Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-14

AUTHORS

Mathieu Levesque, Laia Andreu-Hayles, William Kolby Smith, A. Park Williams, Martina L. Hobi, Brady W. Allred, Neil Pederson

ABSTRACT

Historical and future trends in net primary productivity (NPP) and its sensitivity to global change are largely unknown because of the lack of long-term, high-resolution data. Here we test whether annually resolved tree-ring stable carbon (δ13C) and oxygen (δ18O) isotopes can be used as proxies for reconstructing past NPP. Stable isotope chronologies from four sites within three distinct hydroclimatic environments in the eastern United States (US) were compared in time and space against satellite-derived NPP products, including the long-term Global Inventory Modeling and Mapping Studies (GIMMS3g) NPP (1982-2011), the newest high-resolution Landsat NPP (1986-2015), and the Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP. We show that tree-ring isotopes, in particular δ18O, correlate strongly with satellite NPP estimates at both local and large geographical scales in the eastern US. These findings represent an important breakthrough for estimating interannual variability and long-term changes in terrestrial productivity at the biome scale. More... »

PAGES

742

References to SciGraph publications

  • 2016-06-15. Remotely-sensed detection of effects of extreme droughts on gross primary production in SCIENTIFIC REPORTS
  • 2015-05-11. Water-use efficiency and transpiration across European forests during the Anthropocene in NATURE CLIMATE CHANGE
  • 1990. Methods of Dendrochronology, Applications in the Environmental Sciences in NONE
  • 2015-04-20. Future productivity and carbon storage limited by terrestrial nutrient availability in NATURE GEOSCIENCE
  • 2016-02-17. Sensitivity of global terrestrial ecosystems to climate variability in NATURE
  • 2017-08-18. Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes in NATURE COMMUNICATIONS
  • 2017-05-16. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests in SCIENTIFIC REPORTS
  • 2017-04-10. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition in SCIENTIFIC REPORTS
  • 2005-09. Europe-wide reduction in primary productivity caused by the heat and drought in 2003 in NATURE
  • 2015-07-01. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought in OECOLOGIA
  • 1992-12. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems in OECOLOGIA
  • 2015-12-07. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization in NATURE CLIMATE CHANGE
  • 2015-10-26. Woody biomass production lags stem-girth increase by over one month in coniferous forests in NATURE PLANTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y

    DOI

    http://dx.doi.org/10.1038/s41467-019-08634-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112134284

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30765694


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon Isotopes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Conservation of Natural Resources", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ecosystem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Geography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxygen Isotopes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Satellite Imagery", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seasons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Trees", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "United States", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Forest Management Group, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland", 
                "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levesque", 
            "givenName": "Mathieu", 
            "id": "sg:person.01163611447.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163611447.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andreu-Hayles", 
            "givenName": "Laia", 
            "id": "sg:person.01300156307.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300156307.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "William Kolby", 
            "id": "sg:person.01043364333.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043364333.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "A. Park", 
            "id": "sg:person.01253143066.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253143066.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.419754.a", 
              "name": [
                "SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706 USA", 
                "WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hobi", 
            "givenName": "Martina L.", 
            "id": "sg:person.016662451453.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016662451453.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT 59812 USA", 
              "id": "http://www.grid.ac/institutes/grid.253613.0", 
              "name": [
                "W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT 59812 USA", 
                "Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT 59812 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allred", 
            "givenName": "Brady W.", 
            "id": "sg:person.01232373424.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232373424.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard Forest, Harvard University, Petersham, MA 01366 USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard Forest, Harvard University, Petersham, MA 01366 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pederson", 
            "givenName": "Neil", 
            "id": "sg:person.0741464642.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741464642.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00442-015-3380-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014455526", 
              "https://doi.org/10.1007/s00442-015-3380-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nplants.2015.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007309206", 
              "https://doi.org/10.1038/nplants.2015.160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-7879-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017783681", 
              "https://doi.org/10.1007/978-94-015-7879-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006442576", 
              "https://doi.org/10.1038/nclimate2614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045141147", 
              "https://doi.org/10.1038/ngeo2413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep46158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084763937", 
              "https://doi.org/10.1038/srep46158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034243163", 
              "https://doi.org/10.1038/nature16986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038561053", 
              "https://doi.org/10.1038/nclimate2879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00225-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091148235", 
              "https://doi.org/10.1038/s41467-017-00225-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep28269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043357498", 
              "https://doi.org/10.1038/srep28269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030525946", 
              "https://doi.org/10.1038/nature03972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00317837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001510", 
              "https://doi.org/10.1007/bf00317837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-02022-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085379406", 
              "https://doi.org/10.1038/s41598-017-02022-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-14", 
        "datePublishedReg": "2019-02-14", 
        "description": "Historical and future trends in net primary productivity (NPP) and its sensitivity to global change are largely unknown because of the lack of long-term, high-resolution data. Here we test whether annually resolved tree-ring stable carbon (\u03b413C) and oxygen (\u03b418O) isotopes can be used as proxies for reconstructing past NPP. Stable isotope chronologies from four sites within three distinct hydroclimatic environments in the eastern United States (US) were compared in time and space against satellite-derived NPP products, including the long-term Global Inventory Modeling and Mapping Studies (GIMMS3g) NPP (1982-2011), the newest high-resolution Landsat NPP (1986-2015), and the\u00a0Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP. We show that tree-ring isotopes, in particular \u03b418O, correlate strongly with satellite NPP estimates at both local and large geographical scales in the eastern US. These findings represent an important breakthrough for estimating interannual variability and long-term changes in terrestrial productivity at the biome scale.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-08634-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5234579", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5240034", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4107683", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "net primary productivity", 
          "tree-ring isotopes", 
          "eastern United States", 
          "biome scale", 
          "tree\u2010ring stable carbon", 
          "stable isotope chronologies", 
          "Global Inventory Modeling", 
          "large geographical scale", 
          "high-resolution data", 
          "long-term changes", 
          "isotope chronologies", 
          "interannual variability", 
          "oxygen isotopes", 
          "hydroclimatic environment", 
          "terrestrial productivity", 
          "stable carbon", 
          "Inventory Modeling", 
          "primary productivity", 
          "NPP estimates", 
          "global change", 
          "NPP products", 
          "geographical scales", 
          "productivity dynamics", 
          "isotopes", 
          "United States", 
          "productivity", 
          "chronology", 
          "scale", 
          "proxy", 
          "variability", 
          "carbon", 
          "future trends", 
          "changes", 
          "estimates", 
          "trends", 
          "sites", 
          "dynamics", 
          "environment", 
          "modeling", 
          "data", 
          "lack", 
          "time", 
          "breakthrough", 
          "space", 
          "important breakthrough", 
          "sensitivity", 
          "products", 
          "state", 
          "correlates", 
          "findings", 
          "distinct hydroclimatic environments", 
          "satellite-derived NPP products", 
          "long-term Global Inventory Modeling", 
          "Mapping Studies (GIMMS3g) NPP", 
          "Studies (GIMMS3g) NPP", 
          "newest high-resolution Landsat NPP", 
          "high-resolution Landsat NPP", 
          "Landsat NPP", 
          "Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP", 
          "Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP", 
          "Imaging Spectroradiometer (MODIS, 2001-2015) NPP", 
          "Spectroradiometer (MODIS, 2001-2015) NPP", 
          "satellite NPP estimates", 
          "interannual vegetation productivity dynamics", 
          "vegetation productivity dynamics"
        ], 
        "name": "Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale", 
        "pagination": "742", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112134284"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-08634-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30765694"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-08634-y", 
          "https://app.dimensions.ai/details/publication/pub.1112134284"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_824.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-08634-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08634-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    285 TRIPLES      22 PREDICATES      115 URIs      94 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-08634-y schema:about N1874ac473ab1464ab28097116b1117d5
    2 N277b3e935fc14893b5825f6e28e6683f
    3 N32ed8fa453ef4035b65dba0dd34e5e0b
    4 N3a2ea955452f4b6195c16c84232edfdf
    5 N6408c739f50547d2a61dada9234f02a0
    6 N6a94dacc200444dda39649053f993e8b
    7 N8afba0cac7274160bfc6f033507b0ee8
    8 N99896df273054bba8e1f297db6c19bb8
    9 Na712d3a7cff54590aedaa731f9fcdd3a
    10 Nc5390e95b2ac46b2b4f0b54bc5645abd
    11 Nf6e3b5b37c504293a490272c28ae8bcb
    12 anzsrc-for:04
    13 anzsrc-for:0406
    14 schema:author N0e0da8de58bc4ec68579f3658216bc9f
    15 schema:citation sg:pub.10.1007/978-94-015-7879-0
    16 sg:pub.10.1007/bf00317837
    17 sg:pub.10.1007/s00442-015-3380-9
    18 sg:pub.10.1038/nature03972
    19 sg:pub.10.1038/nature16986
    20 sg:pub.10.1038/nclimate2614
    21 sg:pub.10.1038/nclimate2879
    22 sg:pub.10.1038/ngeo2413
    23 sg:pub.10.1038/nplants.2015.160
    24 sg:pub.10.1038/s41467-017-00225-z
    25 sg:pub.10.1038/s41598-017-02022-6
    26 sg:pub.10.1038/srep28269
    27 sg:pub.10.1038/srep46158
    28 schema:datePublished 2019-02-14
    29 schema:datePublishedReg 2019-02-14
    30 schema:description Historical and future trends in net primary productivity (NPP) and its sensitivity to global change are largely unknown because of the lack of long-term, high-resolution data. Here we test whether annually resolved tree-ring stable carbon (δ<sup>13</sup>C) and oxygen (δ<sup>18</sup>O) isotopes can be used as proxies for reconstructing past NPP. Stable isotope chronologies from four sites within three distinct hydroclimatic environments in the eastern United States (US) were compared in time and space against satellite-derived NPP products, including the long-term Global Inventory Modeling and Mapping Studies (GIMMS3g) NPP (1982-2011), the newest high-resolution Landsat NPP (1986-2015), and the Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP. We show that tree-ring isotopes, in particular δ<sup>18</sup>O, correlate strongly with satellite NPP estimates at both local and large geographical scales in the eastern US. These findings represent an important breakthrough for estimating interannual variability and long-term changes in terrestrial productivity at the biome scale.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N1987ef36e7b64b359338f6176410d941
    35 Nec46ae5f14774295a95bf190b6bde567
    36 sg:journal.1043282
    37 schema:keywords Global Inventory Modeling
    38 Imaging Spectroradiometer (MODIS, 2001-2015) NPP
    39 Inventory Modeling
    40 Landsat NPP
    41 Mapping Studies (GIMMS3g) NPP
    42 Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP
    43 NPP estimates
    44 NPP products
    45 Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP
    46 Spectroradiometer (MODIS, 2001-2015) NPP
    47 Studies (GIMMS3g) NPP
    48 United States
    49 biome scale
    50 breakthrough
    51 carbon
    52 changes
    53 chronology
    54 correlates
    55 data
    56 distinct hydroclimatic environments
    57 dynamics
    58 eastern United States
    59 environment
    60 estimates
    61 findings
    62 future trends
    63 geographical scales
    64 global change
    65 high-resolution Landsat NPP
    66 high-resolution data
    67 hydroclimatic environment
    68 important breakthrough
    69 interannual variability
    70 interannual vegetation productivity dynamics
    71 isotope chronologies
    72 isotopes
    73 lack
    74 large geographical scale
    75 long-term Global Inventory Modeling
    76 long-term changes
    77 modeling
    78 net primary productivity
    79 newest high-resolution Landsat NPP
    80 oxygen isotopes
    81 primary productivity
    82 productivity
    83 productivity dynamics
    84 products
    85 proxy
    86 satellite NPP estimates
    87 satellite-derived NPP products
    88 scale
    89 sensitivity
    90 sites
    91 space
    92 stable carbon
    93 stable isotope chronologies
    94 state
    95 terrestrial productivity
    96 time
    97 tree-ring isotopes
    98 tree‐ring stable carbon
    99 trends
    100 variability
    101 vegetation productivity dynamics
    102 schema:name Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale
    103 schema:pagination 742
    104 schema:productId N100d5855af454fbcbc017ccfc738791b
    105 Nbe1d7dc0a6f9454f8404ae2e58fd5283
    106 Ne9b05d3484874bb7975c3b84e3d6a185
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112134284
    108 https://doi.org/10.1038/s41467-019-08634-y
    109 schema:sdDatePublished 2022-01-01T18:53
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher Nf4c9166469d44b16a1efa825c0f2d67c
    112 schema:url https://doi.org/10.1038/s41467-019-08634-y
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N0e0da8de58bc4ec68579f3658216bc9f rdf:first sg:person.01163611447.45
    117 rdf:rest N9820ee70e8e64e52965136bdde7a459e
    118 N100d5855af454fbcbc017ccfc738791b schema:name pubmed_id
    119 schema:value 30765694
    120 rdf:type schema:PropertyValue
    121 N1874ac473ab1464ab28097116b1117d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Satellite Imagery
    123 rdf:type schema:DefinedTerm
    124 N1987ef36e7b64b359338f6176410d941 schema:issueNumber 1
    125 rdf:type schema:PublicationIssue
    126 N277b3e935fc14893b5825f6e28e6683f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Conservation of Natural Resources
    128 rdf:type schema:DefinedTerm
    129 N32ed8fa453ef4035b65dba0dd34e5e0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Models, Biological
    131 rdf:type schema:DefinedTerm
    132 N3a2ea955452f4b6195c16c84232edfdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Seasons
    134 rdf:type schema:DefinedTerm
    135 N58ed8b3c208a468c843a24c2d08ca2e4 rdf:first sg:person.016662451453.14
    136 rdf:rest Nc6e917023b834d09a35b6c26af4a35a3
    137 N6408c739f50547d2a61dada9234f02a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name United States
    139 rdf:type schema:DefinedTerm
    140 N6a94dacc200444dda39649053f993e8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Geography
    142 rdf:type schema:DefinedTerm
    143 N6edec58cbe044803b16d6c8601cbd0fd rdf:first sg:person.01253143066.98
    144 rdf:rest N58ed8b3c208a468c843a24c2d08ca2e4
    145 N8afba0cac7274160bfc6f033507b0ee8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Algorithms
    147 rdf:type schema:DefinedTerm
    148 N9820ee70e8e64e52965136bdde7a459e rdf:first sg:person.01300156307.28
    149 rdf:rest Ndcc18317a0434ecd91ccbc5b4aaadda3
    150 N99896df273054bba8e1f297db6c19bb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Oxygen Isotopes
    152 rdf:type schema:DefinedTerm
    153 Na712d3a7cff54590aedaa731f9fcdd3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Trees
    155 rdf:type schema:DefinedTerm
    156 Nbe1d7dc0a6f9454f8404ae2e58fd5283 schema:name dimensions_id
    157 schema:value pub.1112134284
    158 rdf:type schema:PropertyValue
    159 Nc5390e95b2ac46b2b4f0b54bc5645abd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Ecosystem
    161 rdf:type schema:DefinedTerm
    162 Nc6e917023b834d09a35b6c26af4a35a3 rdf:first sg:person.01232373424.92
    163 rdf:rest Nf194bc5adc1c47649a9afc556729be3a
    164 Ndcc18317a0434ecd91ccbc5b4aaadda3 rdf:first sg:person.01043364333.44
    165 rdf:rest N6edec58cbe044803b16d6c8601cbd0fd
    166 Ne9b05d3484874bb7975c3b84e3d6a185 schema:name doi
    167 schema:value 10.1038/s41467-019-08634-y
    168 rdf:type schema:PropertyValue
    169 Nec46ae5f14774295a95bf190b6bde567 schema:volumeNumber 10
    170 rdf:type schema:PublicationVolume
    171 Nf194bc5adc1c47649a9afc556729be3a rdf:first sg:person.0741464642.65
    172 rdf:rest rdf:nil
    173 Nf4c9166469d44b16a1efa825c0f2d67c schema:name Springer Nature - SN SciGraph project
    174 rdf:type schema:Organization
    175 Nf6e3b5b37c504293a490272c28ae8bcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Carbon Isotopes
    177 rdf:type schema:DefinedTerm
    178 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Earth Sciences
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Physical Geography and Environmental Geoscience
    183 rdf:type schema:DefinedTerm
    184 sg:grant.4107683 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08634-y
    185 rdf:type schema:MonetaryGrant
    186 sg:grant.5234579 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08634-y
    187 rdf:type schema:MonetaryGrant
    188 sg:grant.5240034 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08634-y
    189 rdf:type schema:MonetaryGrant
    190 sg:journal.1043282 schema:issn 2041-1723
    191 schema:name Nature Communications
    192 schema:publisher Springer Nature
    193 rdf:type schema:Periodical
    194 sg:person.01043364333.44 schema:affiliation grid-institutes:grid.134563.6
    195 schema:familyName Smith
    196 schema:givenName William Kolby
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043364333.44
    198 rdf:type schema:Person
    199 sg:person.01163611447.45 schema:affiliation grid-institutes:grid.473157.3
    200 schema:familyName Levesque
    201 schema:givenName Mathieu
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163611447.45
    203 rdf:type schema:Person
    204 sg:person.01232373424.92 schema:affiliation grid-institutes:grid.253613.0
    205 schema:familyName Allred
    206 schema:givenName Brady W.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232373424.92
    208 rdf:type schema:Person
    209 sg:person.01253143066.98 schema:affiliation grid-institutes:grid.473157.3
    210 schema:familyName Williams
    211 schema:givenName A. Park
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253143066.98
    213 rdf:type schema:Person
    214 sg:person.01300156307.28 schema:affiliation grid-institutes:grid.473157.3
    215 schema:familyName Andreu-Hayles
    216 schema:givenName Laia
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300156307.28
    218 rdf:type schema:Person
    219 sg:person.016662451453.14 schema:affiliation grid-institutes:grid.419754.a
    220 schema:familyName Hobi
    221 schema:givenName Martina L.
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016662451453.14
    223 rdf:type schema:Person
    224 sg:person.0741464642.65 schema:affiliation grid-institutes:grid.38142.3c
    225 schema:familyName Pederson
    226 schema:givenName Neil
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741464642.65
    228 rdf:type schema:Person
    229 sg:pub.10.1007/978-94-015-7879-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017783681
    230 https://doi.org/10.1007/978-94-015-7879-0
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/bf00317837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001510
    233 https://doi.org/10.1007/bf00317837
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00442-015-3380-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014455526
    236 https://doi.org/10.1007/s00442-015-3380-9
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature03972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030525946
    239 https://doi.org/10.1038/nature03972
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nature16986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034243163
    242 https://doi.org/10.1038/nature16986
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nclimate2614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006442576
    245 https://doi.org/10.1038/nclimate2614
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nclimate2879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038561053
    248 https://doi.org/10.1038/nclimate2879
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ngeo2413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045141147
    251 https://doi.org/10.1038/ngeo2413
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nplants.2015.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007309206
    254 https://doi.org/10.1038/nplants.2015.160
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/s41467-017-00225-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091148235
    257 https://doi.org/10.1038/s41467-017-00225-z
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/s41598-017-02022-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085379406
    260 https://doi.org/10.1038/s41598-017-02022-6
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/srep28269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043357498
    263 https://doi.org/10.1038/srep28269
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/srep46158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084763937
    266 https://doi.org/10.1038/srep46158
    267 rdf:type schema:CreativeWork
    268 grid-institutes:grid.134563.6 schema:alternateName School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA
    269 schema:name School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA
    270 rdf:type schema:Organization
    271 grid-institutes:grid.253613.0 schema:alternateName Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT 59812 USA
    272 schema:name Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT 59812 USA
    273 W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT 59812 USA
    274 rdf:type schema:Organization
    275 grid-institutes:grid.38142.3c schema:alternateName Harvard Forest, Harvard University, Petersham, MA 01366 USA
    276 schema:name Harvard Forest, Harvard University, Petersham, MA 01366 USA
    277 rdf:type schema:Organization
    278 grid-institutes:grid.419754.a schema:alternateName WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
    279 schema:name SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706 USA
    280 WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
    281 rdf:type schema:Organization
    282 grid-institutes:grid.473157.3 schema:alternateName Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA
    283 schema:name Forest Management Group, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
    284 Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA
    285 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...