Ontology type: schema:ScholarlyArticle Open Access: True
2019-12
AUTHORSL. S. Wu, S. E. Nikitin, Z. Wang, W. Zhu, C. D. Batista, A. M. Tsvelik, A. M. Samarakoon, D. A. Tennant, M. Brando, L. Vasylechko, M. Frontzek, A. T. Savici, G. Sala, G. Ehlers, A. D. Christianson, M. D. Lumsden, A. Podlesnyak
ABSTRACTLow dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin-orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga-Luttinger liquid behavior and spinon confinement-deconfinement transitions in different regions of magnetic field-temperature phase diagram. More... »
PAGES698
http://scigraph.springernature.com/pub.10.1038/s41467-019-08485-7
DOIhttp://dx.doi.org/10.1038/s41467-019-08485-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112059446
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30741939
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA",
"Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China"
],
"type": "Organization"
},
"familyName": "Wu",
"givenName": "L. S.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "TU Dresden",
"id": "https://www.grid.ac/institutes/grid.4488.0",
"name": [
"Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany",
"Institut f\u00fcr Festk\u00f6rper- und Materialphysik, Technische Universit\u00e4t Dresden, 01069, Dresden, Germany"
],
"type": "Organization"
},
"familyName": "Nikitin",
"givenName": "S. E.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Tennessee at Knoxville",
"id": "https://www.grid.ac/institutes/grid.411461.7",
"name": [
"Department of Physics and Astronomy, The University of Tennessee, 37996, Knoxville, TN, USA"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Z.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Los Alamos National Laboratory",
"id": "https://www.grid.ac/institutes/grid.148313.c",
"name": [
"Westlake Institute of Advanced Study, 310024, Hangzhou, P. R. China",
"Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
],
"type": "Organization"
},
"familyName": "Zhu",
"givenName": "W.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Department of Physics and Astronomy, The University of Tennessee, 37996, Knoxville, TN, USA",
"Shull-Wollan Center, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Batista",
"givenName": "C. D.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Brookhaven National Laboratory",
"id": "https://www.grid.ac/institutes/grid.202665.5",
"name": [
"Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, 11973, Upton, NY, USA"
],
"type": "Organization"
},
"familyName": "Tsvelik",
"givenName": "A. M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Samarakoon",
"givenName": "A. M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Shull-Wollan Center, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA",
"Materials Science and Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Tennant",
"givenName": "D. A.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max Planck Institute for Chemical Physics of Solids",
"id": "https://www.grid.ac/institutes/grid.419507.e",
"name": [
"Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany"
],
"type": "Organization"
},
"familyName": "Brando",
"givenName": "M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lviv Polytechnic National University",
"id": "https://www.grid.ac/institutes/grid.10067.30",
"name": [
"Lviv Polytechnic National University, 79013, Lviv, Ukraine"
],
"type": "Organization"
},
"familyName": "Vasylechko",
"givenName": "L.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Frontzek",
"givenName": "M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Savici",
"givenName": "A. T.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Sala",
"givenName": "G.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Neutron Technologies Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Ehlers",
"givenName": "G.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA",
"Materials Science and Technology Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Christianson",
"givenName": "A. D.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Lumsden",
"givenName": "M. D.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Oak Ridge National Laboratory",
"id": "https://www.grid.ac/institutes/grid.135519.a",
"name": [
"Neutron Scattering Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
],
"type": "Organization"
},
"familyName": "Podlesnyak",
"givenName": "A.",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1126/science.1197531",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000778162"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0079-6417(05)15002-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001559357"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0953-8984/22/5/055902",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003794154"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0953-8984/22/5/055902",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003794154"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.56.11001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004682663"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.56.11001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004682663"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.4962024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005187795"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.111.137205",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006648987"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.111.137205",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006648987"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.1413112111",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015509573"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nima.2014.07.029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015760876"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nima.2014.07.029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015760876"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nima.2014.07.029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015760876"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nima.2014.07.029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015760876"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.110.017201",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017858256"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.110.017201",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017858256"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1742-5468/2012/01/p01007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021126494"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-1573(88)90140-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027524983"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-1573(88)90140-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027524983"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35030039",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028000164",
"https://doi.org/10.1038/35030039"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35030039",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028000164",
"https://doi.org/10.1038/35030039"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys3895",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028901398",
"https://doi.org/10.1038/nphys3895"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1742-5468/2005/09/p09003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035144106"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1742-5468/2005/09/p09003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035144106"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys1462",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038053163",
"https://doi.org/10.1038/nphys1462"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.3626935",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039927305"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0038-1098(81)91181-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045458482"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0038-1098(81)91181-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045458482"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.91.257001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051279816"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.91.257001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051279816"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/jphys:0198000410100121300",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056990201"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1704046",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057773988"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1704281",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057774222"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1771486",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057819959"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.124.346",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060424728"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.124.346",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060424728"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.18.2196",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060524149"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.18.2196",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060524149"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.24.1429",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060529192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.24.1429",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060529192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.48.10345",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060567010"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.48.10345",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060567010"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.56.r11388",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060586919"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.56.r11388",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060586919"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.44.1502",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060784820"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.44.1502",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060784820"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.69.2863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060805632"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.69.2863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060805632"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.86.2439",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060822719"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.86.2439",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060822719"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.86.563",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060839765"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.86.563",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060839765"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.aaf0981",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062667408"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1143/jjap.33.5067",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063052337"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1143/jpsj.80.123705",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063125620"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1143/ptp/5.4.544",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063146090"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.6028/jres.114.025",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073601676"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41567-017-0010-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1099639487",
"https://doi.org/10.1038/s41567-017-0010-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.120.156404",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103344202"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.120.156404",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103344202"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.98.054408",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106054341"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.98.054408",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106054341"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-12",
"datePublishedReg": "2019-12-01",
"description": "Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S\u2009=\u20091/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S\u2009=\u20091/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin-orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S\u2009=\u20091/2 chain material exhibiting both quantum critical Tomonaga-Luttinger liquid behavior and spinon confinement-deconfinement transitions in different regions of magnetic field-temperature phase diagram.",
"genre": "research_article",
"id": "sg:pub.10.1038/s41467-019-08485-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.4111841",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1043282",
"issn": [
"2041-1723"
],
"name": "Nature Communications",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"name": "Tomonaga\u2013Luttinger liquid behavior and spinon confinement in YbAlO3",
"pagination": "698",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"961435c9d49cc0d4c2e1ded3f9faed759927d243af5f9c08eb30e0ca1312c726"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30741939"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101528555"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41467-019-08485-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112059446"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41467-019-08485-7",
"https://app.dimensions.ai/details/publication/pub.1112059446"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72862_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/s41467-019-08485-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08485-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08485-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08485-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08485-7'
This table displays all metadata directly associated to this object as RDF triples.
311 TRIPLES
21 PREDICATES
68 URIs
21 LITERALS
9 BLANK NODES