Porous supraparticle assembly through self-lubricating evaporating colloidal ouzo drops View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-29

AUTHORS

Huanshu Tan, Sanghyuk Wooh, Hans-Jürgen Butt, Xuehua Zhang, Detlef Lohse

ABSTRACT

The assembly of colloidal particles from evaporating suspension drops is seen as a versatile route for the fabrication of supraparticles for various applications. However, drop contact line pining leads to uncontrolled shapes of the emerging supraparticles, hindering this technique. Here we report how the pinning problem can be overcome by self-lubrication. The colloidal particles are dispersed in ternary drops (water, ethanol, and anise-oil). As the ethanol evaporates, oil microdroplets form ('ouzo effect'). The oil microdroplets coalesce and form an oil ring at the contact line, levitating the evaporating colloidal drop ('self-lubrication'). Then the water evaporates, leaving behind a porous supraparticle, which easily detaches from the surface. The dispersed oil microdroplets act as templates, leading to multi-scale, fractal-like structures inside the supraparticle. Employing this method, we could produce a large number of supraparticles with tunable shapes and high porosity on hydrophobic surfaces. More... »

PAGES

478

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-019-08385-w

DOI

http://dx.doi.org/10.1038/s41467-019-08385-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111759853

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30696829


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6214.1", 
          "name": [
            "Physics of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Huanshu", 
        "id": "sg:person.0660067715.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660067715.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974 Korea", 
          "id": "http://www.grid.ac/institutes/grid.254224.7", 
          "name": [
            "School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974 Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wooh", 
        "givenName": "Sanghyuk", 
        "id": "sg:person.01226234437.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226234437.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research, 55128 Mainz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max Planck Institute for Polymer Research, 55128 Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butt", 
        "givenName": "Hans-J\u00fcrgen", 
        "id": "sg:person.01025243441.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025243441.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G1H9 Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G1H9 Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuehua", 
        "id": "sg:person.0627524000.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627524000.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Dynamics and Self-Organization, Am Fa\u00dfberg 17, 37077 G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419514.c", 
          "name": [
            "Physics of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands", 
            "Max Planck Institute for Dynamics and Self-Organization, Am Fa\u00dfberg 17, 37077 G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lohse", 
        "givenName": "Detlef", 
        "id": "sg:person.01021265315.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021265315.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epje/i2016-16018-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264019", 
          "https://doi.org/10.1140/epje/i2016-16018-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037847007", 
          "https://doi.org/10.1038/39827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019101452", 
          "https://doi.org/10.1038/nmat1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00396-012-2796-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011797514", 
          "https://doi.org/10.1007/s00396-012-2796-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-29", 
    "datePublishedReg": "2019-01-29", 
    "description": "The assembly of colloidal particles from evaporating suspension drops is seen as a versatile route for the fabrication of supraparticles for various applications. However, drop contact line pining leads to uncontrolled shapes of the emerging supraparticles, hindering this technique. Here we report how the pinning problem can be overcome by self-lubrication. The colloidal particles are dispersed in ternary drops (water, ethanol, and anise-oil). As the ethanol evaporates, oil microdroplets form ('ouzo effect'). The oil microdroplets coalesce and form an oil ring at the contact line, levitating the evaporating colloidal drop ('self-lubrication'). Then the water evaporates, leaving behind a porous supraparticle, which easily detaches from the surface. The dispersed oil microdroplets act as templates, leading to multi-scale, fractal-like structures inside the supraparticle. Employing this method, we could produce a large number of supraparticles with tunable shapes and high porosity on hydrophobic surfaces.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-019-08385-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "colloidal particles", 
      "oil ring", 
      "suspension drop", 
      "high porosity", 
      "versatile route", 
      "contact line", 
      "colloidal drop", 
      "porous supraparticles", 
      "supraparticle assembly", 
      "supraparticles", 
      "tunable shape", 
      "uncontrolled shapes", 
      "hydrophobic surface", 
      "fractal-like structure", 
      "drop", 
      "particles", 
      "surface", 
      "fabrication", 
      "porosity", 
      "assembly", 
      "shape", 
      "pining", 
      "ring", 
      "template", 
      "route", 
      "water", 
      "applications", 
      "ethanol", 
      "structure", 
      "coalesce", 
      "technique", 
      "method", 
      "large number", 
      "problem", 
      "form", 
      "lines", 
      "number", 
      "acts", 
      "fabrication of supraparticles", 
      "contact line pining", 
      "line pining", 
      "ternary drops", 
      "oil microdroplets form", 
      "microdroplets form", 
      "oil microdroplets coalesce", 
      "microdroplets coalesce", 
      "oil microdroplets act", 
      "microdroplets act", 
      "Porous supraparticle assembly", 
      "self-lubricating evaporating colloidal ouzo drops", 
      "evaporating colloidal ouzo drops", 
      "colloidal ouzo drops", 
      "ouzo drops"
    ], 
    "name": "Porous supraparticle assembly through self-lubricating evaporating colloidal ouzo drops", 
    "pagination": "478", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111759853"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-019-08385-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30696829"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-019-08385-w", 
      "https://app.dimensions.ai/details/publication/pub.1111759853"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_803.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-019-08385-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08385-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08385-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08385-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08385-w'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      83 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-019-08385-w schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ne7c3204b777746b4ba18201b1ea3f687
4 schema:citation sg:pub.10.1007/s00396-012-2796-6
5 sg:pub.10.1038/39827
6 sg:pub.10.1038/nmat1270
7 sg:pub.10.1140/epje/i2016-16018-5
8 schema:datePublished 2019-01-29
9 schema:datePublishedReg 2019-01-29
10 schema:description The assembly of colloidal particles from evaporating suspension drops is seen as a versatile route for the fabrication of supraparticles for various applications. However, drop contact line pining leads to uncontrolled shapes of the emerging supraparticles, hindering this technique. Here we report how the pinning problem can be overcome by self-lubrication. The colloidal particles are dispersed in ternary drops (water, ethanol, and anise-oil). As the ethanol evaporates, oil microdroplets form ('ouzo effect'). The oil microdroplets coalesce and form an oil ring at the contact line, levitating the evaporating colloidal drop ('self-lubrication'). Then the water evaporates, leaving behind a porous supraparticle, which easily detaches from the surface. The dispersed oil microdroplets act as templates, leading to multi-scale, fractal-like structures inside the supraparticle. Employing this method, we could produce a large number of supraparticles with tunable shapes and high porosity on hydrophobic surfaces.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N97d7fa9ac66540b69bc4b05b4cbb6253
15 Nd7292086a4e14cb58142043f498a4bf7
16 sg:journal.1043282
17 schema:keywords Porous supraparticle assembly
18 acts
19 applications
20 assembly
21 coalesce
22 colloidal drop
23 colloidal ouzo drops
24 colloidal particles
25 contact line
26 contact line pining
27 drop
28 ethanol
29 evaporating colloidal ouzo drops
30 fabrication
31 fabrication of supraparticles
32 form
33 fractal-like structure
34 high porosity
35 hydrophobic surface
36 large number
37 line pining
38 lines
39 method
40 microdroplets act
41 microdroplets coalesce
42 microdroplets form
43 number
44 oil microdroplets act
45 oil microdroplets coalesce
46 oil microdroplets form
47 oil ring
48 ouzo drops
49 particles
50 pining
51 porosity
52 porous supraparticles
53 problem
54 ring
55 route
56 self-lubricating evaporating colloidal ouzo drops
57 shape
58 structure
59 supraparticle assembly
60 supraparticles
61 surface
62 suspension drop
63 technique
64 template
65 ternary drops
66 tunable shape
67 uncontrolled shapes
68 versatile route
69 water
70 schema:name Porous supraparticle assembly through self-lubricating evaporating colloidal ouzo drops
71 schema:pagination 478
72 schema:productId N5fa8a691c2a045dbbfd4b10c41fabfb9
73 N6fedfe60eebd40d4a0ed30bc8ebd1c60
74 Ndebb2888d4f9458cba8d6ae5430d264f
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111759853
76 https://doi.org/10.1038/s41467-019-08385-w
77 schema:sdDatePublished 2022-01-01T18:49
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nbf18c6954d6647fc90b2bc1f45c8a0b6
80 schema:url https://doi.org/10.1038/s41467-019-08385-w
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N070b3e6f74be4a09a1afeff1f7832fe0 rdf:first sg:person.01025243441.02
85 rdf:rest Nbe6477290f1a43c5abf6fddb7d167515
86 N31a782468abb48eb860b1541a9df899b rdf:first sg:person.01021265315.06
87 rdf:rest rdf:nil
88 N5fa8a691c2a045dbbfd4b10c41fabfb9 schema:name pubmed_id
89 schema:value 30696829
90 rdf:type schema:PropertyValue
91 N6fedfe60eebd40d4a0ed30bc8ebd1c60 schema:name doi
92 schema:value 10.1038/s41467-019-08385-w
93 rdf:type schema:PropertyValue
94 N73d98267b4ce4c6c97a03f18cb238cd6 rdf:first sg:person.01226234437.55
95 rdf:rest N070b3e6f74be4a09a1afeff1f7832fe0
96 N97d7fa9ac66540b69bc4b05b4cbb6253 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Nbe6477290f1a43c5abf6fddb7d167515 rdf:first sg:person.0627524000.62
99 rdf:rest N31a782468abb48eb860b1541a9df899b
100 Nbf18c6954d6647fc90b2bc1f45c8a0b6 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nd7292086a4e14cb58142043f498a4bf7 schema:volumeNumber 10
103 rdf:type schema:PublicationVolume
104 Ndebb2888d4f9458cba8d6ae5430d264f schema:name dimensions_id
105 schema:value pub.1111759853
106 rdf:type schema:PropertyValue
107 Ne7c3204b777746b4ba18201b1ea3f687 rdf:first sg:person.0660067715.59
108 rdf:rest N73d98267b4ce4c6c97a03f18cb238cd6
109 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
110 schema:name Chemical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Chemistry (incl. Structural)
114 rdf:type schema:DefinedTerm
115 sg:journal.1043282 schema:issn 2041-1723
116 schema:name Nature Communications
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.01021265315.06 schema:affiliation grid-institutes:grid.419514.c
120 schema:familyName Lohse
121 schema:givenName Detlef
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021265315.06
123 rdf:type schema:Person
124 sg:person.01025243441.02 schema:affiliation grid-institutes:grid.419547.a
125 schema:familyName Butt
126 schema:givenName Hans-Jürgen
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025243441.02
128 rdf:type schema:Person
129 sg:person.01226234437.55 schema:affiliation grid-institutes:grid.254224.7
130 schema:familyName Wooh
131 schema:givenName Sanghyuk
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226234437.55
133 rdf:type schema:Person
134 sg:person.0627524000.62 schema:affiliation grid-institutes:grid.17089.37
135 schema:familyName Zhang
136 schema:givenName Xuehua
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627524000.62
138 rdf:type schema:Person
139 sg:person.0660067715.59 schema:affiliation grid-institutes:grid.6214.1
140 schema:familyName Tan
141 schema:givenName Huanshu
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660067715.59
143 rdf:type schema:Person
144 sg:pub.10.1007/s00396-012-2796-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011797514
145 https://doi.org/10.1007/s00396-012-2796-6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/39827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037847007
148 https://doi.org/10.1038/39827
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nmat1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019101452
151 https://doi.org/10.1038/nmat1270
152 rdf:type schema:CreativeWork
153 sg:pub.10.1140/epje/i2016-16018-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264019
154 https://doi.org/10.1140/epje/i2016-16018-5
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.17089.37 schema:alternateName Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G1H9 Canada
157 schema:name Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G1H9 Canada
158 rdf:type schema:Organization
159 grid-institutes:grid.254224.7 schema:alternateName School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974 Korea
160 schema:name School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974 Korea
161 rdf:type schema:Organization
162 grid-institutes:grid.419514.c schema:alternateName Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
163 schema:name Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
164 Physics of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
165 rdf:type schema:Organization
166 grid-institutes:grid.419547.a schema:alternateName Max Planck Institute for Polymer Research, 55128 Mainz, Germany
167 schema:name Max Planck Institute for Polymer Research, 55128 Mainz, Germany
168 rdf:type schema:Organization
169 grid-institutes:grid.6214.1 schema:alternateName Physics of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
170 schema:name Physics of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...