Biological relevance of computationally predicted pathogenicity of noncoding variants View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Li Liu, Maxwell D. Sanderford, Ravi Patel, Pramod Chandrashekar, Greg Gibson, Sudhir Kumar

ABSTRACT

Computational prediction of the phenotypic propensities of noncoding single nucleotide variants typically combines annotation of genomic, functional and evolutionary attributes into a single score. Here, we evaluate if the claimed excellent accuracies of these predictions translate into high rates of success in addressing questions important in biological research, such as fine mapping causal variants, distinguishing pathogenic allele(s) at a given position, and prioritizing variants for genetic risk assessment. A significant disconnect is found to exist between the statistical modelling and biological performance of predictive approaches. We discuss fundamental reasons underlying these deficiencies and suggest that future improvements of computational predictions need to address confounding of allelic, positional and regional effects as well as imbalance of the proportion of true positive variants in candidate lists. More... »

PAGES

330

References to SciGraph publications

  • 2017-08. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability in NATURE GENETICS
  • 2017-07. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence in NATURE GENETICS
  • 2012-09. An integrated encyclopedia of DNA elements in the human genome in NATURE
  • 2011-10. A high-resolution map of human evolutionary constraint using 29 mammals in NATURE
  • 2017-07. Genome-wide characterization of mammalian promoters with distal enhancer functions in NATURE GENETICS
  • 2015-12. Evolutionary Diagnosis of non-synonymous variants involved in differential drug response in BMC MEDICAL GENOMICS
  • 2015-12. Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo in NATURE GENETICS
  • 2015-10. A global reference for human genetic variation in NATURE
  • 2018-05. Signatures of negative selection in the genetic architecture of human complex traits in NATURE GENETICS
  • 2013-07. Great ape genetic diversity and population history in NATURE
  • 2016-02. A spectral approach integrating functional genomic annotations for coding and noncoding variants in NATURE GENETICS
  • 2015-03. A method for calculating probabilities of fitness consequences for point mutations across the human genome in NATURE GENETICS
  • 2005-03. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals in NATURE
  • 2014-03. A general framework for estimating the relative pathogenicity of human genetic variants in NATURE GENETICS
  • 2013-12. The genomic signature of trait-associated variants in BMC GENOMICS
  • 2017-09. Discovery of stimulation-responsive immune enhancers with CRISPR activation in NATURE
  • 2017-04. Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data in NATURE GENETICS
  • 2014-03. Functional annotation of noncoding sequence variants in NATURE METHODS
  • 2015-05. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology in GENETICS IN MEDICINE
  • 2014-01. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine in HUMAN GENETICS
  • 2012-09. Evolutionary diagnosis method for variants in personal exomes in NATURE METHODS
  • 2017-10. Genetic effects on gene expression across human tissues in NATURE
  • 2011-07. Genomic inflation factors under polygenic inheritance in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2015-10. Predicting effects of noncoding variants with deep learning-based sequence model in NATURE METHODS
  • 2015-11. Partitioning heritability by functional annotation using genome-wide association summary statistics in NATURE GENETICS
  • 2017. Expression QTLs Mapping and Analysis: A Bayesian Perspective in SYSTEMS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-018-08270-y

    DOI

    http://dx.doi.org/10.1038/s41467-018-08270-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111510593

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30659175


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Arizona State University", 
              "id": "https://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "College of Health Solutions, Biodesign Institute, Arizona State University, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Li", 
            "id": "sg:person.0666403147.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666403147.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Temple University", 
              "id": "https://www.grid.ac/institutes/grid.264727.2", 
              "name": [
                "Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sanderford", 
            "givenName": "Maxwell D.", 
            "id": "sg:person.0745235403.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745235403.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Temple University", 
              "id": "https://www.grid.ac/institutes/grid.264727.2", 
              "name": [
                "Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA", 
                "Department of Biology, Temple University, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Patel", 
            "givenName": "Ravi", 
            "id": "sg:person.014024005006.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014024005006.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arizona State University", 
              "id": "https://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "College of Health Solutions, Biodesign Institute, Arizona State University, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chandrashekar", 
            "givenName": "Pramod", 
            "id": "sg:person.010116077617.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010116077617.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Georgia Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gibson", 
            "givenName": "Greg", 
            "id": "sg:person.01102742762.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102742762.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Temple University", 
              "id": "https://www.grid.ac/institutes/grid.264727.2", 
              "name": [
                "Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA", 
                "Department of Biology, Temple University, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumar", 
            "givenName": "Sudhir", 
            "id": "sg:person.0703004530.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703004530.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.3547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000331042", 
              "https://doi.org/10.1038/nmeth.3547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-013-1358-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001440472", 
              "https://doi.org/10.1007/s00439-013-1358-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-013-1358-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001440472", 
              "https://doi.org/10.1007/s00439-013-1358-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1619052114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001474786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.022629899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008289278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atg.2013.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008974979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2015.05.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008981634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2013.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012117545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0118432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012273932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013173861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013402885", 
              "https://doi.org/10.1038/nature10530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3577405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014343625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014958714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1613365113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015862177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1246949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016223437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1222794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017092582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/mst037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018562455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020585900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6761107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020807644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021812064", 
              "https://doi.org/10.1038/nature15393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1005176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022106803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2016.04.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022169257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2015.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022229472", 
              "https://doi.org/10.1038/gim.2015.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022729014", 
              "https://doi.org/10.1186/1471-2164-14-108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku1177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022955391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1003348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023968606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1254665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025087369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2016.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026908106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-6427-7_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028911636", 
              "https://doi.org/10.1007/978-1-4939-6427-7_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.091991.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028993656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029065430", 
              "https://doi.org/10.1038/nature11247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0012236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029321375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1503027112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029798483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1755-8794-8-s1-s6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030080258", 
              "https://doi.org/10.1186/1755-8794-8-s1-s6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2015.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030639772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033620431", 
              "https://doi.org/10.1038/ng.3404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034264039", 
              "https://doi.org/10.1038/ng.3196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034754276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036930896", 
              "https://doi.org/10.1038/nature12228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037212781", 
              "https://doi.org/10.1038/ng.3432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/biom.12470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038179865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1004722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039741388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0139047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039787810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042383387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043158715", 
              "https://doi.org/10.1038/ng.3477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045762659", 
              "https://doi.org/10.1038/nmeth.2832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046547124", 
              "https://doi.org/10.1038/nmeth.2147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.097857.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047484720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3715005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048048079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050728268", 
              "https://doi.org/10.1038/ng.2892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050742226", 
              "https://doi.org/10.1038/nature03441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050742226", 
              "https://doi.org/10.1038/nature03441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051123116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2011.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051554988", 
              "https://doi.org/10.1038/ejhg.2011.39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msg113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052599768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btw288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059414765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.188953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.188953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.188953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074695934", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077145115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1006618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083755756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129150", 
              "https://doi.org/10.1038/ng.3810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msx116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084186622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1006646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084271971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1006646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084271971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085460724", 
              "https://doi.org/10.1038/ng.3869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085460724", 
              "https://doi.org/10.1038/ng.3869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2017.05.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085713100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085862021", 
              "https://doi.org/10.1038/ng.3884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085862021", 
              "https://doi.org/10.1038/ng.3884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.117.043752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085969638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.117.043752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085969638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086219112", 
              "https://doi.org/10.1038/ng.3903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086219112", 
              "https://doi.org/10.1038/ng.3903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2017.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090666669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2017.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091323340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091384753", 
              "https://doi.org/10.1038/nature23875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091384753", 
              "https://doi.org/10.1038/nature23875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092152730", 
              "https://doi.org/10.1038/nature24277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092152730", 
              "https://doi.org/10.1038/nature24277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092152730", 
              "https://doi.org/10.1038/nature24277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.117.300435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092419417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.2002985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101555077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.2002985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101555077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.2002985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101555077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.2002985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101555077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0101-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103267239", 
              "https://doi.org/10.1038/s41588-018-0101-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0101-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103267239", 
              "https://doi.org/10.1038/s41588-018-0101-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Computational prediction of the phenotypic propensities of noncoding single nucleotide variants typically combines annotation of genomic, functional and evolutionary attributes into a single score. Here, we evaluate if the claimed excellent accuracies of these predictions translate into high rates of success in addressing questions important in biological research, such as fine mapping causal variants, distinguishing pathogenic allele(s) at a given position, and prioritizing variants for genetic risk assessment. A significant disconnect is found to exist between the statistical modelling and biological performance of predictive approaches. We discuss fundamental reasons underlying these deficiencies and suggest that future improvements of computational predictions need to address confounding of allelic, positional and regional effects as well as imbalance of the proportion of true positive variants in candidate lists.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-018-08270-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5504579", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Biological relevance of computationally predicted pathogenicity of noncoding variants", 
        "pagination": "330", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8a754c3e445417c09b55f8868068decf926aaca8fa0deccc144fe570b18f9de9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30659175"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-018-08270-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111510593"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-018-08270-y", 
          "https://app.dimensions.ai/details/publication/pub.1111510593"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_64988_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-018-08270-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08270-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08270-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08270-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08270-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    356 TRIPLES      21 PREDICATES      102 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-018-08270-y schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N0fa34ffbf1e642d2a89ab35a3a81a731
    4 schema:citation sg:pub.10.1007/978-1-4939-6427-7_8
    5 sg:pub.10.1007/s00439-013-1358-4
    6 sg:pub.10.1038/ejhg.2011.39
    7 sg:pub.10.1038/gim.2015.30
    8 sg:pub.10.1038/nature03441
    9 sg:pub.10.1038/nature10530
    10 sg:pub.10.1038/nature11247
    11 sg:pub.10.1038/nature12228
    12 sg:pub.10.1038/nature15393
    13 sg:pub.10.1038/nature23875
    14 sg:pub.10.1038/nature24277
    15 sg:pub.10.1038/ng.2892
    16 sg:pub.10.1038/ng.3196
    17 sg:pub.10.1038/ng.3404
    18 sg:pub.10.1038/ng.3432
    19 sg:pub.10.1038/ng.3477
    20 sg:pub.10.1038/ng.3810
    21 sg:pub.10.1038/ng.3869
    22 sg:pub.10.1038/ng.3884
    23 sg:pub.10.1038/ng.3903
    24 sg:pub.10.1038/nmeth.2147
    25 sg:pub.10.1038/nmeth.2832
    26 sg:pub.10.1038/nmeth.3547
    27 sg:pub.10.1038/s41588-018-0101-4
    28 sg:pub.10.1186/1471-2164-14-108
    29 sg:pub.10.1186/1755-8794-8-s1-s6
    30 https://app.dimensions.ai/details/publication/pub.1074695934
    31 https://doi.org/10.1016/j.ajhg.2013.03.001
    32 https://doi.org/10.1016/j.ajhg.2015.05.016
    33 https://doi.org/10.1016/j.ajhg.2017.06.010
    34 https://doi.org/10.1016/j.ajhg.2017.08.002
    35 https://doi.org/10.1016/j.atg.2013.08.001
    36 https://doi.org/10.1016/j.cell.2015.01.006
    37 https://doi.org/10.1016/j.cell.2016.04.027
    38 https://doi.org/10.1016/j.celrep.2017.05.018
    39 https://doi.org/10.1016/j.tig.2016.10.008
    40 https://doi.org/10.1073/pnas.022629899
    41 https://doi.org/10.1073/pnas.1503027112
    42 https://doi.org/10.1073/pnas.1613365113
    43 https://doi.org/10.1073/pnas.1619052114
    44 https://doi.org/10.1093/bioinformatics/btq671
    45 https://doi.org/10.1093/bioinformatics/btu273
    46 https://doi.org/10.1093/bioinformatics/btv240
    47 https://doi.org/10.1093/bioinformatics/btv610
    48 https://doi.org/10.1093/bioinformatics/btw288
    49 https://doi.org/10.1093/molbev/msg113
    50 https://doi.org/10.1093/molbev/mst037
    51 https://doi.org/10.1093/molbev/msx116
    52 https://doi.org/10.1093/nar/gku1177
    53 https://doi.org/10.1093/nar/gkv1222
    54 https://doi.org/10.1093/oxfordjournals.molbev.a040752
    55 https://doi.org/10.1101/gr.091991.109
    56 https://doi.org/10.1101/gr.097857.109
    57 https://doi.org/10.1101/gr.3577405
    58 https://doi.org/10.1101/gr.3715005
    59 https://doi.org/10.1101/gr.6761107
    60 https://doi.org/10.1111/biom.12470
    61 https://doi.org/10.1126/science.1222794
    62 https://doi.org/10.1126/science.1246949
    63 https://doi.org/10.1126/science.1254665
    64 https://doi.org/10.1371/journal.pbio.2002985
    65 https://doi.org/10.1371/journal.pgen.1000336
    66 https://doi.org/10.1371/journal.pgen.1003348
    67 https://doi.org/10.1371/journal.pgen.1004722
    68 https://doi.org/10.1371/journal.pgen.1005176
    69 https://doi.org/10.1371/journal.pgen.1006618
    70 https://doi.org/10.1371/journal.pgen.1006646
    71 https://doi.org/10.1371/journal.pone.0012236
    72 https://doi.org/10.1371/journal.pone.0118432
    73 https://doi.org/10.1371/journal.pone.0139047
    74 https://doi.org/10.1534/g3.117.043752
    75 https://doi.org/10.1534/genetics.116.188953
    76 https://doi.org/10.1534/genetics.117.300435
    77 schema:datePublished 2019-12
    78 schema:datePublishedReg 2019-12-01
    79 schema:description Computational prediction of the phenotypic propensities of noncoding single nucleotide variants typically combines annotation of genomic, functional and evolutionary attributes into a single score. Here, we evaluate if the claimed excellent accuracies of these predictions translate into high rates of success in addressing questions important in biological research, such as fine mapping causal variants, distinguishing pathogenic allele(s) at a given position, and prioritizing variants for genetic risk assessment. A significant disconnect is found to exist between the statistical modelling and biological performance of predictive approaches. We discuss fundamental reasons underlying these deficiencies and suggest that future improvements of computational predictions need to address confounding of allelic, positional and regional effects as well as imbalance of the proportion of true positive variants in candidate lists.
    80 schema:genre research_article
    81 schema:inLanguage en
    82 schema:isAccessibleForFree true
    83 schema:isPartOf N235bb26d6aa949b5ae82ebcf0e7a39e7
    84 N775f952596d44cf48d5a4b5450b3c7ef
    85 sg:journal.1043282
    86 schema:name Biological relevance of computationally predicted pathogenicity of noncoding variants
    87 schema:pagination 330
    88 schema:productId N046baaee706a4293ba48920fbb0a0d4e
    89 N135f69f330404623b53e91ef28326cf5
    90 N3542bcf5958648689fdba5f46fbed266
    91 N3ed51e8354974d4b95666d511c9fd4ee
    92 Ndf219523c65741c7a36539aa103928b7
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111510593
    94 https://doi.org/10.1038/s41467-018-08270-y
    95 schema:sdDatePublished 2019-04-11T08:43
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Nf7c3e67ad0ff48f2bffadc413dd10f5d
    98 schema:url https://www.nature.com/articles/s41467-018-08270-y
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N0183f1e438454d6b98bef7d196aa718f rdf:first sg:person.014024005006.15
    103 rdf:rest N791b7e583a3a47ed8d04f42ff944cd45
    104 N046baaee706a4293ba48920fbb0a0d4e schema:name dimensions_id
    105 schema:value pub.1111510593
    106 rdf:type schema:PropertyValue
    107 N0fa34ffbf1e642d2a89ab35a3a81a731 rdf:first sg:person.0666403147.95
    108 rdf:rest N4322033cbc134ee39d3c01d12ea7787c
    109 N135f69f330404623b53e91ef28326cf5 schema:name doi
    110 schema:value 10.1038/s41467-018-08270-y
    111 rdf:type schema:PropertyValue
    112 N235bb26d6aa949b5ae82ebcf0e7a39e7 schema:issueNumber 1
    113 rdf:type schema:PublicationIssue
    114 N3027da1e1d8f46c9989773c86b9fed97 rdf:first sg:person.01102742762.02
    115 rdf:rest N3b35b27cd2db450b9a19d03346770c9d
    116 N3542bcf5958648689fdba5f46fbed266 schema:name readcube_id
    117 schema:value 8a754c3e445417c09b55f8868068decf926aaca8fa0deccc144fe570b18f9de9
    118 rdf:type schema:PropertyValue
    119 N3b35b27cd2db450b9a19d03346770c9d rdf:first sg:person.0703004530.05
    120 rdf:rest rdf:nil
    121 N3ed51e8354974d4b95666d511c9fd4ee schema:name nlm_unique_id
    122 schema:value 101528555
    123 rdf:type schema:PropertyValue
    124 N4322033cbc134ee39d3c01d12ea7787c rdf:first sg:person.0745235403.20
    125 rdf:rest N0183f1e438454d6b98bef7d196aa718f
    126 N775f952596d44cf48d5a4b5450b3c7ef schema:volumeNumber 10
    127 rdf:type schema:PublicationVolume
    128 N791b7e583a3a47ed8d04f42ff944cd45 rdf:first sg:person.010116077617.30
    129 rdf:rest N3027da1e1d8f46c9989773c86b9fed97
    130 Ndf219523c65741c7a36539aa103928b7 schema:name pubmed_id
    131 schema:value 30659175
    132 rdf:type schema:PropertyValue
    133 Nf7c3e67ad0ff48f2bffadc413dd10f5d schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Biological Sciences
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Genetics
    140 rdf:type schema:DefinedTerm
    141 sg:grant.5504579 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-08270-y
    142 rdf:type schema:MonetaryGrant
    143 sg:journal.1043282 schema:issn 2041-1723
    144 schema:name Nature Communications
    145 rdf:type schema:Periodical
    146 sg:person.010116077617.30 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
    147 schema:familyName Chandrashekar
    148 schema:givenName Pramod
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010116077617.30
    150 rdf:type schema:Person
    151 sg:person.01102742762.02 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
    152 schema:familyName Gibson
    153 schema:givenName Greg
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102742762.02
    155 rdf:type schema:Person
    156 sg:person.014024005006.15 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
    157 schema:familyName Patel
    158 schema:givenName Ravi
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014024005006.15
    160 rdf:type schema:Person
    161 sg:person.0666403147.95 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
    162 schema:familyName Liu
    163 schema:givenName Li
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666403147.95
    165 rdf:type schema:Person
    166 sg:person.0703004530.05 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
    167 schema:familyName Kumar
    168 schema:givenName Sudhir
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703004530.05
    170 rdf:type schema:Person
    171 sg:person.0745235403.20 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
    172 schema:familyName Sanderford
    173 schema:givenName Maxwell D.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745235403.20
    175 rdf:type schema:Person
    176 sg:pub.10.1007/978-1-4939-6427-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028911636
    177 https://doi.org/10.1007/978-1-4939-6427-7_8
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s00439-013-1358-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001440472
    180 https://doi.org/10.1007/s00439-013-1358-4
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/ejhg.2011.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051554988
    183 https://doi.org/10.1038/ejhg.2011.39
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/gim.2015.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022229472
    186 https://doi.org/10.1038/gim.2015.30
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature03441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050742226
    189 https://doi.org/10.1038/nature03441
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature10530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013402885
    192 https://doi.org/10.1038/nature10530
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
    195 https://doi.org/10.1038/nature11247
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature12228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036930896
    198 https://doi.org/10.1038/nature12228
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
    201 https://doi.org/10.1038/nature15393
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature23875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091384753
    204 https://doi.org/10.1038/nature23875
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature24277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152730
    207 https://doi.org/10.1038/nature24277
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/ng.2892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050728268
    210 https://doi.org/10.1038/ng.2892
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ng.3196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034264039
    213 https://doi.org/10.1038/ng.3196
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/ng.3404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033620431
    216 https://doi.org/10.1038/ng.3404
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/ng.3432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037212781
    219 https://doi.org/10.1038/ng.3432
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/ng.3477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043158715
    222 https://doi.org/10.1038/ng.3477
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/ng.3810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129150
    225 https://doi.org/10.1038/ng.3810
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/ng.3869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085460724
    228 https://doi.org/10.1038/ng.3869
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/ng.3884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085862021
    231 https://doi.org/10.1038/ng.3884
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/ng.3903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086219112
    234 https://doi.org/10.1038/ng.3903
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nmeth.2147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046547124
    237 https://doi.org/10.1038/nmeth.2147
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nmeth.2832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045762659
    240 https://doi.org/10.1038/nmeth.2832
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nmeth.3547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000331042
    243 https://doi.org/10.1038/nmeth.3547
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/s41588-018-0101-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103267239
    246 https://doi.org/10.1038/s41588-018-0101-4
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1186/1471-2164-14-108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022729014
    249 https://doi.org/10.1186/1471-2164-14-108
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1186/1755-8794-8-s1-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030080258
    252 https://doi.org/10.1186/1755-8794-8-s1-s6
    253 rdf:type schema:CreativeWork
    254 https://app.dimensions.ai/details/publication/pub.1074695934 schema:CreativeWork
    255 https://doi.org/10.1016/j.ajhg.2013.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012117545
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/j.ajhg.2015.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008981634
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/j.ajhg.2017.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090666669
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/j.ajhg.2017.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091323340
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.atg.2013.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008974979
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/j.cell.2015.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030639772
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/j.cell.2016.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022169257
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/j.celrep.2017.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085713100
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/j.tig.2016.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026908106
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1073/pnas.022629899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008289278
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1073/pnas.1503027112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029798483
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1073/pnas.1613365113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015862177
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1073/pnas.1619052114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001474786
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1093/bioinformatics/btq671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051123116
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1093/bioinformatics/btu273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013173861
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/bioinformatics/btv240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020585900
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/bioinformatics/btv610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014958714
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/bioinformatics/btw288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414765
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1093/molbev/msg113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052599768
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1093/molbev/mst037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018562455
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1093/molbev/msx116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084186622
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1093/nar/gku1177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022955391
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1093/nar/gkv1222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034754276
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1093/oxfordjournals.molbev.a040752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077145115
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1101/gr.091991.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028993656
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1101/gr.097857.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047484720
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1101/gr.3577405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014343625
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1101/gr.3715005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048048079
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1101/gr.6761107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020807644
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1111/biom.12470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038179865
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1126/science.1222794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017092582
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1126/science.1246949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016223437
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1126/science.1254665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025087369
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1371/journal.pbio.2002985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101555077
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1371/journal.pgen.1000336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042383387
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1371/journal.pgen.1003348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023968606
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1371/journal.pgen.1004722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039741388
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1371/journal.pgen.1005176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022106803
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1371/journal.pgen.1006618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083755756
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1371/journal.pgen.1006646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084271971
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1371/journal.pone.0012236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029321375
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1371/journal.pone.0118432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273932
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1371/journal.pone.0139047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039787810
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1534/g3.117.043752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085969638
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1534/genetics.116.188953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067739634
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1534/genetics.117.300435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092419417
    346 rdf:type schema:CreativeWork
    347 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
    348 schema:name School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
    349 rdf:type schema:Organization
    350 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
    351 schema:name College of Health Solutions, Biodesign Institute, Arizona State University, Tempe, AZ, USA
    352 rdf:type schema:Organization
    353 https://www.grid.ac/institutes/grid.264727.2 schema:alternateName Temple University
    354 schema:name Department of Biology, Temple University, Philadelphia, PA, USA
    355 Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
    356 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...