Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-04

AUTHORS

Wonil Chung, Jun Chen, Constance Turman, Sara Lindstrom, Zhaozhong Zhu, Po-Ru Loh, Peter Kraft, Liming Liang

ABSTRACT

We introduce cross-trait penalized regression (CTPR), a powerful and practical approach for multi-trait polygenic risk prediction in large cohorts. Specifically, we propose a novel cross-trait penalty function with the Lasso and the minimax concave penalty (MCP) to incorporate the shared genetic effects across multiple traits for large-sample GWAS data. Our approach extracts information from the secondary traits that is beneficial for predicting the primary trait based on individual-level genotypes and/or summary statistics. Our novel implementation of a parallel computing algorithm makes it feasible to apply our method to biobank-scale GWAS data. We illustrate our method using large-scale GWAS data (~1M SNPs) from the UK Biobank (N = 456,837). We show that our multi-trait method outperforms the recently proposed multi-trait analysis of GWAS (MTAG) for predictive performance. The prediction accuracy for height by the aid of BMI improves from R2 = 35.8% (MTAG) to 42.5% (MCP + CTPR) or 42.8% (Lasso + CTPR) with UK Biobank data. More... »

PAGES

569

References to SciGraph publications

  • 2012-07-22. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing in NATURE GENETICS
  • 2016-11-14. Dissecting the genetics of complex traits using summary association statistics in NATURE REVIEWS GENETICS
  • 2015-02-02. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies in NATURE GENETICS
  • 2018-01-01. Multi-trait analysis of genome-wide association summary statistics using MTAG in NATURE GENETICS
  • 2013-12-13. Improving genetic risk prediction by leveraging pleiotropy in HUMAN GENETICS
  • 2007-06-17. A new multipoint method for genome-wide association studies by imputation of genotypes in NATURE GENETICS
  • 2017-07-24. Dietary fat and total energy intake modifies the association of genetic profile risk score on obesity: evidence from 48 170 UK Biobank participants in INTERNATIONAL JOURNAL OF OBESITY
  • 2009-07-01. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder in NATURE
  • 2013-06-18. Pitfalls of predicting complex traits from SNPs in NATURE REVIEWS GENETICS
  • 2015-02-02. Efficient Bayesian mixed-model analysis increases association power in large cohorts in NATURE GENETICS
  • 2018-03-07. Improving genetic prediction by leveraging genetic correlations among human diseases and traits in NATURE COMMUNICATIONS
  • 2018-05-21. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases in NATURE GENETICS
  • 2014-10-05. Defining the role of common variation in the genomic and biological architecture of adult human height in NATURE GENETICS
  • 2018-08-13. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits in NATURE GENETICS
  • 2011-03-06. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease in NATURE GENETICS
  • 2015-09-28. An atlas of genetic correlations across human diseases and traits in NATURE GENETICS
  • 2017-07-25. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112 117) in MOLECULAR PSYCHIATRY
  • 2016-07-29. Evidence for sex-specific genetic architectures across a spectrum of human complex traits in GENOME BIOLOGY
  • 2010-09-29. Hundreds of variants clustered in genomic loci and biological pathways affect human height in NATURE
  • 2014-01-22. A polygenic burden of rare disruptive mutations in schizophrenia in NATURE
  • 2010-06-20. Common SNPs explain a large proportion of the heritability for human height in NATURE GENETICS
  • 2013-01-01. Improved whole-chromosome phasing for disease and population genetic studies in NATURE METHODS
  • 2010-10-10. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index in NATURE GENETICS
  • 2012-03-25. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-08535-0

    DOI

    http://dx.doi.org/10.1038/s41467-019-08535-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111910915

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30718517


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chung", 
            "givenName": "Wonil", 
            "id": "sg:person.0744004601.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744004601.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Jun", 
            "id": "sg:person.01023412627.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Turman", 
            "givenName": "Constance", 
            "id": "sg:person.013702271565.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702271565.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology, University of Washington, 98195, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Epidemiology, University of Washington, 98195, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lindstrom", 
            "givenName": "Sara", 
            "id": "sg:person.01270660655.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270660655.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Health, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Department of Environmental Health, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Zhaozhong", 
            "id": "sg:person.01351636264.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351636264.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loh", 
            "givenName": "Po-Ru", 
            "id": "sg:person.014211634457.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211634457.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Department of Biostatistics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kraft", 
            "givenName": "Peter", 
            "id": "sg:person.01347664403.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347664403.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Department of Biostatistics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Liming", 
            "id": "sg:person.0725506330.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725506330.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng.784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000937327", 
              "https://doi.org/10.1038/ng.784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2017.169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090879130", 
              "https://doi.org/10.1038/ijo.2017.169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029723318", 
              "https://doi.org/10.1038/ng.2354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046979341", 
              "https://doi.org/10.1038/ng2088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-013-1401-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006622424", 
              "https://doi.org/10.1007/s00439-013-1401-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013643799", 
              "https://doi.org/10.1038/ng.686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0121-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104132626", 
              "https://doi.org/10.1038/s41588-018-0121-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037714920", 
              "https://doi.org/10.1038/nature09410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-017-0009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099970157", 
              "https://doi.org/10.1038/s41588-017-0009-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1025-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050026897", 
              "https://doi.org/10.1186/s13059-016-1025-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015057090", 
              "https://doi.org/10.1038/ng.608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016405801", 
              "https://doi.org/10.1038/ng.3406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030798131", 
              "https://doi.org/10.1038/nrg.2016.142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2017.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090891255", 
              "https://doi.org/10.1038/mp.2017.153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044444076", 
              "https://doi.org/10.1038/ng.3211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025133227", 
              "https://doi.org/10.1038/nature08185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02769-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101298926", 
              "https://doi.org/10.1038/s41467-017-02769-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000329485", 
              "https://doi.org/10.1038/nature12975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041665159", 
              "https://doi.org/10.1038/ng.3190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043747449", 
              "https://doi.org/10.1038/nmeth.2307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006357119", 
              "https://doi.org/10.1038/ng.3097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052559381", 
              "https://doi.org/10.1038/nrg3457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017682249", 
              "https://doi.org/10.1038/ng.2232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0193-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106026183", 
              "https://doi.org/10.1038/s41588-018-0193-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-04", 
        "datePublishedReg": "2019-02-04", 
        "description": "We introduce cross-trait penalized regression (CTPR), a powerful and practical approach for multi-trait polygenic risk prediction in large cohorts. Specifically, we propose a novel cross-trait penalty function with the Lasso and the minimax concave penalty (MCP) to incorporate the shared genetic effects across multiple traits for large-sample GWAS data. Our approach extracts information from the secondary traits that is beneficial for predicting the primary trait based on individual-level genotypes and/or summary statistics. Our novel implementation of a parallel computing algorithm makes it feasible to apply our method to biobank-scale GWAS data. We illustrate our method using large-scale GWAS data (~1M SNPs) from the UK Biobank (N\u2009=\u2009456,837). We show that our multi-trait method outperforms the recently proposed multi-trait analysis of GWAS (MTAG) for predictive performance. The prediction accuracy for height by the aid of BMI improves from R2\u2009=\u200935.8% (MTAG) to 42.5% (MCP\u2009+\u2009CTPR) or 42.8% (Lasso\u2009+\u2009CTPR) with UK Biobank data.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-08535-0", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7746336", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3801883", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2541537", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2569881", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2479676", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3624272", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439160", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2508102", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2507238", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2470116", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2691263", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2472314", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3536197", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2435607", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2531899", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2436196", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2470259", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2435752", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2544025", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2531702", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2786773", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2705365", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "parallel computing algorithm", 
          "prediction accuracy", 
          "computing algorithm", 
          "minimax concave penalty", 
          "novel implementation", 
          "individual-level genotype", 
          "predictive performance", 
          "large-scale GWAS data", 
          "penalty function", 
          "practical approach", 
          "accuracy", 
          "concave penalty", 
          "UK Biobank data", 
          "algorithm", 
          "Biobank data", 
          "implementation", 
          "risk prediction", 
          "data", 
          "GWAS data", 
          "information", 
          "LASSO", 
          "method", 
          "polygenic risk prediction", 
          "performance", 
          "multi-trait methods", 
          "GWA data", 
          "summary statistics", 
          "penalty", 
          "prediction", 
          "regression", 
          "statistics", 
          "aid", 
          "function", 
          "UK Biobank", 
          "analysis", 
          "Biobank", 
          "multiple traits", 
          "R2", 
          "primary trait", 
          "secondary phenotypes", 
          "approach", 
          "traits", 
          "multi-trait analysis", 
          "GWAS", 
          "height", 
          "secondary traits", 
          "large cohort", 
          "effect", 
          "genetic effects", 
          "cohort", 
          "phenotype", 
          "genotypes", 
          "BMI"
        ], 
        "name": "Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes", 
        "pagination": "569", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111910915"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-08535-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30718517"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-08535-0", 
          "https://app.dimensions.ai/details/publication/pub.1111910915"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_798.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-08535-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08535-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08535-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08535-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08535-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    346 TRIPLES      21 PREDICATES      109 URIs      77 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-08535-0 schema:about N300d0bf8afba4bbcb0f0f4bf4b2b0a70
    2 N692c91c9d8f24a46a246b711d63e001a
    3 N809b750624454ece87c75d007c06d22f
    4 N9a52e65d79464020b59fa45754358f3e
    5 N9f0f7a8f8e0c4bfe9fc791f33b4f2225
    6 N9f9d6c4b6d1040f2b07eb7c6b4c8d643
    7 Ncd57e98e7f4646cd977d87c70283dae0
    8 anzsrc-for:08
    9 anzsrc-for:0801
    10 schema:author N6cd6ec1d82af4511a5e5e84247863d36
    11 schema:citation sg:pub.10.1007/s00439-013-1401-5
    12 sg:pub.10.1038/ijo.2017.169
    13 sg:pub.10.1038/mp.2017.153
    14 sg:pub.10.1038/nature08185
    15 sg:pub.10.1038/nature09410
    16 sg:pub.10.1038/nature12975
    17 sg:pub.10.1038/ng.2232
    18 sg:pub.10.1038/ng.2354
    19 sg:pub.10.1038/ng.3097
    20 sg:pub.10.1038/ng.3190
    21 sg:pub.10.1038/ng.3211
    22 sg:pub.10.1038/ng.3406
    23 sg:pub.10.1038/ng.608
    24 sg:pub.10.1038/ng.686
    25 sg:pub.10.1038/ng.784
    26 sg:pub.10.1038/ng2088
    27 sg:pub.10.1038/nmeth.2307
    28 sg:pub.10.1038/nrg.2016.142
    29 sg:pub.10.1038/nrg3457
    30 sg:pub.10.1038/s41467-017-02769-6
    31 sg:pub.10.1038/s41588-017-0009-4
    32 sg:pub.10.1038/s41588-018-0121-0
    33 sg:pub.10.1038/s41588-018-0193-x
    34 sg:pub.10.1186/s13059-016-1025-x
    35 schema:datePublished 2019-02-04
    36 schema:datePublishedReg 2019-02-04
    37 schema:description We introduce cross-trait penalized regression (CTPR), a powerful and practical approach for multi-trait polygenic risk prediction in large cohorts. Specifically, we propose a novel cross-trait penalty function with the Lasso and the minimax concave penalty (MCP) to incorporate the shared genetic effects across multiple traits for large-sample GWAS data. Our approach extracts information from the secondary traits that is beneficial for predicting the primary trait based on individual-level genotypes and/or summary statistics. Our novel implementation of a parallel computing algorithm makes it feasible to apply our method to biobank-scale GWAS data. We illustrate our method using large-scale GWAS data (~1M SNPs) from the UK Biobank (N = 456,837). We show that our multi-trait method outperforms the recently proposed multi-trait analysis of GWAS (MTAG) for predictive performance. The prediction accuracy for height by the aid of BMI improves from R2 = 35.8% (MTAG) to 42.5% (MCP + CTPR) or 42.8% (Lasso + CTPR) with UK Biobank data.
    38 schema:genre article
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N15f6cead6a0e404ea9a8e0231e847d85
    41 N3c0fbd4fc35a44999701442e023418df
    42 sg:journal.1043282
    43 schema:keywords BMI
    44 Biobank
    45 Biobank data
    46 GWA data
    47 GWAS
    48 GWAS data
    49 LASSO
    50 R2
    51 UK Biobank
    52 UK Biobank data
    53 accuracy
    54 aid
    55 algorithm
    56 analysis
    57 approach
    58 cohort
    59 computing algorithm
    60 concave penalty
    61 data
    62 effect
    63 function
    64 genetic effects
    65 genotypes
    66 height
    67 implementation
    68 individual-level genotype
    69 information
    70 large cohort
    71 large-scale GWAS data
    72 method
    73 minimax concave penalty
    74 multi-trait analysis
    75 multi-trait methods
    76 multiple traits
    77 novel implementation
    78 parallel computing algorithm
    79 penalty
    80 penalty function
    81 performance
    82 phenotype
    83 polygenic risk prediction
    84 practical approach
    85 prediction
    86 prediction accuracy
    87 predictive performance
    88 primary trait
    89 regression
    90 risk prediction
    91 secondary phenotypes
    92 secondary traits
    93 statistics
    94 summary statistics
    95 traits
    96 schema:name Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
    97 schema:pagination 569
    98 schema:productId N72f983012cb94ade86047348d4c07694
    99 N7b0184f828614953afe380fccc3295f2
    100 Nc9a9dbf25cce4ec9bcd2b86957ae9887
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111910915
    102 https://doi.org/10.1038/s41467-019-08535-0
    103 schema:sdDatePublished 2022-09-02T16:02
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher N031a03ac2fb5410cace805cfc133efc8
    106 schema:url https://doi.org/10.1038/s41467-019-08535-0
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N031a03ac2fb5410cace805cfc133efc8 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 N15f6cead6a0e404ea9a8e0231e847d85 schema:issueNumber 1
    113 rdf:type schema:PublicationIssue
    114 N16720dccf44c4d1b9198821a0e3d59a2 rdf:first sg:person.013702271565.04
    115 rdf:rest N9736986aec5949c6bccf141126fc79c6
    116 N1752cc3449844ed99432524c342a07c6 rdf:first sg:person.0725506330.81
    117 rdf:rest rdf:nil
    118 N1b27cf7078e74b1d8fbd5fe17f20c284 rdf:first sg:person.01351636264.82
    119 rdf:rest Nf831b5cb56374e8dadc5bfe704d104d1
    120 N300d0bf8afba4bbcb0f0f4bf4b2b0a70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Models, Genetic
    122 rdf:type schema:DefinedTerm
    123 N3960cc425b3446edbdcb52c2be5cc293 rdf:first sg:person.01347664403.23
    124 rdf:rest N1752cc3449844ed99432524c342a07c6
    125 N39db7726d69c442989ef0ff6188b3f30 rdf:first sg:person.01023412627.52
    126 rdf:rest N16720dccf44c4d1b9198821a0e3d59a2
    127 N3c0fbd4fc35a44999701442e023418df schema:volumeNumber 10
    128 rdf:type schema:PublicationVolume
    129 N692c91c9d8f24a46a246b711d63e001a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Humans
    131 rdf:type schema:DefinedTerm
    132 N6cd6ec1d82af4511a5e5e84247863d36 rdf:first sg:person.0744004601.30
    133 rdf:rest N39db7726d69c442989ef0ff6188b3f30
    134 N72f983012cb94ade86047348d4c07694 schema:name dimensions_id
    135 schema:value pub.1111910915
    136 rdf:type schema:PropertyValue
    137 N7b0184f828614953afe380fccc3295f2 schema:name doi
    138 schema:value 10.1038/s41467-019-08535-0
    139 rdf:type schema:PropertyValue
    140 N809b750624454ece87c75d007c06d22f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Algorithms
    142 rdf:type schema:DefinedTerm
    143 N9736986aec5949c6bccf141126fc79c6 rdf:first sg:person.01270660655.11
    144 rdf:rest N1b27cf7078e74b1d8fbd5fe17f20c284
    145 N9a52e65d79464020b59fa45754358f3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Genotype
    147 rdf:type schema:DefinedTerm
    148 N9f0f7a8f8e0c4bfe9fc791f33b4f2225 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Genome-Wide Association Study
    150 rdf:type schema:DefinedTerm
    151 N9f9d6c4b6d1040f2b07eb7c6b4c8d643 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Phenotype
    153 rdf:type schema:DefinedTerm
    154 Nc9a9dbf25cce4ec9bcd2b86957ae9887 schema:name pubmed_id
    155 schema:value 30718517
    156 rdf:type schema:PropertyValue
    157 Ncd57e98e7f4646cd977d87c70283dae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Quantitative Trait Loci
    159 rdf:type schema:DefinedTerm
    160 Nf831b5cb56374e8dadc5bfe704d104d1 rdf:first sg:person.014211634457.16
    161 rdf:rest N3960cc425b3446edbdcb52c2be5cc293
    162 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Information and Computing Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Artificial Intelligence and Image Processing
    167 rdf:type schema:DefinedTerm
    168 sg:grant.2435607 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    169 rdf:type schema:MonetaryGrant
    170 sg:grant.2435752 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    171 rdf:type schema:MonetaryGrant
    172 sg:grant.2436196 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    173 rdf:type schema:MonetaryGrant
    174 sg:grant.2439160 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    175 rdf:type schema:MonetaryGrant
    176 sg:grant.2470116 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    177 rdf:type schema:MonetaryGrant
    178 sg:grant.2470259 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    179 rdf:type schema:MonetaryGrant
    180 sg:grant.2472314 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    181 rdf:type schema:MonetaryGrant
    182 sg:grant.2479676 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    183 rdf:type schema:MonetaryGrant
    184 sg:grant.2507238 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    185 rdf:type schema:MonetaryGrant
    186 sg:grant.2508102 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    187 rdf:type schema:MonetaryGrant
    188 sg:grant.2531702 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    189 rdf:type schema:MonetaryGrant
    190 sg:grant.2531899 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    191 rdf:type schema:MonetaryGrant
    192 sg:grant.2541537 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    193 rdf:type schema:MonetaryGrant
    194 sg:grant.2544025 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    195 rdf:type schema:MonetaryGrant
    196 sg:grant.2569881 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    197 rdf:type schema:MonetaryGrant
    198 sg:grant.2691263 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    199 rdf:type schema:MonetaryGrant
    200 sg:grant.2705365 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    201 rdf:type schema:MonetaryGrant
    202 sg:grant.2786773 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    203 rdf:type schema:MonetaryGrant
    204 sg:grant.3536197 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    205 rdf:type schema:MonetaryGrant
    206 sg:grant.3624272 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    207 rdf:type schema:MonetaryGrant
    208 sg:grant.3801883 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    209 rdf:type schema:MonetaryGrant
    210 sg:grant.7746336 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08535-0
    211 rdf:type schema:MonetaryGrant
    212 sg:journal.1043282 schema:issn 2041-1723
    213 schema:name Nature Communications
    214 schema:publisher Springer Nature
    215 rdf:type schema:Periodical
    216 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
    217 schema:familyName Chen
    218 schema:givenName Jun
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
    220 rdf:type schema:Person
    221 sg:person.01270660655.11 schema:affiliation grid-institutes:grid.34477.33
    222 schema:familyName Lindstrom
    223 schema:givenName Sara
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270660655.11
    225 rdf:type schema:Person
    226 sg:person.01347664403.23 schema:affiliation grid-institutes:grid.38142.3c
    227 schema:familyName Kraft
    228 schema:givenName Peter
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347664403.23
    230 rdf:type schema:Person
    231 sg:person.01351636264.82 schema:affiliation grid-institutes:grid.38142.3c
    232 schema:familyName Zhu
    233 schema:givenName Zhaozhong
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351636264.82
    235 rdf:type schema:Person
    236 sg:person.013702271565.04 schema:affiliation grid-institutes:grid.38142.3c
    237 schema:familyName Turman
    238 schema:givenName Constance
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702271565.04
    240 rdf:type schema:Person
    241 sg:person.014211634457.16 schema:affiliation grid-institutes:grid.66859.34
    242 schema:familyName Loh
    243 schema:givenName Po-Ru
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211634457.16
    245 rdf:type schema:Person
    246 sg:person.0725506330.81 schema:affiliation grid-institutes:grid.38142.3c
    247 schema:familyName Liang
    248 schema:givenName Liming
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725506330.81
    250 rdf:type schema:Person
    251 sg:person.0744004601.30 schema:affiliation grid-institutes:grid.38142.3c
    252 schema:familyName Chung
    253 schema:givenName Wonil
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744004601.30
    255 rdf:type schema:Person
    256 sg:pub.10.1007/s00439-013-1401-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006622424
    257 https://doi.org/10.1007/s00439-013-1401-5
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/ijo.2017.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090879130
    260 https://doi.org/10.1038/ijo.2017.169
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/mp.2017.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090891255
    263 https://doi.org/10.1038/mp.2017.153
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nature08185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025133227
    266 https://doi.org/10.1038/nature08185
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nature09410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037714920
    269 https://doi.org/10.1038/nature09410
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nature12975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000329485
    272 https://doi.org/10.1038/nature12975
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/ng.2232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017682249
    275 https://doi.org/10.1038/ng.2232
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/ng.2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029723318
    278 https://doi.org/10.1038/ng.2354
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/ng.3097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006357119
    281 https://doi.org/10.1038/ng.3097
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ng.3190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041665159
    284 https://doi.org/10.1038/ng.3190
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/ng.3211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444076
    287 https://doi.org/10.1038/ng.3211
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/ng.3406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016405801
    290 https://doi.org/10.1038/ng.3406
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/ng.608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015057090
    293 https://doi.org/10.1038/ng.608
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/ng.686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013643799
    296 https://doi.org/10.1038/ng.686
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/ng.784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000937327
    299 https://doi.org/10.1038/ng.784
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/ng2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046979341
    302 https://doi.org/10.1038/ng2088
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nmeth.2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043747449
    305 https://doi.org/10.1038/nmeth.2307
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nrg.2016.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030798131
    308 https://doi.org/10.1038/nrg.2016.142
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nrg3457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052559381
    311 https://doi.org/10.1038/nrg3457
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/s41467-017-02769-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101298926
    314 https://doi.org/10.1038/s41467-017-02769-6
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/s41588-017-0009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099970157
    317 https://doi.org/10.1038/s41588-017-0009-4
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/s41588-018-0121-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104132626
    320 https://doi.org/10.1038/s41588-018-0121-0
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/s41588-018-0193-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1106026183
    323 https://doi.org/10.1038/s41588-018-0193-x
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1186/s13059-016-1025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050026897
    326 https://doi.org/10.1186/s13059-016-1025-x
    327 rdf:type schema:CreativeWork
    328 grid-institutes:grid.34477.33 schema:alternateName Department of Epidemiology, University of Washington, 98195, Seattle, WA, USA
    329 schema:name Department of Epidemiology, University of Washington, 98195, Seattle, WA, USA
    330 rdf:type schema:Organization
    331 grid-institutes:grid.38142.3c schema:alternateName Department of Biostatistics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    332 Department of Environmental Health, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    333 Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    334 schema:name Department of Biostatistics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    335 Department of Environmental Health, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    336 Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    337 Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    338 rdf:type schema:Organization
    339 grid-institutes:grid.66859.34 schema:alternateName Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
    340 schema:name Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    341 Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    342 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
    343 rdf:type schema:Organization
    344 grid-institutes:grid.66875.3a schema:alternateName Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA
    345 schema:name Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA
    346 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...