A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Wei Ting Chen, Alexander Y. Zhu, Jared Sisler, Zameer Bharwani, Federico Capasso

ABSTRACT

Metasurfaces have attracted widespread attention due to an increasing demand of compact and wearable optical devices. For many applications, polarization-insensitive metasurfaces are highly desirable, and appear to limit the choice of their constituent elements to isotropic nanostructures. This greatly restricts the number of geometric parameters available in design. Here, we demonstrate a polarization-insensitive metalens using otherwise anisotropic nanofins which offer additional control over the dispersion and phase of the output light. As a result, we can render a metalens achromatic and polarization-insensitive across nearly the entire visible spectrum from wavelength λ = 460 nm to 700 nm, while maintaining diffraction-limited performance. The metalens is comprised of just a single layer of TiO2 nanofins and has a numerical aperture of 0.2 with a diameter of 26.4 µm. The generality of our polarization-insensitive design allows it to be implemented in a plethora of other metasurface devices with applications ranging from imaging to virtual/augmented reality. More... »

PAGES

355

References to SciGraph publications

  • 1956-12. Generalized theory of interference and its applications in PROCEEDINGS - MATHEMATICAL SCIENCES
  • 2017-12. Broadband achromatic optical metasurface devices in NATURE COMMUNICATIONS
  • 2018-03. A broadband achromatic metalens for focusing and imaging in the visible in NATURE NANOTECHNOLOGY
  • 2018-12. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics in NATURE COMMUNICATIONS
  • 2018-12. MEMS-tunable dielectric metasurface lens in NATURE COMMUNICATIONS
  • 2018-12. Metasurface eyepiece for augmented reality in NATURE COMMUNICATIONS
  • 2018-12. Geometric metasurface enabling polarization independent beam splitting in SCIENTIFIC REPORTS
  • 2018-03. A broadband achromatic metalens in the visible in NATURE NANOTECHNOLOGY
  • 2014-12. Hyperbolic metamaterials: fundamentals and applications in NANO CONVERGENCE
  • 2013-12. Hyperbolic metamaterials in NATURE PHOTONICS
  • 2018-12. Broadband achromatic dielectric metalenses in LIGHT: SCIENCE & APPLICATIONS
  • 2015-05. Metasurface holograms reaching 80% efficiency in NATURE NANOTECHNOLOGY
  • Journal

    TITLE

    Nature Communications

    ISSUE

    1

    VOLUME

    10

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-019-08305-y

    DOI

    http://dx.doi.org/10.1038/s41467-019-08305-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111568378

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30664662


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 02138, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Wei Ting", 
            "id": "sg:person.01337260443.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337260443.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 02138, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Alexander Y.", 
            "id": "sg:person.01323407550.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323407550.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 02138, Cambridge, MA, USA", 
                "University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sisler", 
            "givenName": "Jared", 
            "id": "sg:person.014205006227.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205006227.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 02138, Cambridge, MA, USA", 
                "University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bharwani", 
            "givenName": "Zameer", 
            "id": "sg:person.015165447073.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015165447073.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 02138, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Capasso", 
            "givenName": "Federico", 
            "id": "sg:person.01334447261.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334447261.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1126/science.1232009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001299260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500348714551321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006822734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaf6644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008864030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008927839", 
              "https://doi.org/10.1038/nnano.2015.2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1611740113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014347369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/21/29/295303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015156319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/21/29/295303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015156319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051093265", 
              "https://doi.org/10.1038/nphoton.2013.243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40580-014-0014-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051152290", 
              "https://doi.org/10.1186/s40580-014-0014-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40580-014-0014-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051152290", 
              "https://doi.org/10.1186/s40580-014-0014-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1210713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051807434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b03626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055121865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl202324s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056218794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl202324s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056218794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.4947586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062178051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aac4360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062665977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/optica.2.000716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065248009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/optica.3.000628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065248232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b05137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079402576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4974259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083696350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b00717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084536874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/optica.4.000625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085901109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03046095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086059996", 
              "https://doi.org/10.1007/bf03046095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00166-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090955816", 
              "https://doi.org/10.1038/s41467-017-00166-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adom.201700585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092325722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/cleo_qels.2017.ftu3g.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096998378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511581489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098671848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.7.041056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099607379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.7.041056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099607379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-017-0034-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099970156", 
              "https://doi.org/10.1038/s41565-017-0034-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201703843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100239070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/optica.5.000099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100611699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-017-0052-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100688043", 
              "https://doi.org/10.1038/s41565-017-0052-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/sciadv.aar2114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101005183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03155-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101113679", 
              "https://doi.org/10.1038/s41467-018-03155-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03155-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101113679", 
              "https://doi.org/10.1038/s41467-018-03155-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03155-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101113679", 
              "https://doi.org/10.1038/s41467-018-03155-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03831-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103270791", 
              "https://doi.org/10.1038/s41467-018-03831-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7nr08428e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103270862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201704556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103426860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.26.013148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103864540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevapplied.9.054050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104337663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevapplied.9.054050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104337663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-27876-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104656679", 
              "https://doi.org/10.1038/s41598-018-27876-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevapplied.10.014005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105523086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevapplied.10.014005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105523086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adom.201800592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105804893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ome.8.002330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105838941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.26.021455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106028699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.43.004350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106685327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.26.024835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106922798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.26.024835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106922798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-07011-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107871607", 
              "https://doi.org/10.1038/s41467-018-07011-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41377-018-0078-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108057247", 
              "https://doi.org/10.1038/s41377-018-0078-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Metasurfaces have attracted widespread attention due to an increasing demand of compact and wearable optical devices. For many applications, polarization-insensitive metasurfaces are highly desirable, and appear to limit the choice of their constituent elements to isotropic nanostructures. This greatly restricts the number of geometric parameters available in design. Here, we demonstrate a polarization-insensitive metalens using otherwise anisotropic nanofins which offer additional control over the dispersion and phase of the output light. As a result, we can render a metalens achromatic and polarization-insensitive across nearly the entire visible spectrum from wavelength \u03bb\u2009=\u2009460\u2009nm to 700\u2009nm, while maintaining diffraction-limited performance. The metalens is comprised of just a single layer of TiO2 nanofins and has a numerical aperture of 0.2 with a diameter of 26.4\u2009\u00b5m. The generality of our polarization-insensitive design allows it to be implemented in a plethora of other metasurface devices with applications ranging from imaging to virtual/augmented reality.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-019-08305-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7425593", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4318495", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures", 
        "pagination": "355", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6f5380806dcd51558df0d392c937e741c7de5692f249c29d57a019ad25648719"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30664662"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-019-08305-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111568378"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-019-08305-y", 
          "https://app.dimensions.ai/details/publication/pub.1111568378"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100815_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-019-08305-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08305-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08305-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08305-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-019-08305-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    251 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-019-08305-y schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N131d02a3156e4a62ba2c936009a8c469
    4 schema:citation sg:pub.10.1007/bf03046095
    5 sg:pub.10.1038/nnano.2015.2
    6 sg:pub.10.1038/nphoton.2013.243
    7 sg:pub.10.1038/s41377-018-0078-x
    8 sg:pub.10.1038/s41467-017-00166-7
    9 sg:pub.10.1038/s41467-018-03155-6
    10 sg:pub.10.1038/s41467-018-03831-7
    11 sg:pub.10.1038/s41467-018-07011-5
    12 sg:pub.10.1038/s41565-017-0034-6
    13 sg:pub.10.1038/s41565-017-0052-4
    14 sg:pub.10.1038/s41598-018-27876-2
    15 sg:pub.10.1186/s40580-014-0014-6
    16 https://doi.org/10.1002/adma.201703843
    17 https://doi.org/10.1002/adma.201704556
    18 https://doi.org/10.1002/adom.201700585
    19 https://doi.org/10.1002/adom.201800592
    20 https://doi.org/10.1017/cbo9780511581489
    21 https://doi.org/10.1021/acs.nanolett.6b03626
    22 https://doi.org/10.1021/acs.nanolett.6b05137
    23 https://doi.org/10.1021/acs.nanolett.7b00717
    24 https://doi.org/10.1021/nl202324s
    25 https://doi.org/10.1039/c7nr08428e
    26 https://doi.org/10.1063/1.4974259
    27 https://doi.org/10.1073/pnas.1611740113
    28 https://doi.org/10.1080/09500348714551321
    29 https://doi.org/10.1088/0957-4484/21/29/295303
    30 https://doi.org/10.1103/physrevapplied.10.014005
    31 https://doi.org/10.1103/physrevapplied.9.054050
    32 https://doi.org/10.1103/physrevx.7.041056
    33 https://doi.org/10.1116/1.4947586
    34 https://doi.org/10.1126/sciadv.aar2114
    35 https://doi.org/10.1126/science.1210713
    36 https://doi.org/10.1126/science.1232009
    37 https://doi.org/10.1126/science.aac4360
    38 https://doi.org/10.1126/science.aaf6644
    39 https://doi.org/10.1364/cleo_qels.2017.ftu3g.5
    40 https://doi.org/10.1364/oe.26.013148
    41 https://doi.org/10.1364/oe.26.021455
    42 https://doi.org/10.1364/oe.26.024835
    43 https://doi.org/10.1364/ol.43.004350
    44 https://doi.org/10.1364/ome.8.002330
    45 https://doi.org/10.1364/optica.2.000716
    46 https://doi.org/10.1364/optica.3.000628
    47 https://doi.org/10.1364/optica.4.000625
    48 https://doi.org/10.1364/optica.5.000099
    49 schema:datePublished 2019-12
    50 schema:datePublishedReg 2019-12-01
    51 schema:description Metasurfaces have attracted widespread attention due to an increasing demand of compact and wearable optical devices. For many applications, polarization-insensitive metasurfaces are highly desirable, and appear to limit the choice of their constituent elements to isotropic nanostructures. This greatly restricts the number of geometric parameters available in design. Here, we demonstrate a polarization-insensitive metalens using otherwise anisotropic nanofins which offer additional control over the dispersion and phase of the output light. As a result, we can render a metalens achromatic and polarization-insensitive across nearly the entire visible spectrum from wavelength λ = 460 nm to 700 nm, while maintaining diffraction-limited performance. The metalens is comprised of just a single layer of TiO<sub>2</sub> nanofins and has a numerical aperture of 0.2 with a diameter of 26.4 µm. The generality of our polarization-insensitive design allows it to be implemented in a plethora of other metasurface devices with applications ranging from imaging to virtual/augmented reality.
    52 schema:genre research_article
    53 schema:inLanguage en
    54 schema:isAccessibleForFree true
    55 schema:isPartOf Na5781abfe75946b3860a99ed3913a55e
    56 Nc6973d44d48c403abe1e6855559d75ee
    57 sg:journal.1043282
    58 schema:name A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures
    59 schema:pagination 355
    60 schema:productId N0481388c459c48248da00bd8ec42a76f
    61 N0b8c570be6ae445fbc8889bf8648d1c0
    62 N6307bb85983043d4b6b6c130d5ce2975
    63 N9cab3cef99ed4fdbbcc9d6d51bf06d10
    64 Nd5ab02b0a7454acaa1cc3ab7a274c85c
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111568378
    66 https://doi.org/10.1038/s41467-019-08305-y
    67 schema:sdDatePublished 2019-04-11T08:57
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N8e893806159b4860be46cdf8d337855e
    70 schema:url https://www.nature.com/articles/s41467-019-08305-y
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N0481388c459c48248da00bd8ec42a76f schema:name doi
    75 schema:value 10.1038/s41467-019-08305-y
    76 rdf:type schema:PropertyValue
    77 N0b8c570be6ae445fbc8889bf8648d1c0 schema:name readcube_id
    78 schema:value 6f5380806dcd51558df0d392c937e741c7de5692f249c29d57a019ad25648719
    79 rdf:type schema:PropertyValue
    80 N131d02a3156e4a62ba2c936009a8c469 rdf:first sg:person.01337260443.13
    81 rdf:rest N5d38bd7f15554a8ca92a6f969bbc7cb2
    82 N47659ede9f6a48358a44d29b644bc59c rdf:first sg:person.01334447261.50
    83 rdf:rest rdf:nil
    84 N5d38bd7f15554a8ca92a6f969bbc7cb2 rdf:first sg:person.01323407550.26
    85 rdf:rest Nb6b4eed96912458ba104b141545d2e2f
    86 N6307bb85983043d4b6b6c130d5ce2975 schema:name pubmed_id
    87 schema:value 30664662
    88 rdf:type schema:PropertyValue
    89 N8e893806159b4860be46cdf8d337855e schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 N9cab3cef99ed4fdbbcc9d6d51bf06d10 schema:name dimensions_id
    92 schema:value pub.1111568378
    93 rdf:type schema:PropertyValue
    94 Na5781abfe75946b3860a99ed3913a55e schema:volumeNumber 10
    95 rdf:type schema:PublicationVolume
    96 Nb6b4eed96912458ba104b141545d2e2f rdf:first sg:person.014205006227.14
    97 rdf:rest Nf8269dc057a443689806422907560ed1
    98 Nc6973d44d48c403abe1e6855559d75ee schema:issueNumber 1
    99 rdf:type schema:PublicationIssue
    100 Nd5ab02b0a7454acaa1cc3ab7a274c85c schema:name nlm_unique_id
    101 schema:value 101528555
    102 rdf:type schema:PropertyValue
    103 Nf8269dc057a443689806422907560ed1 rdf:first sg:person.015165447073.53
    104 rdf:rest N47659ede9f6a48358a44d29b644bc59c
    105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Physical Sciences
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Other Physical Sciences
    110 rdf:type schema:DefinedTerm
    111 sg:grant.4318495 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08305-y
    112 rdf:type schema:MonetaryGrant
    113 sg:grant.7425593 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-019-08305-y
    114 rdf:type schema:MonetaryGrant
    115 sg:journal.1043282 schema:issn 2041-1723
    116 schema:name Nature Communications
    117 rdf:type schema:Periodical
    118 sg:person.01323407550.26 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    119 schema:familyName Zhu
    120 schema:givenName Alexander Y.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323407550.26
    122 rdf:type schema:Person
    123 sg:person.01334447261.50 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    124 schema:familyName Capasso
    125 schema:givenName Federico
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334447261.50
    127 rdf:type schema:Person
    128 sg:person.01337260443.13 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    129 schema:familyName Chen
    130 schema:givenName Wei Ting
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337260443.13
    132 rdf:type schema:Person
    133 sg:person.014205006227.14 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    134 schema:familyName Sisler
    135 schema:givenName Jared
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205006227.14
    137 rdf:type schema:Person
    138 sg:person.015165447073.53 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    139 schema:familyName Bharwani
    140 schema:givenName Zameer
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015165447073.53
    142 rdf:type schema:Person
    143 sg:pub.10.1007/bf03046095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086059996
    144 https://doi.org/10.1007/bf03046095
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/nnano.2015.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008927839
    147 https://doi.org/10.1038/nnano.2015.2
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/nphoton.2013.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051093265
    150 https://doi.org/10.1038/nphoton.2013.243
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/s41377-018-0078-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1108057247
    153 https://doi.org/10.1038/s41377-018-0078-x
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/s41467-017-00166-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090955816
    156 https://doi.org/10.1038/s41467-017-00166-7
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/s41467-018-03155-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101113679
    159 https://doi.org/10.1038/s41467-018-03155-6
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/s41467-018-03831-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103270791
    162 https://doi.org/10.1038/s41467-018-03831-7
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/s41467-018-07011-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107871607
    165 https://doi.org/10.1038/s41467-018-07011-5
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/s41565-017-0034-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099970156
    168 https://doi.org/10.1038/s41565-017-0034-6
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/s41565-017-0052-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100688043
    171 https://doi.org/10.1038/s41565-017-0052-4
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/s41598-018-27876-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104656679
    174 https://doi.org/10.1038/s41598-018-27876-2
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1186/s40580-014-0014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051152290
    177 https://doi.org/10.1186/s40580-014-0014-6
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1002/adma.201703843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100239070
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1002/adma.201704556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103426860
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1002/adom.201700585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092325722
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1002/adom.201800592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105804893
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1017/cbo9780511581489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098671848
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1021/acs.nanolett.6b03626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121865
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1021/acs.nanolett.6b05137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079402576
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1021/acs.nanolett.7b00717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084536874
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1021/nl202324s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218794
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1039/c7nr08428e schema:sameAs https://app.dimensions.ai/details/publication/pub.1103270862
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1063/1.4974259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083696350
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1073/pnas.1611740113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014347369
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1080/09500348714551321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006822734
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1088/0957-4484/21/29/295303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015156319
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1103/physrevapplied.10.014005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105523086
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1103/physrevapplied.9.054050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104337663
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1103/physrevx.7.041056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099607379
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1116/1.4947586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062178051
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1126/sciadv.aar2114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101005183
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1126/science.1210713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051807434
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1126/science.1232009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001299260
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1126/science.aac4360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062665977
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1126/science.aaf6644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008864030
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1364/cleo_qels.2017.ftu3g.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096998378
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1364/oe.26.013148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103864540
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1364/oe.26.021455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106028699
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1364/oe.26.024835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106922798
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1364/ol.43.004350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106685327
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1364/ome.8.002330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105838941
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1364/optica.2.000716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065248009
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1364/optica.3.000628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065248232
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1364/optica.4.000625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085901109
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1364/optica.5.000099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100611699
    244 rdf:type schema:CreativeWork
    245 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    246 schema:name Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 02138, Cambridge, MA, USA
    247 rdf:type schema:Organization
    248 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    249 schema:name Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 02138, Cambridge, MA, USA
    250 University of Waterloo, N2L 3G1, Waterloo, ON, Canada
    251 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...