Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-14

AUTHORS

Mathieu Levesque, Laia Andreu-Hayles, William Kolby Smith, A. Park Williams, Martina L. Hobi, Brady W. Allred, Neil Pederson

ABSTRACT

Historical and future trends in net primary productivity (NPP) and its sensitivity to global change are largely unknown because of the lack of long-term, high-resolution data. Here we test whether annually resolved tree-ring stable carbon (δ13C) and oxygen (δ18O) isotopes can be used as proxies for reconstructing past NPP. Stable isotope chronologies from four sites within three distinct hydroclimatic environments in the eastern United States (US) were compared in time and space against satellite-derived NPP products, including the long-term Global Inventory Modeling and Mapping Studies (GIMMS3g) NPP (1982-2011), the newest high-resolution Landsat NPP (1986-2015), and the Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP. We show that tree-ring isotopes, in particular δ18O, correlate strongly with satellite NPP estimates at both local and large geographical scales in the eastern US. These findings represent an important breakthrough for estimating interannual variability and long-term changes in terrestrial productivity at the biome scale. More... »

PAGES

742

References to SciGraph publications

  • 2016-06-15. Remotely-sensed detection of effects of extreme droughts on gross primary production in SCIENTIFIC REPORTS
  • 2015-05-11. Water-use efficiency and transpiration across European forests during the Anthropocene in NATURE CLIMATE CHANGE
  • 1990. Methods of Dendrochronology, Applications in the Environmental Sciences in NONE
  • 2015-04-20. Future productivity and carbon storage limited by terrestrial nutrient availability in NATURE GEOSCIENCE
  • 2016-02-17. Sensitivity of global terrestrial ecosystems to climate variability in NATURE
  • 2017-08-18. Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes in NATURE COMMUNICATIONS
  • 2017-05-16. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests in SCIENTIFIC REPORTS
  • 2017-04-10. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition in SCIENTIFIC REPORTS
  • 2005-09. Europe-wide reduction in primary productivity caused by the heat and drought in 2003 in NATURE
  • 2015-07-01. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought in OECOLOGIA
  • 1992-12. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems in OECOLOGIA
  • 2015-12-07. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization in NATURE CLIMATE CHANGE
  • 2015-10-26. Woody biomass production lags stem-girth increase by over one month in coniferous forests in NATURE PLANTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y

    DOI

    http://dx.doi.org/10.1038/s41467-019-08634-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112134284

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30765694


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon Isotopes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Conservation of Natural Resources", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ecosystem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Geography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxygen Isotopes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Satellite Imagery", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seasons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Trees", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "United States", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Forest Management Group, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland", 
                "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levesque", 
            "givenName": "Mathieu", 
            "id": "sg:person.01163611447.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163611447.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andreu-Hayles", 
            "givenName": "Laia", 
            "id": "sg:person.01300156307.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300156307.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "William Kolby", 
            "id": "sg:person.01043364333.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043364333.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "A. Park", 
            "id": "sg:person.01253143066.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253143066.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.419754.a", 
              "name": [
                "SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706 USA", 
                "WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hobi", 
            "givenName": "Martina L.", 
            "id": "sg:person.016662451453.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016662451453.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT 59812 USA", 
              "id": "http://www.grid.ac/institutes/grid.253613.0", 
              "name": [
                "W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT 59812 USA", 
                "Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT 59812 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allred", 
            "givenName": "Brady W.", 
            "id": "sg:person.01232373424.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232373424.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard Forest, Harvard University, Petersham, MA 01366 USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard Forest, Harvard University, Petersham, MA 01366 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pederson", 
            "givenName": "Neil", 
            "id": "sg:person.0741464642.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741464642.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00317837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001510", 
              "https://doi.org/10.1007/bf00317837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nplants.2015.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007309206", 
              "https://doi.org/10.1038/nplants.2015.160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep28269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043357498", 
              "https://doi.org/10.1038/srep28269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034243163", 
              "https://doi.org/10.1038/nature16986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038561053", 
              "https://doi.org/10.1038/nclimate2879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00225-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091148235", 
              "https://doi.org/10.1038/s41467-017-00225-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep46158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084763937", 
              "https://doi.org/10.1038/srep46158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00442-015-3380-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014455526", 
              "https://doi.org/10.1007/s00442-015-3380-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045141147", 
              "https://doi.org/10.1038/ngeo2413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006442576", 
              "https://doi.org/10.1038/nclimate2614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030525946", 
              "https://doi.org/10.1038/nature03972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-7879-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017783681", 
              "https://doi.org/10.1007/978-94-015-7879-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-02022-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085379406", 
              "https://doi.org/10.1038/s41598-017-02022-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-14", 
        "datePublishedReg": "2019-02-14", 
        "description": "Historical and future trends in net primary productivity (NPP) and its sensitivity to global change are largely unknown because of the lack of long-term, high-resolution data. Here we test whether annually resolved tree-ring stable carbon (\u03b413C) and oxygen (\u03b418O) isotopes can be used as proxies for reconstructing past NPP. Stable isotope chronologies from four sites within three distinct hydroclimatic environments in the eastern United States (US) were compared in time and space against satellite-derived NPP products, including the long-term Global Inventory Modeling and Mapping Studies (GIMMS3g) NPP (1982-2011), the newest high-resolution Landsat NPP (1986-2015), and the\u00a0Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP. We show that tree-ring isotopes, in particular \u03b418O, correlate strongly with satellite NPP estimates at both local and large geographical scales in the eastern US. These findings represent an important breakthrough for estimating interannual variability and long-term changes in terrestrial productivity at the biome scale.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-08634-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4107683", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5234579", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5240034", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "net primary productivity", 
          "tree-ring isotopes", 
          "eastern United States", 
          "biome scale", 
          "tree\u2010ring stable carbon", 
          "stable isotope chronologies", 
          "Global Inventory Modeling", 
          "large geographical scale", 
          "high-resolution data", 
          "long-term changes", 
          "isotope chronologies", 
          "interannual variability", 
          "oxygen isotopes", 
          "hydroclimatic environment", 
          "terrestrial productivity", 
          "stable carbon", 
          "Inventory Modeling", 
          "primary productivity", 
          "NPP estimates", 
          "global change", 
          "NPP products", 
          "geographical scales", 
          "productivity dynamics", 
          "isotopes", 
          "United States", 
          "productivity", 
          "chronology", 
          "scale", 
          "proxy", 
          "variability", 
          "carbon", 
          "future trends", 
          "changes", 
          "estimates", 
          "trends", 
          "sites", 
          "dynamics", 
          "environment", 
          "modeling", 
          "data", 
          "lack", 
          "time", 
          "breakthrough", 
          "space", 
          "important breakthrough", 
          "sensitivity", 
          "products", 
          "state", 
          "correlates", 
          "findings", 
          "distinct hydroclimatic environments", 
          "satellite-derived NPP products", 
          "long-term Global Inventory Modeling", 
          "Mapping Studies (GIMMS3g) NPP", 
          "Studies (GIMMS3g) NPP", 
          "newest high-resolution Landsat NPP", 
          "high-resolution Landsat NPP", 
          "Landsat NPP", 
          "Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP", 
          "Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP", 
          "Imaging Spectroradiometer (MODIS, 2001-2015) NPP", 
          "Spectroradiometer (MODIS, 2001-2015) NPP", 
          "satellite NPP estimates", 
          "interannual vegetation productivity dynamics", 
          "vegetation productivity dynamics"
        ], 
        "name": "Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale", 
        "pagination": "742", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112134284"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-08634-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30765694"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-08634-y", 
          "https://app.dimensions.ai/details/publication/pub.1112134284"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_822.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-08634-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    285 TRIPLES      22 PREDICATES      115 URIs      94 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-08634-y schema:about N0b5045ed838e4cc191719684262e802c
    2 N87a1496202a744bea5b2dbf7e1f54742
    3 Na804440aed4446e9aab103250d452439
    4 Naafc47af93ae49488c3d8650732b1660
    5 Nb4d035086d854b3e99afe758667784eb
    6 Nb60641479b0a4163a6df402fe0e05a54
    7 Nc11702d9fb8041d7b766c6f271223bcc
    8 Nc27fccfb62c640ffb6b5fab08cce68f4
    9 Nc4a1910715af426e86741ec00994f55b
    10 Ne56d0ba0eddf48ecb2904bc9b34fa6fc
    11 Nebc1048ecbb34712b4ad5b3d172bca0c
    12 anzsrc-for:04
    13 anzsrc-for:0406
    14 schema:author N178d71e675334578ae2e8994b9902d54
    15 schema:citation sg:pub.10.1007/978-94-015-7879-0
    16 sg:pub.10.1007/bf00317837
    17 sg:pub.10.1007/s00442-015-3380-9
    18 sg:pub.10.1038/nature03972
    19 sg:pub.10.1038/nature16986
    20 sg:pub.10.1038/nclimate2614
    21 sg:pub.10.1038/nclimate2879
    22 sg:pub.10.1038/ngeo2413
    23 sg:pub.10.1038/nplants.2015.160
    24 sg:pub.10.1038/s41467-017-00225-z
    25 sg:pub.10.1038/s41598-017-02022-6
    26 sg:pub.10.1038/srep28269
    27 sg:pub.10.1038/srep46158
    28 schema:datePublished 2019-02-14
    29 schema:datePublishedReg 2019-02-14
    30 schema:description Historical and future trends in net primary productivity (NPP) and its sensitivity to global change are largely unknown because of the lack of long-term, high-resolution data. Here we test whether annually resolved tree-ring stable carbon (δ<sup>13</sup>C) and oxygen (δ<sup>18</sup>O) isotopes can be used as proxies for reconstructing past NPP. Stable isotope chronologies from four sites within three distinct hydroclimatic environments in the eastern United States (US) were compared in time and space against satellite-derived NPP products, including the long-term Global Inventory Modeling and Mapping Studies (GIMMS3g) NPP (1982-2011), the newest high-resolution Landsat NPP (1986-2015), and the Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP. We show that tree-ring isotopes, in particular δ<sup>18</sup>O, correlate strongly with satellite NPP estimates at both local and large geographical scales in the eastern US. These findings represent an important breakthrough for estimating interannual variability and long-term changes in terrestrial productivity at the biome scale.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N02275334ef6149599000b7debb88222f
    35 Nac22097f670c4a95b11084fbbd85ecf4
    36 sg:journal.1043282
    37 schema:keywords Global Inventory Modeling
    38 Imaging Spectroradiometer (MODIS, 2001-2015) NPP
    39 Inventory Modeling
    40 Landsat NPP
    41 Mapping Studies (GIMMS3g) NPP
    42 Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP
    43 NPP estimates
    44 NPP products
    45 Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP
    46 Spectroradiometer (MODIS, 2001-2015) NPP
    47 Studies (GIMMS3g) NPP
    48 United States
    49 biome scale
    50 breakthrough
    51 carbon
    52 changes
    53 chronology
    54 correlates
    55 data
    56 distinct hydroclimatic environments
    57 dynamics
    58 eastern United States
    59 environment
    60 estimates
    61 findings
    62 future trends
    63 geographical scales
    64 global change
    65 high-resolution Landsat NPP
    66 high-resolution data
    67 hydroclimatic environment
    68 important breakthrough
    69 interannual variability
    70 interannual vegetation productivity dynamics
    71 isotope chronologies
    72 isotopes
    73 lack
    74 large geographical scale
    75 long-term Global Inventory Modeling
    76 long-term changes
    77 modeling
    78 net primary productivity
    79 newest high-resolution Landsat NPP
    80 oxygen isotopes
    81 primary productivity
    82 productivity
    83 productivity dynamics
    84 products
    85 proxy
    86 satellite NPP estimates
    87 satellite-derived NPP products
    88 scale
    89 sensitivity
    90 sites
    91 space
    92 stable carbon
    93 stable isotope chronologies
    94 state
    95 terrestrial productivity
    96 time
    97 tree-ring isotopes
    98 tree‐ring stable carbon
    99 trends
    100 variability
    101 vegetation productivity dynamics
    102 schema:name Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale
    103 schema:pagination 742
    104 schema:productId N2e408c9b792d494a949a16a62e13081f
    105 N56361971fd1243dcaa11120d30c16a5d
    106 N851e2e5a672f45e282533e9e10951687
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112134284
    108 https://doi.org/10.1038/s41467-019-08634-y
    109 schema:sdDatePublished 2021-12-01T19:46
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher N0e4ea4a4036e47a89f129367c5cfa442
    112 schema:url https://doi.org/10.1038/s41467-019-08634-y
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N02275334ef6149599000b7debb88222f schema:volumeNumber 10
    117 rdf:type schema:PublicationVolume
    118 N0b5045ed838e4cc191719684262e802c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name United States
    120 rdf:type schema:DefinedTerm
    121 N0e4ea4a4036e47a89f129367c5cfa442 schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 N0f128aaa1edd4cbda98a1962b099ae92 rdf:first sg:person.0741464642.65
    124 rdf:rest rdf:nil
    125 N178d71e675334578ae2e8994b9902d54 rdf:first sg:person.01163611447.45
    126 rdf:rest N56cf0f24d252442aa03b61c5202fda8f
    127 N2e408c9b792d494a949a16a62e13081f schema:name doi
    128 schema:value 10.1038/s41467-019-08634-y
    129 rdf:type schema:PropertyValue
    130 N44f150defbee48b5825a8cf0b124787f rdf:first sg:person.01232373424.92
    131 rdf:rest N0f128aaa1edd4cbda98a1962b099ae92
    132 N482ee566d4734d58adf4ae5d2563af9b rdf:first sg:person.01043364333.44
    133 rdf:rest N6973355465114e348893274d5d156c22
    134 N56361971fd1243dcaa11120d30c16a5d schema:name pubmed_id
    135 schema:value 30765694
    136 rdf:type schema:PropertyValue
    137 N56cf0f24d252442aa03b61c5202fda8f rdf:first sg:person.01300156307.28
    138 rdf:rest N482ee566d4734d58adf4ae5d2563af9b
    139 N6973355465114e348893274d5d156c22 rdf:first sg:person.01253143066.98
    140 rdf:rest Nc409a378f20e467e9883abaed67838a6
    141 N851e2e5a672f45e282533e9e10951687 schema:name dimensions_id
    142 schema:value pub.1112134284
    143 rdf:type schema:PropertyValue
    144 N87a1496202a744bea5b2dbf7e1f54742 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Models, Biological
    146 rdf:type schema:DefinedTerm
    147 Na804440aed4446e9aab103250d452439 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Geography
    149 rdf:type schema:DefinedTerm
    150 Naafc47af93ae49488c3d8650732b1660 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Satellite Imagery
    152 rdf:type schema:DefinedTerm
    153 Nac22097f670c4a95b11084fbbd85ecf4 schema:issueNumber 1
    154 rdf:type schema:PublicationIssue
    155 Nb4d035086d854b3e99afe758667784eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Ecosystem
    157 rdf:type schema:DefinedTerm
    158 Nb60641479b0a4163a6df402fe0e05a54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Seasons
    160 rdf:type schema:DefinedTerm
    161 Nc11702d9fb8041d7b766c6f271223bcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Oxygen Isotopes
    163 rdf:type schema:DefinedTerm
    164 Nc27fccfb62c640ffb6b5fab08cce68f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Trees
    166 rdf:type schema:DefinedTerm
    167 Nc409a378f20e467e9883abaed67838a6 rdf:first sg:person.016662451453.14
    168 rdf:rest N44f150defbee48b5825a8cf0b124787f
    169 Nc4a1910715af426e86741ec00994f55b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Carbon Isotopes
    171 rdf:type schema:DefinedTerm
    172 Ne56d0ba0eddf48ecb2904bc9b34fa6fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Algorithms
    174 rdf:type schema:DefinedTerm
    175 Nebc1048ecbb34712b4ad5b3d172bca0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Conservation of Natural Resources
    177 rdf:type schema:DefinedTerm
    178 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Earth Sciences
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Physical Geography and Environmental Geoscience
    183 rdf:type schema:DefinedTerm
    184 sg:grant.4107683 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08634-y
    185 rdf:type schema:MonetaryGrant
    186 sg:grant.5234579 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08634-y
    187 rdf:type schema:MonetaryGrant
    188 sg:grant.5240034 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08634-y
    189 rdf:type schema:MonetaryGrant
    190 sg:journal.1043282 schema:issn 2041-1723
    191 schema:name Nature Communications
    192 schema:publisher Springer Nature
    193 rdf:type schema:Periodical
    194 sg:person.01043364333.44 schema:affiliation grid-institutes:grid.134563.6
    195 schema:familyName Smith
    196 schema:givenName William Kolby
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043364333.44
    198 rdf:type schema:Person
    199 sg:person.01163611447.45 schema:affiliation grid-institutes:grid.473157.3
    200 schema:familyName Levesque
    201 schema:givenName Mathieu
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163611447.45
    203 rdf:type schema:Person
    204 sg:person.01232373424.92 schema:affiliation grid-institutes:grid.253613.0
    205 schema:familyName Allred
    206 schema:givenName Brady W.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232373424.92
    208 rdf:type schema:Person
    209 sg:person.01253143066.98 schema:affiliation grid-institutes:grid.473157.3
    210 schema:familyName Williams
    211 schema:givenName A. Park
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253143066.98
    213 rdf:type schema:Person
    214 sg:person.01300156307.28 schema:affiliation grid-institutes:grid.473157.3
    215 schema:familyName Andreu-Hayles
    216 schema:givenName Laia
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300156307.28
    218 rdf:type schema:Person
    219 sg:person.016662451453.14 schema:affiliation grid-institutes:grid.419754.a
    220 schema:familyName Hobi
    221 schema:givenName Martina L.
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016662451453.14
    223 rdf:type schema:Person
    224 sg:person.0741464642.65 schema:affiliation grid-institutes:grid.38142.3c
    225 schema:familyName Pederson
    226 schema:givenName Neil
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741464642.65
    228 rdf:type schema:Person
    229 sg:pub.10.1007/978-94-015-7879-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017783681
    230 https://doi.org/10.1007/978-94-015-7879-0
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/bf00317837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001510
    233 https://doi.org/10.1007/bf00317837
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00442-015-3380-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014455526
    236 https://doi.org/10.1007/s00442-015-3380-9
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature03972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030525946
    239 https://doi.org/10.1038/nature03972
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nature16986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034243163
    242 https://doi.org/10.1038/nature16986
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nclimate2614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006442576
    245 https://doi.org/10.1038/nclimate2614
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nclimate2879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038561053
    248 https://doi.org/10.1038/nclimate2879
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ngeo2413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045141147
    251 https://doi.org/10.1038/ngeo2413
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nplants.2015.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007309206
    254 https://doi.org/10.1038/nplants.2015.160
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/s41467-017-00225-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091148235
    257 https://doi.org/10.1038/s41467-017-00225-z
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/s41598-017-02022-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085379406
    260 https://doi.org/10.1038/s41598-017-02022-6
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/srep28269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043357498
    263 https://doi.org/10.1038/srep28269
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/srep46158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084763937
    266 https://doi.org/10.1038/srep46158
    267 rdf:type schema:CreativeWork
    268 grid-institutes:grid.134563.6 schema:alternateName School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA
    269 schema:name School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA
    270 rdf:type schema:Organization
    271 grid-institutes:grid.253613.0 schema:alternateName Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT 59812 USA
    272 schema:name Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT 59812 USA
    273 W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT 59812 USA
    274 rdf:type schema:Organization
    275 grid-institutes:grid.38142.3c schema:alternateName Harvard Forest, Harvard University, Petersham, MA 01366 USA
    276 schema:name Harvard Forest, Harvard University, Petersham, MA 01366 USA
    277 rdf:type schema:Organization
    278 grid-institutes:grid.419754.a schema:alternateName WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
    279 schema:name SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706 USA
    280 WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
    281 rdf:type schema:Organization
    282 grid-institutes:grid.473157.3 schema:alternateName Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA
    283 schema:name Forest Management Group, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
    284 Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA
    285 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...