A variable-stiffness tendril-like soft robot based on reversible osmotic actuation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Indrek Must, Edoardo Sinibaldi, Barbara Mazzolai

ABSTRACT

Soft robots hold promise for well-matched interactions with delicate objects, humans and unstructured environments owing to their intrinsic material compliance. Movement and stiffness modulation, which is challenging yet needed for an effective demonstration, can be devised by drawing inspiration from plants. Plants use a coordinated and reversible modulation of intracellular turgor (pressure) to tune their stiffness and achieve macroscopic movements. Plant-inspired osmotic actuation was recently proposed, yet reversibility is still an open issue hampering its implementation, also in soft robotics. Here we show a reversible osmotic actuation strategy based on the electrosorption of ions on flexible porous carbon electrodes driven at low input voltages (1.3 V). We demonstrate reversible stiffening (~5-fold increase) and actuation (~500 deg rotation) of a tendril-like soft robot (diameter ~1 mm). Our approach highlights the potential of plant-inspired technologies for developing soft robots based on biocompatible materials and safe voltages making them appealing for prospective applications. More... »

PAGES

344

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-08173-y

DOI

http://dx.doi.org/10.1038/s41467-018-08173-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111574911

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30664648


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tartu", 
          "id": "https://www.grid.ac/institutes/grid.10939.32", 
          "name": [
            "Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Italy", 
            "Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Must", 
        "givenName": "Indrek", 
        "id": "sg:person.014200504257.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014200504257.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Italian Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.25786.3e", 
          "name": [
            "Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinibaldi", 
        "givenName": "Edoardo", 
        "id": "sg:person.01360110602.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360110602.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Italian Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.25786.3e", 
          "name": [
            "Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazzolai", 
        "givenName": "Barbara", 
        "id": "sg:person.01154343650.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154343650.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/536400a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001385557", 
          "https://doi.org/10.1038/536400a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2016.03.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002541039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-3182/8/2/025002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004304174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature19100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010057949", 
          "https://doi.org/10.1038/nature19100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010130282", 
          "https://doi.org/10.1038/ncomms1336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adem.201400246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011644384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2012.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012042748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014422679", 
          "https://doi.org/10.1038/ncomms13981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.031502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015453433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.031502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015453433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ee02985f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017356392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ee00519a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017947930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.16.00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018790777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022200169", 
          "https://doi.org/10.1038/nmat4544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0102461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025876775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3040.1989.tb01961.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028809654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aab0129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036206646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036324336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colcom.2015.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037603525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043974564", 
          "https://doi.org/10.1038/srep30139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2016.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044322368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2016.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044322368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2016.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044322368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201404772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048293063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ee21498a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048480619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-fluid-120710-101200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052367315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118392409.ch23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053714331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2009.2038997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061692582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1223304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scirobotics.aah3690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062681758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2010.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069143783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2017.02.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083820995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2017.06.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086152167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.7b07058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090395480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201704407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099691595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201704407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099691595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scirobotics.aar7650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100741424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/frobt.2018.00016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101522888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2018.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101558037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2018.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101558037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2018.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101558037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2018.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101558037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41578-018-0004-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103452357", 
          "https://doi.org/10.1038/s41578-018-0004-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/d41586-018-05093-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103900524", 
          "https://doi.org/10.1038/d41586-018-05093-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scirobotics.aar2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105073857"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Soft robots hold promise for well-matched interactions with delicate objects, humans and unstructured environments owing to their intrinsic material compliance. Movement and stiffness modulation, which is challenging yet needed for an effective demonstration, can be devised by drawing inspiration from plants. Plants use a coordinated and reversible modulation of intracellular turgor (pressure) to tune their stiffness and achieve macroscopic movements. Plant-inspired osmotic actuation was recently proposed, yet reversibility is still an open issue hampering its implementation, also in soft robotics. Here we show a reversible osmotic actuation strategy based on the electrosorption of ions on flexible porous carbon electrodes driven at low input voltages (1.3\u2009V). We demonstrate reversible stiffening (~5-fold increase) and actuation (~500\u2009deg rotation) of a tendril-like soft robot (diameter ~1\u2009mm). Our approach highlights the potential of plant-inspired technologies for developing soft robots based on biocompatible materials and safe voltages making them appealing for prospective applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-018-08173-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "A variable-stiffness tendril-like soft robot based on reversible osmotic actuation", 
    "pagination": "344", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee7f2c650d54cceef17d79485c08ffb80190b54d40475179cbf709426d5fd7bd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30664648"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-08173-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111574911"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-08173-y", 
      "https://app.dimensions.ai/details/publication/pub.1111574911"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100801_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-018-08173-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08173-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08173-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08173-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08173-y'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-08173-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Neb98e6fad4e8479492208e4a22b13d46
4 schema:citation sg:pub.10.1038/536400a
5 sg:pub.10.1038/d41586-018-05093-1
6 sg:pub.10.1038/nature19100
7 sg:pub.10.1038/ncomms1336
8 sg:pub.10.1038/ncomms13981
9 sg:pub.10.1038/nmat4544
10 sg:pub.10.1038/s41578-018-0004-0
11 sg:pub.10.1038/srep30139
12 https://doi.org/10.1002/9781118392409.ch23
13 https://doi.org/10.1002/adem.201400246
14 https://doi.org/10.1002/adma.201404772
15 https://doi.org/10.1002/adma.201704407
16 https://doi.org/10.1016/j.carbon.2017.06.077
17 https://doi.org/10.1016/j.colcom.2015.12.001
18 https://doi.org/10.1016/j.cub.2018.01.028
19 https://doi.org/10.1016/j.desal.2012.09.022
20 https://doi.org/10.1016/j.memsci.2011.06.021
21 https://doi.org/10.1016/j.memsci.2016.03.052
22 https://doi.org/10.1016/j.snb.2017.02.065
23 https://doi.org/10.1016/j.watres.2016.08.020
24 https://doi.org/10.1021/acsami.7b07058
25 https://doi.org/10.1039/c2ee21498a
26 https://doi.org/10.1039/c5ee00519a
27 https://doi.org/10.1039/c5ee02985f
28 https://doi.org/10.1088/1748-3182/8/2/025002
29 https://doi.org/10.1103/physreve.81.031502
30 https://doi.org/10.1104/pp.16.00017
31 https://doi.org/10.1109/tmech.2009.2038997
32 https://doi.org/10.1111/j.1365-3040.1989.tb01961.x
33 https://doi.org/10.1126/science.1223304
34 https://doi.org/10.1126/science.aab0129
35 https://doi.org/10.1126/scirobotics.aah3690
36 https://doi.org/10.1126/scirobotics.aar2629
37 https://doi.org/10.1126/scirobotics.aar7650
38 https://doi.org/10.1146/annurev-fluid-120710-101200
39 https://doi.org/10.1371/journal.pone.0102461
40 https://doi.org/10.2166/wst.2010.078
41 https://doi.org/10.3389/frobt.2018.00016
42 schema:datePublished 2019-12
43 schema:datePublishedReg 2019-12-01
44 schema:description Soft robots hold promise for well-matched interactions with delicate objects, humans and unstructured environments owing to their intrinsic material compliance. Movement and stiffness modulation, which is challenging yet needed for an effective demonstration, can be devised by drawing inspiration from plants. Plants use a coordinated and reversible modulation of intracellular turgor (pressure) to tune their stiffness and achieve macroscopic movements. Plant-inspired osmotic actuation was recently proposed, yet reversibility is still an open issue hampering its implementation, also in soft robotics. Here we show a reversible osmotic actuation strategy based on the electrosorption of ions on flexible porous carbon electrodes driven at low input voltages (1.3 V). We demonstrate reversible stiffening (~5-fold increase) and actuation (~500 deg rotation) of a tendril-like soft robot (diameter ~1 mm). Our approach highlights the potential of plant-inspired technologies for developing soft robots based on biocompatible materials and safe voltages making them appealing for prospective applications.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N2d98c0a346d34906a816a4ab622d4edb
49 N978d3441b48a4a47aab71c5aecc2a32a
50 sg:journal.1043282
51 schema:name A variable-stiffness tendril-like soft robot based on reversible osmotic actuation
52 schema:pagination 344
53 schema:productId N1e2bb157549c461c9be5f1af5150672e
54 N5064a269403d428abd2cf55479f51a4f
55 N718c0e764ce84973918c8ce7c469a421
56 N79615b56e0574a878fb9c9da4afb8c00
57 Ncc12280cc7d4468fb8362976fc605feb
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111574911
59 https://doi.org/10.1038/s41467-018-08173-y
60 schema:sdDatePublished 2019-04-11T08:56
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N0d4cbb8eb78247e595de6f03da80315c
63 schema:url https://www.nature.com/articles/s41467-018-08173-y
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0d4cbb8eb78247e595de6f03da80315c schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N1e2bb157549c461c9be5f1af5150672e schema:name readcube_id
70 schema:value ee7f2c650d54cceef17d79485c08ffb80190b54d40475179cbf709426d5fd7bd
71 rdf:type schema:PropertyValue
72 N2d98c0a346d34906a816a4ab622d4edb schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N5064a269403d428abd2cf55479f51a4f schema:name pubmed_id
75 schema:value 30664648
76 rdf:type schema:PropertyValue
77 N718c0e764ce84973918c8ce7c469a421 schema:name nlm_unique_id
78 schema:value 101528555
79 rdf:type schema:PropertyValue
80 N79615b56e0574a878fb9c9da4afb8c00 schema:name dimensions_id
81 schema:value pub.1111574911
82 rdf:type schema:PropertyValue
83 N81d48c441cbe44adaa958877d2c8ed68 rdf:first sg:person.01360110602.35
84 rdf:rest N86dd772df5ab4208b17fd354f5b9a2dc
85 N86dd772df5ab4208b17fd354f5b9a2dc rdf:first sg:person.01154343650.47
86 rdf:rest rdf:nil
87 N978d3441b48a4a47aab71c5aecc2a32a schema:volumeNumber 10
88 rdf:type schema:PublicationVolume
89 Ncc12280cc7d4468fb8362976fc605feb schema:name doi
90 schema:value 10.1038/s41467-018-08173-y
91 rdf:type schema:PropertyValue
92 Neb98e6fad4e8479492208e4a22b13d46 rdf:first sg:person.014200504257.64
93 rdf:rest N81d48c441cbe44adaa958877d2c8ed68
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:journal.1043282 schema:issn 2041-1723
101 schema:name Nature Communications
102 rdf:type schema:Periodical
103 sg:person.01154343650.47 schema:affiliation https://www.grid.ac/institutes/grid.25786.3e
104 schema:familyName Mazzolai
105 schema:givenName Barbara
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154343650.47
107 rdf:type schema:Person
108 sg:person.01360110602.35 schema:affiliation https://www.grid.ac/institutes/grid.25786.3e
109 schema:familyName Sinibaldi
110 schema:givenName Edoardo
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360110602.35
112 rdf:type schema:Person
113 sg:person.014200504257.64 schema:affiliation https://www.grid.ac/institutes/grid.10939.32
114 schema:familyName Must
115 schema:givenName Indrek
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014200504257.64
117 rdf:type schema:Person
118 sg:pub.10.1038/536400a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001385557
119 https://doi.org/10.1038/536400a
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/d41586-018-05093-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103900524
122 https://doi.org/10.1038/d41586-018-05093-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nature19100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010057949
125 https://doi.org/10.1038/nature19100
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/ncomms1336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010130282
128 https://doi.org/10.1038/ncomms1336
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/ncomms13981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014422679
131 https://doi.org/10.1038/ncomms13981
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmat4544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022200169
134 https://doi.org/10.1038/nmat4544
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/s41578-018-0004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103452357
137 https://doi.org/10.1038/s41578-018-0004-0
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/srep30139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043974564
140 https://doi.org/10.1038/srep30139
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/9781118392409.ch23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053714331
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/adem.201400246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011644384
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/adma.201404772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048293063
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/adma.201704407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099691595
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.carbon.2017.06.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086152167
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.colcom.2015.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037603525
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.cub.2018.01.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101558037
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.desal.2012.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012042748
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.memsci.2011.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036324336
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.memsci.2016.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002541039
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.snb.2017.02.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083820995
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.watres.2016.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044322368
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/acsami.7b07058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090395480
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1039/c2ee21498a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048480619
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1039/c5ee00519a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017947930
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1039/c5ee02985f schema:sameAs https://app.dimensions.ai/details/publication/pub.1017356392
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/1748-3182/8/2/025002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004304174
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.81.031502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015453433
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1104/pp.16.00017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018790777
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tmech.2009.2038997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061692582
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/j.1365-3040.1989.tb01961.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028809654
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1223304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466763
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.aab0129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036206646
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/scirobotics.aah3690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062681758
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/scirobotics.aar2629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105073857
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/scirobotics.aar7650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100741424
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1146/annurev-fluid-120710-101200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052367315
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pone.0102461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025876775
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2166/wst.2010.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069143783
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3389/frobt.2018.00016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101522888
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.10939.32 schema:alternateName University of Tartu
203 schema:name Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Italy
204 Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.25786.3e schema:alternateName Italian Institute of Technology
207 schema:name Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Italy
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...