olivier Elemento, Christopher E. Mason, Felipe Prosper, Ari Melnick

ABSTRACT

lncRNAs make up a majority of the human transcriptome and have key regulatory functions. Here we perform unbiased de novo annotation of transcripts expressed during the human humoral immune response to find 30% of the human genome transcribed during this process, yet 58% of these transcripts manifest striking differential expression, indicating an lncRNA phylogenetic relationship among cell types that is more robust than that of coding genes. We provide an atlas of lncRNAs in naive and GC B-cells that indicates their partition into ten functionally categories based on chromatin features, DNase hypersensitivity and transcription factor localization, defining lncRNAs classes such as enhancer-RNAs (eRNA), bivalent-lncRNAs, and CTCF-associated, among others. Specifically, eRNAs are transcribed in 8.6% of regular enhancers and 36.5% of super enhancers, and are associated with coding genes that participate in critical immune regulatory pathways, while plasma cells have uniquely high levels of circular-RNAs accounted for by and reflecting the combinatorial clonal state of the Immunoglobulin loci. More... »

PAGES

821

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-08679-z

DOI

http://dx.doi.org/10.1038/s41467-019-08679-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112201310

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30778059


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Navarra", 
          "id": "https://www.grid.ac/institutes/grid.5924.a", 
          "name": [
            "Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, 10021, New York, NY, USA", 
            "Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agirre", 
        "givenName": "Xabier", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA", 
            "The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 10021, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meydan", 
        "givenName": "Cem", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, 10021, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Yanwen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinica Universidad de Navarra", 
          "id": "https://www.grid.ac/institutes/grid.411730.0", 
          "name": [
            "Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain", 
            "Department of Hematology, Cl\u00ednica Universidad de Navarra, IDISNA, 31008, Pamplona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garate", 
        "givenName": "Leire", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 10021, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doane", 
        "givenName": "Ashley S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, 10021, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Zhuoning", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 10021, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verma", 
        "givenName": "Akanksha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Navarra", 
          "id": "https://www.grid.ac/institutes/grid.5924.a", 
          "name": [
            "Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paiva", 
        "givenName": "Bruno", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.5841.8", 
          "name": [
            "Institut d\u2019Investigacions Biom\u00e9diques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00edn-Subero", 
        "givenName": "Jos\u00e9 I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA", 
            "The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 10021, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elemento", 
        "givenName": "Olivier", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA", 
            "The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 10021, New York, NY, USA", 
            "The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 10021, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mason", 
        "givenName": "Christopher E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinica Universidad de Navarra", 
          "id": "https://www.grid.ac/institutes/grid.411730.0", 
          "name": [
            "Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain", 
            "Department of Hematology, Cl\u00ednica Universidad de Navarra, IDISNA, 31008, Pamplona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prosper", 
        "givenName": "Felipe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, 10021, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Melnick", 
        "givenName": "Ari", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0138236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000833760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003624809", 
          "https://doi.org/10.1038/nprot.2012.101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005007298", 
          "https://doi.org/10.1038/nrg3606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.03.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005302017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccell.2016.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007400017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmed.2014.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008940245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009243267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2011-12-3-r22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009466747", 
          "https://doi.org/10.1186/gb-2011-12-3-r22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bcj.2016.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010759162", 
          "https://doi.org/10.1038/bcj.2016.81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.135350.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012073457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015269620", 
          "https://doi.org/10.1038/nm.3981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016247401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017590275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni.2712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018994410", 
          "https://doi.org/10.1038/ni.2712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2015-11-680843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019514611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019692042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2013.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020268679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/coa.12540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020368651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023421025", 
          "https://doi.org/10.1038/nbt.1630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025098224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027115436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030977436", 
          "https://doi.org/10.1038/ng.3291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035095", 
          "https://doi.org/10.1038/nbt.1621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0571-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031591608", 
          "https://doi.org/10.1186/s13059-014-0571-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0571-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031591608", 
          "https://doi.org/10.1186/s13059-014-0571-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/064469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033567457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/064469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033567457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/064469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033567457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.immuni.2016.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035623522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.immuni.2016.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035623522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-16-0975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038783763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039284123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041505444", 
          "https://doi.org/10.1038/srep08057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2013.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041556749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms140815386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044373563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045138418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2015.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048300891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature20149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049591946", 
          "https://doi.org/10.1038/nature20149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni.3299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050234640", 
          "https://doi.org/10.1038/ni.3299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni.3093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050303094", 
          "https://doi.org/10.1038/ni.3093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051607942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.immuni.2016.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051680986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-015-0230-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051840372", 
          "https://doi.org/10.1186/s13073-015-0230-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1982.1056489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061648677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079752303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coi.2017.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084066886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128527", 
          "https://doi.org/10.1038/nature21374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128605", 
          "https://doi.org/10.1038/nature21715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.208652.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085376815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms16067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090352970", 
          "https://doi.org/10.1038/ncomms16067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1706855114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092463481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41388-018-0128-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101364374", 
          "https://doi.org/10.1038/s41388-018-0128-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41388-018-0128-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101364374", 
          "https://doi.org/10.1038/s41388-018-0128-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41388-018-0128-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101364374", 
          "https://doi.org/10.1038/s41388-018-0128-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41388-018-0128-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101364374", 
          "https://doi.org/10.1038/s41388-018-0128-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "lncRNAs make up a majority of the human transcriptome and have key regulatory functions. Here we perform unbiased de novo annotation of transcripts expressed during the human humoral immune response to find 30% of the human genome transcribed during this process, yet 58% of these transcripts manifest striking differential expression, indicating an lncRNA phylogenetic relationship among cell types that is more robust than that of coding genes. We provide an atlas of lncRNAs in naive and GC B-cells that indicates their partition into ten functionally categories based on chromatin features, DNase hypersensitivity and transcription factor localization, defining lncRNAs classes such as enhancer-RNAs (eRNA), bivalent-lncRNAs, and CTCF-associated, among others. Specifically, eRNAs are transcribed in 8.6% of regular enhancers and 36.5% of super enhancers, and are associated with coding genes that participate in critical immune regulatory pathways, while plasma cells have uniquely high levels of circular-RNAs accounted for by and reflecting the combinatorial clonal state of the Immunoglobulin loci.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-019-08679-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3718263", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3796817", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7751729", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7030314", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3755351", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Long non-coding RNAs discriminate the stages and gene regulatory states of human humoral immune response", 
    "pagination": "821", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cfd6484e38a028592ee63927d2ca8ca17f38b737dadcdfa72c4b76a754b2a129"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30778059"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-08679-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112201310"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-08679-z", 
      "https://app.dimensions.ai/details/publication/pub.1112201310"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72834_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-019-08679-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08679-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08679-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08679-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08679-z'


 

This table displays all metadata directly associated to this object as RDF triples.

336 TRIPLES      21 PREDICATES      80 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-08679-z schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Na50ef98d265140babb18e9a8aa5a70d1
4 schema:citation sg:pub.10.1038/bcj.2016.81
5 sg:pub.10.1038/nature20149
6 sg:pub.10.1038/nature21374
7 sg:pub.10.1038/nature21715
8 sg:pub.10.1038/nbt.1621
9 sg:pub.10.1038/nbt.1630
10 sg:pub.10.1038/ncomms16067
11 sg:pub.10.1038/ng.3291
12 sg:pub.10.1038/ni.2712
13 sg:pub.10.1038/ni.3093
14 sg:pub.10.1038/ni.3299
15 sg:pub.10.1038/nm.3981
16 sg:pub.10.1038/nprot.2012.101
17 sg:pub.10.1038/nrg3606
18 sg:pub.10.1038/s41388-018-0128-0
19 sg:pub.10.1038/srep08057
20 sg:pub.10.1186/gb-2011-12-3-r22
21 sg:pub.10.1186/s13059-014-0550-8
22 sg:pub.10.1186/s13059-014-0571-3
23 sg:pub.10.1186/s13073-015-0230-7
24 https://doi.org/10.1016/j.ccell.2016.07.006
25 https://doi.org/10.1016/j.ccr.2013.04.011
26 https://doi.org/10.1016/j.cell.2013.03.035
27 https://doi.org/10.1016/j.cell.2013.03.036
28 https://doi.org/10.1016/j.cell.2016.03.020
29 https://doi.org/10.1016/j.coi.2017.03.006
30 https://doi.org/10.1016/j.immuni.2016.08.012
31 https://doi.org/10.1016/j.immuni.2016.09.001
32 https://doi.org/10.1016/j.molcel.2013.08.017
33 https://doi.org/10.1016/j.molcel.2015.03.027
34 https://doi.org/10.1016/j.molmed.2014.03.001
35 https://doi.org/10.1073/pnas.1706855114
36 https://doi.org/10.1093/bioinformatics/btg412
37 https://doi.org/10.1093/bioinformatics/bti042
38 https://doi.org/10.1093/bioinformatics/btp692
39 https://doi.org/10.1093/bioinformatics/btr209
40 https://doi.org/10.1093/bioinformatics/btr260
41 https://doi.org/10.1093/bioinformatics/bts635
42 https://doi.org/10.1093/bioinformatics/btt656
43 https://doi.org/10.1093/nar/gkw1256
44 https://doi.org/10.1093/oxfordjournals.molbev.a040454
45 https://doi.org/10.1101/064469
46 https://doi.org/10.1101/gr.135350.111
47 https://doi.org/10.1101/gr.208652.116
48 https://doi.org/10.1109/tit.1982.1056489
49 https://doi.org/10.1111/coa.12540
50 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
51 https://doi.org/10.1158/2159-8290.cd-16-0975
52 https://doi.org/10.1182/blood-2015-11-680843
53 https://doi.org/10.1371/journal.pone.0138236
54 https://doi.org/10.3390/ijms140815386
55 schema:datePublished 2019-12
56 schema:datePublishedReg 2019-12-01
57 schema:description lncRNAs make up a majority of the human transcriptome and have key regulatory functions. Here we perform unbiased de novo annotation of transcripts expressed during the human humoral immune response to find 30% of the human genome transcribed during this process, yet 58% of these transcripts manifest striking differential expression, indicating an lncRNA phylogenetic relationship among cell types that is more robust than that of coding genes. We provide an atlas of lncRNAs in naive and GC B-cells that indicates their partition into ten functionally categories based on chromatin features, DNase hypersensitivity and transcription factor localization, defining lncRNAs classes such as enhancer-RNAs (eRNA), bivalent-lncRNAs, and CTCF-associated, among others. Specifically, eRNAs are transcribed in 8.6% of regular enhancers and 36.5% of super enhancers, and are associated with coding genes that participate in critical immune regulatory pathways, while plasma cells have uniquely high levels of circular-RNAs accounted for by and reflecting the combinatorial clonal state of the Immunoglobulin loci.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N2825b2ccf4c34410aa68ca78ffb4502b
62 N8e8cc8e394f94d28a7cd42e7db5b561e
63 sg:journal.1043282
64 schema:name Long non-coding RNAs discriminate the stages and gene regulatory states of human humoral immune response
65 schema:pagination 821
66 schema:productId N1c84c710093d46bc8f42f5f33d71b4f7
67 N2a2babd4821b4480beeea2fcb748ca7a
68 N40edd30254d34c46843a9866ab78ebd4
69 N8f1df3849d3741fabc7fc8a45c79bb95
70 Nd52b49cb39b74000801323f9d55ce8de
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112201310
72 https://doi.org/10.1038/s41467-019-08679-z
73 schema:sdDatePublished 2019-04-11T12:52
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Neb20756a4aa04b40aaf59596b87b00e2
76 schema:url https://www.nature.com/articles/s41467-019-08679-z
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N071d4b09aad24380a4b600f456fa0683 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
81 schema:familyName Martín-Subero
82 schema:givenName José I.
83 rdf:type schema:Person
84 N07a4af40924e49edba5aa02c2cb13d2a rdf:first Nf2962f89bf7a4185ba2c4d37bc8301b5
85 rdf:rest N49462509f5d54a9d8ecef92eba2215a8
86 N096b4e9b6d4c4650bf602442bb4f7553 rdf:first N1c319d2d805744eababc2b56b23f5f47
87 rdf:rest N7de792d22eb740e1953e9dd8b416bde4
88 N0f2e726d425c44b9b168bdc4f25a515c schema:affiliation https://www.grid.ac/institutes/grid.411730.0
89 schema:familyName Prosper
90 schema:givenName Felipe
91 rdf:type schema:Person
92 N1aa94b1479424b4e926323c753716995 rdf:first N490a9895e7d34cc4a2ec9ca29a5ba4d5
93 rdf:rest rdf:nil
94 N1c319d2d805744eababc2b56b23f5f47 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
95 schema:familyName Meydan
96 schema:givenName Cem
97 rdf:type schema:Person
98 N1c84c710093d46bc8f42f5f33d71b4f7 schema:name readcube_id
99 schema:value cfd6484e38a028592ee63927d2ca8ca17f38b737dadcdfa72c4b76a754b2a129
100 rdf:type schema:PropertyValue
101 N1ea524a8936a4991b2ecbe8e520ca7f6 schema:affiliation https://www.grid.ac/institutes/grid.5924.a
102 schema:familyName Agirre
103 schema:givenName Xabier
104 rdf:type schema:Person
105 N2825b2ccf4c34410aa68ca78ffb4502b schema:volumeNumber 10
106 rdf:type schema:PublicationVolume
107 N296cb3f8cab34222a43c8a3cdb8ce5e2 rdf:first N60eba14b9900457cab76d4a35ad87698
108 rdf:rest Nca42b653e2794092971f1e561e5ed998
109 N2a2babd4821b4480beeea2fcb748ca7a schema:name pubmed_id
110 schema:value 30778059
111 rdf:type schema:PropertyValue
112 N2c9af091837c431b80fbfac3510ab950 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
113 schema:familyName Jiang
114 schema:givenName Yanwen
115 rdf:type schema:Person
116 N36185d229c31481eb94da67fd0071baa rdf:first N52d8ec6c259f4263ac84ac37887f368b
117 rdf:rest N588a37c9b74c437bbd53a07e85566fb5
118 N40edd30254d34c46843a9866ab78ebd4 schema:name dimensions_id
119 schema:value pub.1112201310
120 rdf:type schema:PropertyValue
121 N48d6b2d333054265ac9eea9baef896f0 schema:affiliation https://www.grid.ac/institutes/grid.411730.0
122 schema:familyName Garate
123 schema:givenName Leire
124 rdf:type schema:Person
125 N490a9895e7d34cc4a2ec9ca29a5ba4d5 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
126 schema:familyName Melnick
127 schema:givenName Ari
128 rdf:type schema:Person
129 N49462509f5d54a9d8ecef92eba2215a8 rdf:first N071d4b09aad24380a4b600f456fa0683
130 rdf:rest N36185d229c31481eb94da67fd0071baa
131 N52d8ec6c259f4263ac84ac37887f368b schema:affiliation https://www.grid.ac/institutes/grid.5386.8
132 schema:familyName Elemento
133 schema:givenName Olivier
134 rdf:type schema:Person
135 N588a37c9b74c437bbd53a07e85566fb5 rdf:first Nbc95b8f24afd4019ae464ba40ceca693
136 rdf:rest Nd9c4b1819ade42d89d7355c15e80d11b
137 N60eba14b9900457cab76d4a35ad87698 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
138 schema:familyName Li
139 schema:givenName Zhuoning
140 rdf:type schema:Person
141 N6aa8e18b6b8f46c08a665865c6deee92 rdf:first N48d6b2d333054265ac9eea9baef896f0
142 rdf:rest N9189efedc6a44a64bc09290d5a3da0fd
143 N7de792d22eb740e1953e9dd8b416bde4 rdf:first N2c9af091837c431b80fbfac3510ab950
144 rdf:rest N6aa8e18b6b8f46c08a665865c6deee92
145 N85f88a513a41470e863e2cdf69f42f3a schema:affiliation https://www.grid.ac/institutes/grid.5386.8
146 schema:familyName Doane
147 schema:givenName Ashley S.
148 rdf:type schema:Person
149 N8e8cc8e394f94d28a7cd42e7db5b561e schema:issueNumber 1
150 rdf:type schema:PublicationIssue
151 N8f1df3849d3741fabc7fc8a45c79bb95 schema:name doi
152 schema:value 10.1038/s41467-019-08679-z
153 rdf:type schema:PropertyValue
154 N9189efedc6a44a64bc09290d5a3da0fd rdf:first N85f88a513a41470e863e2cdf69f42f3a
155 rdf:rest N296cb3f8cab34222a43c8a3cdb8ce5e2
156 Na50ef98d265140babb18e9a8aa5a70d1 rdf:first N1ea524a8936a4991b2ecbe8e520ca7f6
157 rdf:rest N096b4e9b6d4c4650bf602442bb4f7553
158 Nbc95b8f24afd4019ae464ba40ceca693 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
159 schema:familyName Mason
160 schema:givenName Christopher E.
161 rdf:type schema:Person
162 Nca42b653e2794092971f1e561e5ed998 rdf:first Nf6e55d8af32f41f8be5573cf66d1da3f
163 rdf:rest N07a4af40924e49edba5aa02c2cb13d2a
164 Nd52b49cb39b74000801323f9d55ce8de schema:name nlm_unique_id
165 schema:value 101528555
166 rdf:type schema:PropertyValue
167 Nd9c4b1819ade42d89d7355c15e80d11b rdf:first N0f2e726d425c44b9b168bdc4f25a515c
168 rdf:rest N1aa94b1479424b4e926323c753716995
169 Neb20756a4aa04b40aaf59596b87b00e2 schema:name Springer Nature - SN SciGraph project
170 rdf:type schema:Organization
171 Nf2962f89bf7a4185ba2c4d37bc8301b5 schema:affiliation https://www.grid.ac/institutes/grid.5924.a
172 schema:familyName Paiva
173 schema:givenName Bruno
174 rdf:type schema:Person
175 Nf6e55d8af32f41f8be5573cf66d1da3f schema:affiliation https://www.grid.ac/institutes/grid.5386.8
176 schema:familyName Verma
177 schema:givenName Akanksha
178 rdf:type schema:Person
179 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
180 schema:name Biological Sciences
181 rdf:type schema:DefinedTerm
182 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
183 schema:name Genetics
184 rdf:type schema:DefinedTerm
185 sg:grant.3718263 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08679-z
186 rdf:type schema:MonetaryGrant
187 sg:grant.3755351 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08679-z
188 rdf:type schema:MonetaryGrant
189 sg:grant.3796817 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08679-z
190 rdf:type schema:MonetaryGrant
191 sg:grant.7030314 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08679-z
192 rdf:type schema:MonetaryGrant
193 sg:grant.7751729 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08679-z
194 rdf:type schema:MonetaryGrant
195 sg:journal.1043282 schema:issn 2041-1723
196 schema:name Nature Communications
197 rdf:type schema:Periodical
198 sg:pub.10.1038/bcj.2016.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010759162
199 https://doi.org/10.1038/bcj.2016.81
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nature20149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049591946
202 https://doi.org/10.1038/nature20149
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nature21374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128527
205 https://doi.org/10.1038/nature21374
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nature21715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128605
208 https://doi.org/10.1038/nature21715
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
211 https://doi.org/10.1038/nbt.1621
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nbt.1630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023421025
214 https://doi.org/10.1038/nbt.1630
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/ncomms16067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090352970
217 https://doi.org/10.1038/ncomms16067
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/ng.3291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030977436
220 https://doi.org/10.1038/ng.3291
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/ni.2712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018994410
223 https://doi.org/10.1038/ni.2712
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/ni.3093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050303094
226 https://doi.org/10.1038/ni.3093
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/ni.3299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050234640
229 https://doi.org/10.1038/ni.3299
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/nm.3981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015269620
232 https://doi.org/10.1038/nm.3981
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nprot.2012.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003624809
235 https://doi.org/10.1038/nprot.2012.101
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/nrg3606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005007298
238 https://doi.org/10.1038/nrg3606
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/s41388-018-0128-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101364374
241 https://doi.org/10.1038/s41388-018-0128-0
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/srep08057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041505444
244 https://doi.org/10.1038/srep08057
245 rdf:type schema:CreativeWork
246 sg:pub.10.1186/gb-2011-12-3-r22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009466747
247 https://doi.org/10.1186/gb-2011-12-3-r22
248 rdf:type schema:CreativeWork
249 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
250 https://doi.org/10.1186/s13059-014-0550-8
251 rdf:type schema:CreativeWork
252 sg:pub.10.1186/s13059-014-0571-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031591608
253 https://doi.org/10.1186/s13059-014-0571-3
254 rdf:type schema:CreativeWork
255 sg:pub.10.1186/s13073-015-0230-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051840372
256 https://doi.org/10.1186/s13073-015-0230-7
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.ccell.2016.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007400017
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.ccr.2013.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041556749
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.cell.2013.03.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005302017
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.cell.2013.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017590275
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/j.cell.2016.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019692042
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.coi.2017.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084066886
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.immuni.2016.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035623522
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.immuni.2016.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051680986
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.molcel.2013.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020268679
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.molcel.2015.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048300891
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.molmed.2014.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008940245
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1073/pnas.1706855114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092463481
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1093/bioinformatics/btg412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051607942
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/bioinformatics/bti042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027115436
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1093/bioinformatics/btp692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045138418
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1093/bioinformatics/btr209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009243267
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1093/bioinformatics/btr260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039284123
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1093/bioinformatics/btt656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016247401
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1093/nar/gkw1256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025098224
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1093/oxfordjournals.molbev.a040454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079752303
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1101/064469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033567457
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1101/gr.135350.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012073457
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1101/gr.208652.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085376815
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1109/tit.1982.1056489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061648677
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1111/coa.12540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020368651
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458929
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1158/2159-8290.cd-16-0975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038783763
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1182/blood-2015-11-680843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019514611
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1371/journal.pone.0138236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000833760
317 rdf:type schema:CreativeWork
318 https://doi.org/10.3390/ijms140815386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044373563
319 rdf:type schema:CreativeWork
320 https://www.grid.ac/institutes/grid.411730.0 schema:alternateName Clinica Universidad de Navarra
321 schema:name Department of Hematology, Clínica Universidad de Navarra, IDISNA, 31008, Pamplona, Spain
322 Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
323 rdf:type schema:Organization
324 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
325 schema:name Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, 10021, New York, NY, USA
326 Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA
327 The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 10021, New York, NY, USA
328 The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 10021, New York, NY, USA
329 rdf:type schema:Organization
330 https://www.grid.ac/institutes/grid.5841.8 schema:alternateName University of Barcelona
331 schema:name Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Spain
332 rdf:type schema:Organization
333 https://www.grid.ac/institutes/grid.5924.a schema:alternateName University of Navarra
334 schema:name Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, 10021, New York, NY, USA
335 Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
336 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...