Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-30

AUTHORS

Raghav R. Poudyal, Rebecca M. Guth-Metzler, Andrew J. Veenis, Erica A. Frankel, Christine D. Keating, Philip C. Bevilacqua

ABSTRACT

Membraneless compartments, such as complex coacervates, have been hypothesized as plausible prebiotic micro-compartments due to their ability to sequester RNA; however, their compatibility with essential RNA World chemistries is unclear. We show that such compartments can enhance key prebiotically-relevant RNA chemistries. We demonstrate that template-directed RNA polymerization is sensitive to polycation identity, with polydiallyldimethylammonium chloride (PDAC) outperforming poly(allylamine), poly(lysine), and poly(arginine) in polycation/RNA coacervates. Differences in RNA diffusion rates between PDAC/RNA and oligoarginine/RNA coacervates imply distinct biophysical environments. Template-directed RNA polymerization is relatively insensitive to Mg2+ concentration when performed in PDAC/RNA coacervates as compared to buffer, even enabling partial rescue of the reaction in the absence of magnesium. Finally, we show enhanced activities of multiple nucleic acid enzymes including two ribozymes and a deoxyribozyme, underscoring the generality of this approach, in which functional nucleic acids like aptamers and ribozymes, and in some cases key cosolutes localize within the coacervate microenvironments. More... »

PAGES

490

References to SciGraph publications

  • 2015-12-21. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles in NATURE CHEMISTRY
  • 2015-11-03. Polymer physics of intracellular phase transitions in NATURE PHYSICS
  • 1976-01. The evolutionary significance of phase-separated microsystems in ORIGINS OF LIFE
  • 2014-01-21. Testing for adaptive signatures of amino acid alphabet evolution using chemistry space in JOURNAL OF SYSTEMS CHEMISTRY
  • 2017-03-06. Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function in NATURE CHEMISTRY
  • 2018-06-01. Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis in NATURE COMMUNICATIONS
  • 2012-08-07. End-Labeling Oligonucleotides with Chemical Tags After Synthesis in RECOMBINANT AND IN VITRO RNA SYNTHESIS
  • 2016-05-16. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters in NATURE CHEMISTRY
  • 2014-02-28. Rapid RNA Exchange in Aqueous Two-Phase System and Coacervate Droplets in ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES
  • 2014-06-22. A G-Quadruplex-Containing RNA Activates Fluorescence in a GFP-Like Fluorophore in NATURE CHEMICAL BIOLOGY
  • 2012-10-14. RNA catalysis through compartmentalization in NATURE CHEMISTRY
  • 2011-08-07. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model in NATURE CHEMISTRY
  • 2018-09-07. Compartmentalised RNA catalysis in membrane-free coacervate protocells in NATURE COMMUNICATIONS
  • 2002-07. The antiquity of RNA-based evolution in NATURE
  • 1994-09. In vitro evolution of new ribozymes with polynucleotide kinase activity in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-08353-4

    DOI

    http://dx.doi.org/10.1038/s41467-019-08353-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111776463

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30700721


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Peptides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyethylenes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polylysine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quaternary Ammonium Compounds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Catalytic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA", 
              "id": "http://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA", 
                "Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poudyal", 
            "givenName": "Raghav R.", 
            "id": "sg:person.01037026762.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037026762.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Present Address: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 USA", 
              "id": "http://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA", 
                "Present Address: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guth-Metzler", 
            "givenName": "Rebecca M.", 
            "id": "sg:person.013644465007.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013644465007.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA", 
              "id": "http://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA", 
                "Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Veenis", 
            "givenName": "Andrew J.", 
            "id": "sg:person.012675354655.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675354655.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Present Address: The Dow Chemical Company, 400 Arcola Road, Collegeville, PA 19426 USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA", 
                "Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA", 
                "Present Address: The Dow Chemical Company, 400 Arcola Road, Collegeville, PA 19426 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frankel", 
            "givenName": "Erica A.", 
            "id": "sg:person.01101552223.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101552223.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA", 
              "id": "http://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keating", 
            "givenName": "Christine D.", 
            "id": "sg:person.01021557243.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021557243.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA", 
              "id": "http://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA", 
                "Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA", 
                "Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bevilacqua", 
            "givenName": "Philip C.", 
            "id": "sg:person.0742154667.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742154667.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/418214a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047453004", 
              "https://doi.org/10.1038/418214a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128709", 
              "https://doi.org/10.1038/nchem.2739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-113-4_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048546146", 
              "https://doi.org/10.1007/978-1-62703-113-4_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027636816", 
              "https://doi.org/10.1038/nchem.2519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050831196", 
              "https://doi.org/10.1038/nchem.2414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/371031a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012863186", 
              "https://doi.org/10.1038/371031a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010878349", 
              "https://doi.org/10.1038/nphys3532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032925971", 
              "https://doi.org/10.1038/nchem.1466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01218513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043777241", 
              "https://doi.org/10.1007/bf01218513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1759-2208-5-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026714175", 
              "https://doi.org/10.1186/1759-2208-5-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-06072-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106545319", 
              "https://doi.org/10.1038/s41467-018-06072-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11084-014-9355-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007229659", 
              "https://doi.org/10.1007/s11084-014-9355-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034681638", 
              "https://doi.org/10.1038/nchem.1110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007789758", 
              "https://doi.org/10.1038/nchembio.1561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04415-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104243555", 
              "https://doi.org/10.1038/s41467-018-04415-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-30", 
        "datePublishedReg": "2019-01-30", 
        "description": "Membraneless compartments, such as complex coacervates, have been hypothesized as plausible prebiotic micro-compartments due to their ability to sequester RNA; however, their compatibility with essential RNA World chemistries is unclear. We show that such compartments can enhance key prebiotically-relevant RNA chemistries. We demonstrate that template-directed RNA polymerization is sensitive to polycation identity, with polydiallyldimethylammonium chloride (PDAC) outperforming poly(allylamine), poly(lysine), and poly(arginine) in polycation/RNA coacervates. Differences in RNA diffusion rates between PDAC/RNA and oligoarginine/RNA coacervates imply distinct biophysical environments. Template-directed RNA polymerization is relatively insensitive to Mg2+ concentration when performed in PDAC/RNA coacervates as compared to buffer, even enabling partial rescue of the reaction in the absence of magnesium. Finally, we show enhanced activities of multiple nucleic acid enzymes including two ribozymes and a deoxyribozyme, underscoring the generality of this approach, in which functional nucleic acids like aptamers and ribozymes, and in some cases key cosolutes localize within the coacervate microenvironments.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-019-08353-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "polydiallyldimethylammonium chloride", 
          "nucleic acid enzymes", 
          "functional nucleic acids", 
          "membraneless compartments", 
          "RNA chemistry", 
          "RNA polymerization", 
          "ribozyme catalysis", 
          "polymerization", 
          "complex coacervates", 
          "acid enzymes", 
          "coacervates", 
          "nucleic acids", 
          "enhanced activity", 
          "chemistry", 
          "diffusion rate", 
          "catalysis", 
          "aptamer", 
          "ribozyme", 
          "cosolutes", 
          "deoxyribozymes", 
          "reaction", 
          "chloride", 
          "absence of magnesium", 
          "acid", 
          "such compartments", 
          "compatibility", 
          "concentration", 
          "enzyme", 
          "Mg", 
          "magnesium", 
          "partial rescue", 
          "activity", 
          "compartments", 
          "RNA", 
          "ability", 
          "microenvironment", 
          "environment", 
          "absence", 
          "generality", 
          "rate", 
          "rescue", 
          "differences", 
          "approach", 
          "biophysical environment", 
          "identity", 
          "essential RNA World chemistries", 
          "RNA World chemistries", 
          "World chemistries", 
          "relevant RNA chemistries", 
          "Template-directed RNA polymerization", 
          "polycation identity", 
          "polycation/RNA coacervates", 
          "RNA coacervates", 
          "RNA diffusion rates", 
          "PDAC/RNA", 
          "oligoarginine/RNA coacervates", 
          "distinct biophysical environments", 
          "multiple nucleic acid enzymes", 
          "cases key cosolutes", 
          "key cosolutes", 
          "coacervate microenvironments"
        ], 
        "name": "Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates", 
        "pagination": "490", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111776463"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-08353-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30700721"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-08353-4", 
          "https://app.dimensions.ai/details/publication/pub.1111776463"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_830.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-019-08353-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08353-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08353-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08353-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08353-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    258 TRIPLES      22 PREDICATES      109 URIs      86 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-08353-4 schema:about N23aad96699fb4ff5a09bdd29476c28f5
    2 N2e471bec34fc4116a0417372ceac6a60
    3 N3adf2716bdb94cb9ba994b89184e27e4
    4 N9d30c363370c49f383d8537d9b76de09
    5 Naacb2e35c596459e80d406abdf703cd7
    6 Nb9e8d4e7d15c4e2f9ab0228b63613ed4
    7 Nf4b0e6bd2ee848fdb61f31c4bc0ad1ec
    8 anzsrc-for:06
    9 anzsrc-for:0601
    10 schema:author N20c7c8683fb040a089f1800287a67734
    11 schema:citation sg:pub.10.1007/978-1-62703-113-4_14
    12 sg:pub.10.1007/bf01218513
    13 sg:pub.10.1007/s11084-014-9355-8
    14 sg:pub.10.1038/371031a0
    15 sg:pub.10.1038/418214a
    16 sg:pub.10.1038/nchem.1110
    17 sg:pub.10.1038/nchem.1466
    18 sg:pub.10.1038/nchem.2414
    19 sg:pub.10.1038/nchem.2519
    20 sg:pub.10.1038/nchem.2739
    21 sg:pub.10.1038/nchembio.1561
    22 sg:pub.10.1038/nphys3532
    23 sg:pub.10.1038/s41467-018-04415-1
    24 sg:pub.10.1038/s41467-018-06072-w
    25 sg:pub.10.1186/1759-2208-5-1
    26 schema:datePublished 2019-01-30
    27 schema:datePublishedReg 2019-01-30
    28 schema:description Membraneless compartments, such as complex coacervates, have been hypothesized as plausible prebiotic micro-compartments due to their ability to sequester RNA; however, their compatibility with essential RNA World chemistries is unclear. We show that such compartments can enhance key prebiotically-relevant RNA chemistries. We demonstrate that template-directed RNA polymerization is sensitive to polycation identity, with polydiallyldimethylammonium chloride (PDAC) outperforming poly(allylamine), poly(lysine), and poly(arginine) in polycation/RNA coacervates. Differences in RNA diffusion rates between PDAC/RNA and oligoarginine/RNA coacervates imply distinct biophysical environments. Template-directed RNA polymerization is relatively insensitive to Mg<sup>2+</sup> concentration when performed in PDAC/RNA coacervates as compared to buffer, even enabling partial rescue of the reaction in the absence of magnesium. Finally, we show enhanced activities of multiple nucleic acid enzymes including two ribozymes and a deoxyribozyme, underscoring the generality of this approach, in which functional nucleic acids like aptamers and ribozymes, and in some cases key cosolutes localize within the coacervate microenvironments.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N7f9800aa653f42c695c626cc0c8dc999
    33 Ne01f22bc3c1c40e5828e15ea90a2fc81
    34 sg:journal.1043282
    35 schema:keywords Mg
    36 PDAC/RNA
    37 RNA
    38 RNA World chemistries
    39 RNA chemistry
    40 RNA coacervates
    41 RNA diffusion rates
    42 RNA polymerization
    43 Template-directed RNA polymerization
    44 World chemistries
    45 ability
    46 absence
    47 absence of magnesium
    48 acid
    49 acid enzymes
    50 activity
    51 approach
    52 aptamer
    53 biophysical environment
    54 cases key cosolutes
    55 catalysis
    56 chemistry
    57 chloride
    58 coacervate microenvironments
    59 coacervates
    60 compartments
    61 compatibility
    62 complex coacervates
    63 concentration
    64 cosolutes
    65 deoxyribozymes
    66 differences
    67 diffusion rate
    68 distinct biophysical environments
    69 enhanced activity
    70 environment
    71 enzyme
    72 essential RNA World chemistries
    73 functional nucleic acids
    74 generality
    75 identity
    76 key cosolutes
    77 magnesium
    78 membraneless compartments
    79 microenvironment
    80 multiple nucleic acid enzymes
    81 nucleic acid enzymes
    82 nucleic acids
    83 oligoarginine/RNA coacervates
    84 partial rescue
    85 polycation identity
    86 polycation/RNA coacervates
    87 polydiallyldimethylammonium chloride
    88 polymerization
    89 rate
    90 reaction
    91 relevant RNA chemistries
    92 rescue
    93 ribozyme
    94 ribozyme catalysis
    95 such compartments
    96 schema:name Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates
    97 schema:pagination 490
    98 schema:productId N27446a701721464eb8a350f167620e4d
    99 N5d7b5ab8af89467fb905474d82e980d9
    100 Nea587d438b8649ea9bd0ce0945b373f3
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111776463
    102 https://doi.org/10.1038/s41467-019-08353-4
    103 schema:sdDatePublished 2021-11-01T18:38
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher Nc4b8540fdc864d12b348898bec4c89dc
    106 schema:url https://doi.org/10.1038/s41467-019-08353-4
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N20c7c8683fb040a089f1800287a67734 rdf:first sg:person.01037026762.73
    111 rdf:rest N749234845820464c8ed367dc0acc686a
    112 N2349d845f61143419257244a3430ee1a rdf:first sg:person.01101552223.08
    113 rdf:rest N7bc32b0230824293bf83b5d4a0d59a41
    114 N23aad96699fb4ff5a09bdd29476c28f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Nucleic Acid Conformation
    116 rdf:type schema:DefinedTerm
    117 N27446a701721464eb8a350f167620e4d schema:name doi
    118 schema:value 10.1038/s41467-019-08353-4
    119 rdf:type schema:PropertyValue
    120 N2e471bec34fc4116a0417372ceac6a60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Polylysine
    122 rdf:type schema:DefinedTerm
    123 N3adf2716bdb94cb9ba994b89184e27e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Peptides
    125 rdf:type schema:DefinedTerm
    126 N5d7b5ab8af89467fb905474d82e980d9 schema:name pubmed_id
    127 schema:value 30700721
    128 rdf:type schema:PropertyValue
    129 N749234845820464c8ed367dc0acc686a rdf:first sg:person.013644465007.38
    130 rdf:rest Nb413f285e9a74b278f9b1fa51ec37354
    131 N7bc32b0230824293bf83b5d4a0d59a41 rdf:first sg:person.01021557243.58
    132 rdf:rest Naaf4142a7f174550856570d4278c034b
    133 N7f9800aa653f42c695c626cc0c8dc999 schema:issueNumber 1
    134 rdf:type schema:PublicationIssue
    135 N9d30c363370c49f383d8537d9b76de09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name RNA, Catalytic
    137 rdf:type schema:DefinedTerm
    138 Naacb2e35c596459e80d406abdf703cd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Polymerization
    140 rdf:type schema:DefinedTerm
    141 Naaf4142a7f174550856570d4278c034b rdf:first sg:person.0742154667.45
    142 rdf:rest rdf:nil
    143 Nb413f285e9a74b278f9b1fa51ec37354 rdf:first sg:person.012675354655.13
    144 rdf:rest N2349d845f61143419257244a3430ee1a
    145 Nb9e8d4e7d15c4e2f9ab0228b63613ed4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Quaternary Ammonium Compounds
    147 rdf:type schema:DefinedTerm
    148 Nc4b8540fdc864d12b348898bec4c89dc schema:name Springer Nature - SN SciGraph project
    149 rdf:type schema:Organization
    150 Ne01f22bc3c1c40e5828e15ea90a2fc81 schema:volumeNumber 10
    151 rdf:type schema:PublicationVolume
    152 Nea587d438b8649ea9bd0ce0945b373f3 schema:name dimensions_id
    153 schema:value pub.1111776463
    154 rdf:type schema:PropertyValue
    155 Nf4b0e6bd2ee848fdb61f31c4bc0ad1ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Polyethylenes
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Biological Sciences
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Biochemistry and Cell Biology
    163 rdf:type schema:DefinedTerm
    164 sg:journal.1043282 schema:issn 2041-1723
    165 schema:name Nature Communications
    166 schema:publisher Springer Nature
    167 rdf:type schema:Periodical
    168 sg:person.01021557243.58 schema:affiliation grid-institutes:grid.29857.31
    169 schema:familyName Keating
    170 schema:givenName Christine D.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021557243.58
    172 rdf:type schema:Person
    173 sg:person.01037026762.73 schema:affiliation grid-institutes:grid.29857.31
    174 schema:familyName Poudyal
    175 schema:givenName Raghav R.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037026762.73
    177 rdf:type schema:Person
    178 sg:person.01101552223.08 schema:affiliation grid-institutes:None
    179 schema:familyName Frankel
    180 schema:givenName Erica A.
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101552223.08
    182 rdf:type schema:Person
    183 sg:person.012675354655.13 schema:affiliation grid-institutes:grid.29857.31
    184 schema:familyName Veenis
    185 schema:givenName Andrew J.
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675354655.13
    187 rdf:type schema:Person
    188 sg:person.013644465007.38 schema:affiliation grid-institutes:grid.213917.f
    189 schema:familyName Guth-Metzler
    190 schema:givenName Rebecca M.
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013644465007.38
    192 rdf:type schema:Person
    193 sg:person.0742154667.45 schema:affiliation grid-institutes:grid.29857.31
    194 schema:familyName Bevilacqua
    195 schema:givenName Philip C.
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742154667.45
    197 rdf:type schema:Person
    198 sg:pub.10.1007/978-1-62703-113-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048546146
    199 https://doi.org/10.1007/978-1-62703-113-4_14
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/bf01218513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043777241
    202 https://doi.org/10.1007/bf01218513
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s11084-014-9355-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007229659
    205 https://doi.org/10.1007/s11084-014-9355-8
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/371031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012863186
    208 https://doi.org/10.1038/371031a0
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/418214a schema:sameAs https://app.dimensions.ai/details/publication/pub.1047453004
    211 https://doi.org/10.1038/418214a
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nchem.1110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034681638
    214 https://doi.org/10.1038/nchem.1110
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nchem.1466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032925971
    217 https://doi.org/10.1038/nchem.1466
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nchem.2414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050831196
    220 https://doi.org/10.1038/nchem.2414
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nchem.2519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027636816
    223 https://doi.org/10.1038/nchem.2519
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nchem.2739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128709
    226 https://doi.org/10.1038/nchem.2739
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nchembio.1561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007789758
    229 https://doi.org/10.1038/nchembio.1561
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nphys3532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010878349
    232 https://doi.org/10.1038/nphys3532
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/s41467-018-04415-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104243555
    235 https://doi.org/10.1038/s41467-018-04415-1
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/s41467-018-06072-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1106545319
    238 https://doi.org/10.1038/s41467-018-06072-w
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1186/1759-2208-5-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026714175
    241 https://doi.org/10.1186/1759-2208-5-1
    242 rdf:type schema:CreativeWork
    243 grid-institutes:None schema:alternateName Present Address: The Dow Chemical Company, 400 Arcola Road, Collegeville, PA 19426 USA
    244 schema:name Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA
    245 Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA
    246 Present Address: The Dow Chemical Company, 400 Arcola Road, Collegeville, PA 19426 USA
    247 rdf:type schema:Organization
    248 grid-institutes:grid.213917.f schema:alternateName Present Address: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 USA
    249 schema:name Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA
    250 Present Address: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 USA
    251 rdf:type schema:Organization
    252 grid-institutes:grid.29857.31 schema:alternateName Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA
    253 Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA
    254 Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA
    255 schema:name Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA
    256 Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA
    257 Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA
    258 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...